Illustrative introductions on dimension reduction
"What is your image on dimensions?"
....That might be a cheesy question to ask to reader of Data Science Blog, but most…Spiky cubes, Pac-Man walking, empty M&M's chocolate: curse of dimensionality
"Curse of dimensionality" means the difficulties of machine learning which arise when the dimension of data is higher. In…
Back propagation of LSTM: just get ready for the most tiresome part
First of all, the summary of this article is "please just download my Power Point slides and be patient, following the equations."…
How to develop digital products and solutions for industrial environments?
In this article, we substantiate why Data Science and Engineering should be introduced as new engineering discipline in the Product Lifecycle Management process.
Understanding LSTM forward propagation in two ways
*This article is only for the sake of understanding the equations in the second page of the paper named "LSTM: A Search Space…
Hypothesis Test for real problems
A statistical hypothesis is a belief made about a population parameter. This belief may or might not be right. In other words, hypothesis testing is a proper technique utilized by scientist to support or reject statistical hypotheses. The foremost ideal approach to decide if a statistical hypothesis is correct is examine the whole population.
Must-have Skills to Master Data Science
The need to process a massive amount of data sets is making Data Science the most-demanded job across diverse industry verticals.…
Process Mining mit Celonis - Artikelserie
Insgesamt stellt Celonis ein unabhängiges und leistungsstarkes Process Mining Tool bereit, wobei der Anwender die Wahl zwischen einer on-Premise-Lösung sowie einer Cloud-Lösung hat. Die „prebuild Process-Connectors“ und die vordefinierten Analysen können ein Process Mining Projekt signifikant beschleunigen und somit die Time-to-Value lukrativ verkürzen. Die Analyse Tools sind leicht bedienbar und schaffen dank integrierter Machine Learning Algorithmen Optimierungspotentiale.
AI Voice Assistants are the Next Revolution: How Prepared are You?
According to Jeff Bezos, Amazon CEO, he says we’re already living in the golden era of artificial intelligence as such where the voice assistant flagship already exists, i.e. Alexa.
Test!
Test!
Interesting links
Here are some interesting links for you! Enjoy your stay :)Pages
- @Data Science Blog
- Autor werden!
- Autoren
- Become an Author
- CIO Interviews
- Computational and Data Science
- Coursera Data Science Specialization
- Coursera 用Python玩转数据 Data Processing Using Python
- Data Leader Day 2016 – Rabatt für Data Scientists!
- Data Science
- Data Science Insights
- Data Science Partner
- DATANOMIQ Big Data & Data Science Seminare
- DATANOMIQ Process Mining Workshop
- DATANOMIQ Seminare für Führungskräfte
- DataQuest.io – Interactive Learning
- Datenschutz
- Donation / Spende
- Education / Certification
- Fraunhofer Academy Zertifikatsprogramm »Data Scientist«
- Für Presse / Redakteure
- HARVARD Data Science Certificate Courses
- Home
- Impressum / Imprint
- MapR Big Data Expert
- Masterstudiengang Data Science
- Masterstudiengang Management & Data Science
- MongoDB University Online Courses
- Newsletter
- O’Reilly Video Training – Data Science with R
- Products
- qSkills Workshop: Industrial Security
- Science Digital Intelligence & Marketing Analytics
- Show your Desk!
- Stanford University Online -Statistical Learning
- TU Chemnitz – Masterstudiengang Business Intelligence & Analytics
- TU Dortmund – Datenwissenschaft – Master of Science
- TU Dortmund berufsbegleitendes Zertifikatsstudium
- Weiterbildung mit Hochschulzertifikat Data Science & Business Analytics für Einsteiger
- WWU Münster – Zertifikatsstudiengang “Data Science”
- Zertifikatskurs „Data Science“
- Zertifizierter Business Analyst
Categories
- Apache Spark
- Artificial Intelligence
- Audit Analytics
- Big Data
- Books
- Business Analytics
- Business Intelligence
- Carrier
- Certification / Training
- Cloud
- Connected Car
- Customer Analytics
- Data Engineering
- Data Migration
- Data Mining
- Data Science
- Data Science at the Command Line
- Data Science Hack
- Data Science News
- Data Security
- Data Warehousing
- Database
- Datacenter
- Deep Learning
- Devices
- Education / Certification
- Events
- Excel / Power BI
- Experience
- Gerneral
- GPU-Processing
- Graph Database
- Hacking
- Hadoop
- Hadoop Framework
- Industrie 4.0
- InMemory
- Insights
- Interview mit CIO
- Interviews
- Java
- JavaScript
- Machine Learning
- Main Category
- Manufacturing
- Mathematics
- Mobile Device Management
- Mobile Devices
- Natural Language Processing
- Neo4J
- NoSQL
- Octave
- optimization
- Predictive Analytics
- Process Mining
- Projectmanagement
- Python
- Python
- R Statistics
- Re-Engineering
- Realtime Analytics
- Recommendations
- Scala
- Software Development
- Sponsoring Partner Posts
- SQL
- Statistics
- TensorFlow
- Text Mining
- Tool Introduction
- Tools
- Tutorial
- Uncategorized
- Use Case
- Use Cases
- Visualization
- Web- & App-Tracking
Archive
- September 2020
- August 2020
- July 2020
- June 2020
- May 2020
- April 2020
- March 2020
- February 2020
- January 2020
- December 2019
- November 2019
- October 2019
- September 2019
- August 2019
- July 2019
- June 2019
- May 2019
- April 2019
- March 2019
- February 2019
- January 2019
- December 2018
- November 2018
- October 2018
- September 2018
- August 2018
- July 2018
- June 2018
- May 2018
- April 2018
- March 2018
- February 2018
- January 2018
- December 2017
- November 2017
- October 2017
- September 2017
- August 2017
- July 2017
- June 2017
- May 2017
- April 2017
- March 2017
- February 2017
- January 2017
- December 2016
- November 2016
- October 2016
- September 2016
- August 2016
- July 2016
- June 2016
- May 2016
- April 2016
- March 2016
- February 2016
- January 2016
- December 2015
- November 2015
- October 2015
- September 2015
- August 2015
- July 2015
- June 2015
- May 2015
Data Science mit dem iPad Pro (und der Cloud)
/1 Comment/in Devices, Insights, Recommendations /by Ramon WartalaSeit einiger Zeit versuche ich mein iPad Pro stärker in meinen Arbeitsaltag zu integrieren. Ähnlich wie Joseph (iPad Pro 10.5 as my Main Computer – Part 1, Part 2 und Part 3) sprechen auch für mich seit der Einführung des iPad Pro 9,7″, das nochmal verbesserte Display, die größeren Speicheroptionen, das faltbaren Smart Keyboard (funktioniert über einen […]
Interview – Die Bedeutung von Machine Learning für das Data Driven Business
/2 Comments/in Artificial Intelligence, Big Data, Business Analytics, Data Mining, Data Science, Deep Learning, Insights, Interviews, Machine Learning /by Benjamin AunkoferUm das Optimum aus ihren Daten zu holen, müssen Unternehmen Data Analytics vorantreiben, um Entscheidungsprozesse für Innovation und Differenzierung stärker zu automatisieren. Die Data Science scheint hier der richtige Ansatz zu sein, ist aber ein neues und schnelllebiges Feld, das viele Sackgassen kennt. Cloudera Fast Forward Labs unterstützt Unternehmen dabei sich umzustrukturieren, Prozesse zu automatisieren […]
Interview – The Importance of Machine Learning for the Data Driven Business
/0 Comments/in Artificial Intelligence, Big Data, Business Analytics, Data Mining, Data Science, Deep Learning, Insights, Interviews, Machine Learning, Main Category, Predictive Analytics /by Benjamin AunkoferTo become more data-driven, organizations must mature their analytics and automate more of their decision making processes for innovation and differentiation. Data science seems like the right approach, yet is a new and fast moving field that seems to have as many dead ends as it has high ways to value. Cloudera Fast Forward Labs, […]
R oder Python – Die Sprache der Wahl in einem Data Science Weiterbildungskurs
/1 Comment/in Business Analytics, Business Intelligence, Carrier, Certification / Training, Data Science, Education / Certification, Gerneral, Insights, Tool Introduction /by Dr. Peter LaufDie KDnuggets, ein einflussreicher Newletter zu Data Mining und inzwischen auch zu Data Science, überraschte kürzlich mit der Meldung „Python eats away at R: Top Software for Analytics, Data Science, Machine Learning in 2018. Trends and Analysis“.[1] Grundlage war eine Befragung, an der mehr als 2300 KDNuggets Leser teilnahmen. Nach Bereinigung um die sogenannten „Lone […]
DS-GVO: Wie das moderne Data-Warehouse Unternehmen entlastet
/1 Comment/in Data Migration, Data Security, Data Warehousing, Database, Sponsoring Partner Posts /by Thomas ScholzArtikel des Blog-Sponsors: Snowflake Viele Aktivitäten, die zur Einhaltung der DS-GVO-Anforderungen beitragen, liegen in den Händen der Unternehmen selbst. Deren IT-Anbieter sollten dazu beitragen, die Compliance-Anforderungen dieser Unternehmen zu erfüllen. Die SaaS-Anbieter eines Unternehmens sollten zumindest die IT-Sicherheitsanforderungen erfüllen, die sich vollständig in ihrem Bereich befinden und sich auf die Geschäfts- und Datensicherheit ihrer Kunden […]
Deep Learning and Human Intelligence – Part 1 of 2
/0 Comments/in Artificial Intelligence, Data Science, Deep Learning, Gerneral, Machine Learning, Predictive Analytics /by Valentin CurtefMany people are under the impression that the new wave of data science, machine learning and/or digitalization is new, that it did not exist before. But its history is as long as the history of humanity and/or science itself. The scientific discovery could hardly take place without the necessary data. Even the process of discovering […]
Interview – Die Herausforderungen der Sensor-Datenanalyse für die Automobilindustrie
/2 Comments/in Data Science News, Gerneral, Insights, Interviews, Use Cases /by Benjamin AunkoferInterview mit Andreas Festl von VIRTUAL VEHICLE Andreas Festl ist Data Scientist bei VIRTUAL VEHICLE, ein führendes F&E Zentrum für die Automobil- und Bahnindustrie mit Sitz in Graz, Österreich. Das Zentrum konzentriert sich auf die konsequente Virtualisierung der Fahrzeugentwicklung. Wesentliches Element dabei ist die Verknüpfung von numerischer Simulation und Hardware-Testen, welche ein umfassendes HW-SW Systemdesign […]
Bringing intelligence to where data lives: Python & R embedded in T-SQL
/1 Comment/in Business Analytics, Business Intelligence, Data Engineering, Data Science, Data Science Hack, Data Science News, Main Category, Python, R Statistics, SQL, Tool Introduction, Tutorial /by Kyle WellerIntroduction Did you know that you can write R and Python code within your T-SQL statements? Machine Learning Services in SQL Server eliminates the need for data movement. Instead of transferring large and sensitive data over the network or losing accuracy with sample csv files, you can have your R/Python code execute within your database. Easily deploy […]
Analyse der Netzwerktopologie des Internets auf Basis des IPv4-Protokolls
/0 Comments/in Data Mining, Data Science, Data Science at the Command Line, Data Science Hack, Hacking, Python, Python, Tool Introduction, Tools, Tutorial, Use Case, Use Cases, Visualization /by Christopher KippWie kommen Daten die man via Internet quer durch die Welt sendet eigentlich an ihr Ziel? Welchen Weg nehmen beispielsweise die Datenpakete, wenn ich von mir zu Hause eine Datei an meinen Nachbarn ein Haus weiter sende? Wie groß ist der “Umweg”, den die Daten nehmen? Und macht es eigentlich einen Unterschied, ob ich www.google.de, […]
Interview – Python as productive data science environment
/1 Comment/in Insights, Interviews /by Benjamin AunkoferMiroslav Šedivý is a Senior Software Architect at UBIMET GmbH, using Python to make the sun shine and the wind blow. He is an enthusiast of both human and programming languages and found Python as his language of choice to setup very productive environments. Mr. Šedivý was born in Czechoslovakia, studied in France and is […]