Erstellen und benutzen einer Geodatenbank

In diesem Artikel soll es im Gegensatz zum vorherigen Artikel Alles über Geodaten weniger darum gehen, was man denn alles mit Geodaten machen kann, dafür aber mehr darum wie man dies anstellt. Es wird gezeigt, wie man aus dem öffentlich verfügbaren Datensatz des OpenStreetMap-Projekts eine Geodatenbank erstellt und einige Beispiele dafür gegeben, wie man diese abfragen und benutzen kann.

Wahl der Datenbank

Prinzipiell gibt es zwei große “geo-kompatible” OpenSource-Datenbanken bzw. “Datenbank-AddOn’s”: Spatialite, welches auf SQLite aufbaut, und PostGIS, das PostgreSQL verwendet.

PostGIS bietet zum Teil eine einfachere Syntax, welche manchmal weniger Tipparbeit verursacht. So kann man zum Beispiel um die Entfernung zwischen zwei Orten zu ermitteln einfach schreiben:

während dies in Spatialite “nur” mit einer normalen Funktion möglich ist:

Trotztdem wird in diesem Artikel Spatialite (also SQLite) verwendet, da dessen Einrichtung deutlich einfacher ist (schließlich sollen interessierte sich alle Ergebnisse des Artikels problemlos nachbauen können, ohne hierfür einen eigenen Datenbankserver aufsetzen zu müssen).

Der Hauptunterschied zwischen PostgreSQL und SQLite (eigentlich der Unterschied zwischen SQLite und den meissten anderen Datenbanken) ist, dass für PostgreSQL im Hintergrund ein Server laufen muss, an welchen die entsprechenden Queries gesendet werden, während SQLite ein “normales” Programm (also kein Client-Server-System) ist welches die Queries selber auswertet.

Hierdurch fällt beim Aufsetzen der Datenbank eine ganze Menge an Konfigurationsarbeit weg: Welche Benutzer gibt es bzw. akzeptiert der Server? Welcher Benutzer bekommt welche Rechte? Über welche Verbindung wird auf den Server zugegriffen? Wie wird die Sicherheit dieser Verbindung sichergestellt? …

Während all dies bei SQLite (und damit auch Spatialite) wegfällt und die Einrichtung der Datenbank eigentlich nur “installieren und fertig” ist, muss auf der anderen Seite aber auch gesagt werden dass SQLite nicht gut für Szenarien geeignet ist, in welchen viele Benutzer gleichzeitig (insbesondere schreibenden) Zugriff auf die Datenbank benötigen.

Benötigte Software und ein Beispieldatensatz

Was wird für diesen Artikel an Software benötigt?

SQLite3 als Datenbank

libspatialite als “Geoplugin” für SQLite

spatialite-tools zum erstellen der Datenbank aus dem OpenStreetMaps (*.osm.pbf) Format

python3, die beiden GeoModule spatialite, folium und cartopy, sowie die Module pandas und matplotlib (letztere gehören im Bereich der Datenauswertung mit Python sowieso zum Standart). Für pandas gibt es noch die Erweiterung geopandas sowie eine praktisch unüberschaubare Anzahl weiterer geographischer Module aber bereits mit den genannten lassen sich eine Menge interessanter Dinge herausfinden.

– und natürlich einen Geodatensatz: Zum Beispiel sind aus dem OpenStreetMap-Projekt extrahierte Datensätze hier zu finden.

Es ist ratsam, sich hier erst einmal einen kleinen Datensatz herunterzuladen (wie zum Beispiel einen der Stadtstaaten Bremen, Hamburg oder Berlin). Zum einen dauert die Konvertierung des .osm.pbf-Formats in eine Spatialite-Datenbank bei größeren Datensätzen unter Umständen sehr lange, zum anderen ist die fertige Datenbank um ein vielfaches größer als die stark gepackte Originaldatei (für “nur” Deutschland ist die fertige Datenbank bereits ca. 30 GB groß und man lässt die Konvertierung (zumindest am eigenen Laptop) am besten über Nacht laufen – willkommen im Bereich “BigData”).

Erstellen eine Geodatenbank aus OpenStreetMap-Daten

Nach dem Herunterladen eines Datensatzes der Wahl im *.osm.pbf-Format kann hieraus recht einfach mit folgendem Befehl aus dem Paket spatialite-tools die Datenbank erstellt werden:

Erkunden der erstellten Geodatenbank

Nach Ausführen des obigen Befehls sollte nun eine Datei mit dem gewählten Namen (im Beispiel bremen-latest.sqlite) im aktuellen Ordner vorhanden sein – dies ist bereits die fertige Datenbank. Zunächst sollte man mit dieser Datenbank erst einmal dasselbe machen, wie mit jeder anderen Datenbank auch: Sich erst einmal eine Weile hinsetzen und schauen was alles an Daten in der Datenbank vorhanden und vor allem wo diese Daten in der erstellten Tabellenstruktur zu finden sind. Auch wenn dieses Umschauen prinzipiell auch vollständig über die Shell oder in Python möglich ist, sind hier Programme mit graphischer Benutzeroberfläche (z. B. spatialite-gui oder QGIS) sehr hilfreich und sparen nicht nur eine Menge Zeit sondern vor allem auch Tipparbeit. Wer dies tut, wird feststellen, dass sich in der generierten Datenbank einige dutzend Tabellen mit Namen wie pt_addresses, ln_highway und pg_boundary befinden.

Die Benennung der Tabellen folgt dem Prinzip, dass pt_*-Tabellen Punkte im Geokoordinatensystem wie z. B. Adressen, Shops, Bäckereien und ähnliches enthalten. ln_*-Tabellen enthalten hingegen geographische Entitäten, welche sich als Linien darstellen lassen, wie beispielsweise Straßen, Hochspannungsleitungen, Schienen, ect. Zuletzt gibt es die pg_*-Tabellen welche Polygone – also Flächen einer bestimmten Form enthalten. Dazu zählen Landesgrenzen, Bundesländer, Inseln, Postleitzahlengebiete, Landnutzung, aber auch Gebäude, da auch diese jeweils eine Grundfläche besitzen. In dem genannten Datensatz sind die Grundflächen von Gebäuden – zumindest in Europa – nahezu vollständig. Aber auch der Rest der Welt ist für ein “Wikipedia der Kartographie” insbesondere in halbwegs besiedelten Gebieten bemerkenswert gut erfasst, auch wenn nicht unbedingt davon ausgegangen werden kann, dass abgelegenere Gegenden (z. B. irgendwo auf dem Land in Südamerika) jedes Gebäude eingezeichnet ist.

Verwenden der Erstellten Datenbank

Auf diese Datenbank kann nun entweder direkt aus der Shell über den Befehl

zugegriffen werden oder man nutzt das gleichnamige Python-Paket:

Nach Eingabe der obigen Befehle in eine Python-Konsole, ein Jupyter-Notebook oder ein anderes Programm, welches die Anbindung an den Python-Interpreter ermöglicht, können die von der Datenbank ausgegebenen Ergebnisse nun direkt in ein Pandas Data Frame hineingeladen und verwendet/ausgewertet/analysiert werden.

Im Grunde wird hierfür “normales SQL” verwendet, wie in anderen Datenbanken auch. Der folgende Beispiel gibt einfach die fünf ersten von der Datenbank gefundenen Adressen aus der Tabelle pt_addresses aus:

Link zur Ausgabe

Es wird dem Leser sicherlich aufgefallen sein, dass die Spalte “Geometry” (zumindest für das menschliche Auge) nicht besonders ansprechend sowie auch nicht informativ aussieht: Der Grund hierfür ist, dass diese Spalte die entsprechende Position im geographischen Koordinatensystem aus Gründen wie dem deutlich kleineren Speicherplatzbedarf sowie der damit einhergehenden Optimierung der Geschwindigkeit der Datenbank selber, in binärer Form gespeichert und ohne weitere Verarbeitung auch als solche ausgegeben wird.

Glücklicherweise stellt spatialite eine ganze Reihe von Funktionen zur Verarbeitung dieser geographischen Informationen bereit, von denen im folgenden einige beispielsweise vorgestellt werden:

Für einzelne Punkte im Koordinatensystem gibt es beispielsweise die Funktionen X(geometry) und Y(geometry), welche aus diesem “binären Wirrwarr” den Längen- bzw. Breitengrad des jeweiligen Punktes als lesbare Zahlen ausgibt.

Ändert man also das obige Query nun entsprechend ab, erhält man als Ausgabe folgendes Ergebnis in welchem die Geometry-Spalte der ausgegebenen Adressen in den zwei neuen Spalten Longitude und Latitude in lesbarer Form zu finden ist:

Link zur Tabelle

Eine weitere häufig verwendete Funktion von Spatialite ist die Distance-Funktion, welche die Distanz zwischen zwei Orten berechnet.

Das folgende Beispiel sucht in der Datenbank die 10 nächstgelegenen Bäckereien zu einer frei wählbaren Position aus der Datenbank und listet diese nach zunehmender Entfernung auf (Achtung – die frei wählbare Position im Beispiel liegt in München, wer die selbe Position z. B. mit dem Bremen-Datensatz verwendet, wird vermutlich etwas weiter laufen müssen…):

Link zur Ausgabe

Ein Anwendungsfall für eine solche Liste können zum Beispiel Programme/Apps wie maps.me oder Google-Maps sein, in denen User nach Bäckereien, Geldautomaten, Supermärkten oder Apotheken “in der Nähe” suchen können sollen.

Diese Liste enthält nun alle Informationen die grundsätzlich gebraucht werden, ist soweit auch informativ und wird in den meißten Fällen der Datenauswertung auch genau so gebraucht, jedoch ist diese für das Auge nicht besonders ansprechend.

Viel besser wäre es doch, die gefundenen Positionen auf einer interaktiven Karte einzuzeichnen:

Was kann man sonst interessantes mit der erstellten Datenbank und etwas Python machen? Wer in Deutschland ein wenig herumgekommen ist, dem ist eventuell aufgefallen, dass sich die Endungen von Ortsnamen stark unterscheiden: Um München gibt es Stadteile und Dörfer namens Garching, Freising, Aubing, ect., rund um Stuttgart enden alle möglichen Namen auf “ingen” (Plieningen, Vaihningen, Echterdingen …) und in Berlin gibt es Orte wie Pankow, Virchow sowie eine bunte Auswahl weiterer *ow’s.

Das folgende Query spuckt gibt alle “village’s”, “town’s” und “city’s” aus der Tabelle pt_place, also Dörfer und Städte, aus:

Link zur Ausgabe

Graphisch mit matplotlib und cartopy in ein Koordinatensystem eingetragen sieht diese Verteilung folgendermassen aus:

Die Grafik zeigt, dass stark unterschiedliche Vorkommen der verschiedenen Ortsendungen in Deutschland (Clustering). Über das genaue Zustandekommen dieser Verteilung kann ich hier nur spekulieren, jedoch wird diese vermutlich ähnlichen Prozessen unterliegen wie beispielsweise die Entwicklung von Dialekten.

Wer sich die Karte etwas genauer anschaut wird merken, dass die eingezeichneten Landesgrenzen und Küstenlinien nicht besonders genau sind. Hieran wird ein interessanter Effekt von häufig verwendeten geographischen Entitäten, nämlich Linien und Polygonen deutlich. Im Beispiel werden durch die beiden Zeilen

die bereits im Modul cartopy hinterlegten Daten verwendet. Genaue Verläufe von Küstenlinien und Landesgrenzen benötigen mit wachsender Genauigkeit hingegen sehr viel Speicherplatz, da mehr und mehr zu speichernde Punkte benötigt werden (genaueres siehe hier).

Schlussfolgerung

Man kann also bereits mit einigen Grundmodulen und öffentlich verfügbaren Datensätzen eine ganze Menge im Bereich der Geodaten erkunden und entdecken. Gleichzeitig steht, insbesondere für spezielle Probleme, eine große Bandbreite weiterer Software zur Verfügung, für welche dieser Artikel zwar einen Grundsätzlichen Einstieg geben kann, die jedoch den Rahmen dieses Artikels sprengen würden.

The Data Scientist Job and the Future

A dramatic upswing of data science jobs facilitating the rise of data science professionals to encounter the supply-demand gap.

By 2024, a shortage of 250,000 data scientists is predicted in the United States alone. Data scientists have emerged as one of the hottest careers in the data world today. With digitization on the rise, IoT and cognitive technologies have generated a large number of data sets, thus, making it difficult for an organization to unlock the value of these data.

With the constant rise in data science, those fail to upgrade their skill set may be putting themselves at a competitive disadvantage. No doubt data science is still deemed as one of the best job titles today, but the battles for expert professionals in this field is fierce.

The hiring market for a data science professional has gone into overdrive making the competition even tougher. New online institutions have come up with credible certification programs for professionals to get skilled. Not to forget, organizations are in a hunt to hire candidates with data science and big data analytics skills, as these are the top skills that are going around in the market today. In addition to this, it is also said that typically it takes around 45 days for these job roles to be filled, which is five days longer than the average U.S. market.

Data science

One might come across several definitions for data science, however, a simple definition states that it is an accumulation of data, which is arranged and analyzed in a manner that will have an effect on businesses. According to Google, a data scientist is one who has the ability to analyze and interpret complex data, being able to make use of the statistic of a website and assist in business decision making. Also, one needs to be able to choose and build appropriate algorithms and predictive models that will help analyze data in a viable manner to uncover positive insights from it.

A data scientist job is now a buzzworthy career in the IT industry. It has driven a wider workforce to get skilled in this job role, as most organizations are becoming data-driven. It’s pretty obnoxious being a data professional will widen job opportunities and offer more chances of getting lucrative salary packages today. Similarly, let us look at a few points that define the future of data science to be bright.

  • Data science is still an evolving technology

A career without upskilling often remains redundant. To stay relevant in the industry, it is crucial that professionals get themselves upgraded in the latest technologies. Data science evolves to have an abundance of job opportunities in the coming decade. Since, the supply is low, it is a good call for professionals looking to get skilled in this field.

  • Organizations are still facing a challenge using data that is generated

Research by 2018 Data Security Confidence from Gemalto estimated that 65% of the organizations could not analyze or categorized the data they had stored. However, 89% said they could easily analyze the information prior they have a competitive edge. Being a data science professional, one can help organizations make progress with the data that is being gathered to draw positive insights.

  • In-demand skill-set

Most of the data scientists possess to have the in-demand skill set required by the current industry today. To be specific, since 2013 it is said that there has been a 256% increase in the data science jobs. Skills such as Machine Learning, R and Python programming, Predictive analytics, AI, and Data Visualization are the most common skills that employers seek from the candidates of today.

  • A humongous amount of data growing everyday

There are around 5 billion consumers that interact with the internet on a daily basis, this number is set to increase to 6 billion in 2025, thus, representing three-quarters of the world’s population.

In 2018, 33 zettabytes of data were generated and projected to rise to 133 zettabytes by 2025. The production of data will only keep increasing and data scientists will be the ones standing to guard these enterprises effectively.

  • Advancement in career

According to LinkedIn, data scientist was found to be the most promising career of 2019. The top reason for this job role to be ranked the highest is due to the salary compensation people were being awarded, a range of $130,000. The study also predicts that being a data scientist, there are high chances or earning a promotion giving a career advancement score of 9 out of 10.

Precisely, data science is still a fad job and will not cease until the foreseeable future.

Interview: Profitiert Business Intelligence vom Data Warehouse in der Cloud?

Interview mit Ross Perez, Senior Director, Marketing EMEA bei Snowflake

Read this Article in English:
“Does Business Intelligence benefit from Cloud Data Warehousing?”

Profitiert Business Intelligence vom Cloud Data Warehousing?

Ross Perez ist Senior Director Marketing EMEA bei Snowflake. Er leitet das Snowflake-Marketingteam in EMEA und ist damit beauftragt, die Diskussion über Analysen, Daten und Cloud-Data-Warehousing in EMEA voran zu bringen. Vor Snowflake war Ross Produkt Marketer bei Tableau Software, wo er die Iron Viz Championship gründete, den weltweit größten und aufwändigsten Wettbewerb für Datenvisualisierung.

Data Science Blog: Ross, Business Intelligence (BI) ist kein wirklich neuer Trend. In 2019/2020 sollte es kein Thema mehr sein, Daten für das ganze Unternehmen verfügbar zu machen. Stimmt das soweit?

BI ist definitiv ein alter Trend, denn Berichterstattung gibt es schon seit 50 Jahren. Die Menschen sind es gewohnt, Statistiken und Daten für das gesamte Unternehmen und sogar für ihre Geschäftsbereiche zu erhalten. Die Verwendung von BI zur Bereitstellung von Analysen für alle Mitarbeiter im Unternehmen und die Ermutigung zur Entscheidungsfindung auf der Grundlage von Daten für den jeweiligen Bereich ist jedoch relativ neu. In vielen Unternehmen, mit denen Snowflake zusammenarbeitet, gibt es eine neue Gruppe von Mitarbeitern, die gerade erst den Zugriff auf Self-Service-BI- und Visualisierungstools wie Tableau, Looker und Sigma erhalten haben und nun auch anfangen, Antworten auf ihre Fragen zu finden.

Data Science Blog: Bi jetzt ging es im BI vor allem darum Dashboards für Geschäftsberichte zu erstellen. Und dabei spielte das Data Warehouse (DWH) die Rolle des Backends. Heute haben wir einen noch viel größeren Bedarf an Datentransparenz. Wie sollten Unternehmen damit umgehen?

Da immer mehr Mitarbeiter in immer mehr Abteilungen immer häufiger auf Daten zugreifen möchten, steigt die Nachfrage nach Back-End-Systemen – wie dem Data Warehouse – rapide. In vielen Fällen verfügen Unternehmen über Data Warehouses, die nicht für diese gleichzeitige und heterogene Nachfrage gebaut wurden. Die Erfahrungen der Mitarbeiter mit dem DWH und BI sind daher oftmals schlecht, denn Endbenutzer müssen lange auf ihre Berichte warten. Und nun kommt Snowflake ins Spiel: Da wir die Leistung der Cloud nutzen können, um Ressourcen auf Abruf bereitzustellen, können wir beliebig viele Benutzer gleichzeitig bedienen. Snowflake kann zudem unbegrenzte Datenmengen sowohl in strukturierten als auch in halbstrukturierten Formaten speichern.

Data Science Blog: Würden Sie sagen, dass das DWH der Schlüssel dazu ist, ein datengetriebenes Unternehmen zu werden? Was sollte noch bedacht werden?

Absolut. Ohne alle Ihre Daten in einem einzigen, hoch-elastischen und flexiblen Data Warehouse zu haben, kann es eine große Herausforderung sein, den Mitarbeitern im Unternehmen Einblicke zu gewähren.

Data Science Blog: So viel zur Theorie, lassen Sie uns nun über spezifische Anwendungsfälle sprechen. Generell macht es einen großen Unterschied, welche Daten wir speichern und analysieren wollen, beispielsweise Finanz- oder Maschinendaten. Was dürfen wir dabei nicht vergessen, wenn es um die Erstellung eines DWHs geht?

Finanzdaten und Maschinendaten sind sehr unterschiedlich und liegen häufig in unterschiedlichen Formaten vor. Beispielsweise weisen Finanzdaten häufig ein relationales Standardformat auf. Daten wie diese müssen mit Standard-SQL einfach abgefragt werden können, was viele Hadoop- und noSQL-Tools nicht sinnvoll bereitstellen konnten. Zum Glück handelt es sich bei Snowflake um ein SQL-Data-Warehouse nach ANSI-Standard, sodass die Verwendung dieser Art von Daten problemlos möglich ist.

Zum anderen sind Maschinendaten häufig teilstrukturiert oder sogar völlig unstrukturiert. Diese Art von Daten wird mit dem Aufkommen von Internet of Things (IoT) immer häufiger, aber herkömmliche Data Warehouses haben sich bisher kaum darauf vorbereitet, da sie für relationale Daten optimiert wurden. Halbstrukturierte Daten wie JSON, Avro, XML, Orc und Parkett können in Snowflake zur Analyse nahtlos in ihrem nativen Format geladen werden. Dies ist wichtig, da Sie die Daten nicht reduzieren müssen, um sie nutzen zu können.

Beide Datentypen sind wichtig und Snowflake ist das erste Data Warehouse, das nahtlos mit beiden zusammenarbeitet.

Data Science Blog: Zurück zum gewöhnlichen Anwendungsfall im Business, also der Erstellung von Verkaufs- und Einkaufs-Berichten für die Business Manager, die auf Daten von ERP-Systemen – wie etwa von Microsoft oder SAP – basieren. Welche Architektur könnte für das DWH die richtige sein? Wie viele Layer braucht ein DWH dafür?

Die Art des Berichts spielt weitgehend keine Rolle, da Sie in jedem Fall ein Data Warehouse benötigen, das alle Ihre Daten unterstützt und alle Ihre Benutzer bedient. Idealerweise möchten Sie es auch in der Lage sein, es je nach Bedarf ein- und auszuschalten. Das bedeutet, dass Sie eine Cloud-basierte Architektur benötigen… und insbesondere die innovative Architektur von Snowflake, die Speicher und Computer voneinander trennt und es Ihnen ermöglicht, genau das zu bezahlen, was Sie verwenden.

Data Science Blog: Wo würden Sie den Hauptteil der Geschäftslogik für einen Report implementieren? Tendenziell eher im DWH oder im BI-Tool, dass für das Reporting verwendet word? Hängt es eigentlich vom BI-Tool ab?

Das Tolle ist, dass Sie es frei wählen können. Snowflake kann als Data Warehouse für SQL nach dem ANSI-Standard ein hohes Maß an Datenmodellierung und Geschäftslogik-Implementierung unterstützen. Sie können aber auch Partner wie Looker und Sigma einsetzen, die sich auf die Datenmodellierung für BI spezialisiert haben. Wir sind der Meinung, dass es am besten ist, wenn jedes Unternehmen für sich selbst entscheidet, was der individuell richtige Ansatz ist.

Data Science Blog: Snowflake ermöglicht es Organisationen, Daten in der Cloud zu speichern und zu verwalten. Heißt das aber auch, dass Unternehmen ein Stück weit die Kontrolle über ihre eigenen Daten verlieren?

Kunden haben die vollständige Kontrolle über ihre Daten und Snowflake kann keinen Teil ihrer Daten sehen oder ändern. Der Vorteil einer Cloud-Lösung besteht darin, dass Kunden weder die Infrastruktur noch das Tuning verwalten müssen. Sie entscheiden, wie sie ihre Daten speichern und analysieren möchten, und Snowflake kümmert sich um den Rest.

Data Science Blog: Wie groß ist der Aufwand für kleinere oder mittelgroße Unternehmen, ein DWH in der Cloud zu errichten? Und bedeutet es auch, dass damit ein teures Langzeit-Projekt verbunden ist?

Das Schöne an Snowflake ist, dass Sie in wenigen Minuten mit einer kostenlosen Testversion beginnen können. Nun kann der Wechsel von einem herkömmlichen Data Warehouse zu Snowflake einige Zeit in Anspruch nehmen, abhängig von der von Ihnen verwendeten Legacy-Technologie. Snowflake selbst ist jedoch recht einfach einzurichten und sehr gut mit historischen Werkzeugen kompatibel. Der Einstieg könnte daher nicht einfacherer sein.

Von der Datenanalyse zur Prozessverbesserung: So gelingt eine erfolgreiche Process-Mining-Initiative

Den Prozessdaten auf der Spur: Systematische Datenanalyse kombiniert mit Prozessmanagement

Die Digitalisierung verändert Organisationen aller Branchen. In zahlreichen Unternehmen werden alltägliche Betriebsabläufe softwarebasiert modelliert, automatisiert und optimiert. Damit hinterlässt fast jeder Prozess elektronische Spuren in den CRM-, ERP- oder anderen IT-Systemen einer Organisation. Process Mining gilt als effektive Methode, um diese Datenspuren zusammenzuführen und für umfassende Auswertungen zu nutzen. Sie kombiniert die systematische Datenanalyse mit Geschäftsprozessmanagement: Dabei werden Prozessdaten aus den verschiedenen IT-Systemen einer Organisation extrahiert und mit Hilfe von Data-Science-Technologien visualisiert und ausgewertet.


Read this article in English: From BI to PI: The Next Step in the Evolution of Data-Driven Decisions

 


Professionelle Process-Mining-Lösungen erlauben, die Ergebnisse dieser Prozessauswertungen auf Dashboards darzustellen und nach bestimmten Prozessen, Transaktionen, Abteilungen oder Kunden zu filtern. So ist es möglich, die Performance, Durchlaufzeiten und die Kosten einzelner Betriebsabläufe zu erfassen. Prozessverantwortliche werden auf diesem Wege auf Verzögerungen, ineffiziente Abläufe und mögliche Prozessverbesserungen aufmerksam.

Praxisbeispiel: Einkaufsprozess – Prozessabweichungen als Kosten- und Risikofaktor

Ein Beispiel aus dem Unternehmensalltag ist ein einfacher Einkaufsprozess: Ein Mitarbeiter benötigt einen neuen Laptop. Im Normalfall beginnt der Prozess mit der Anfrage des Mitarbeiters, die durch seinen Manager bestätigt wird. Ist kein Laptop vorrätig, löst das für den Einkauf zuständige Team die Bestellung aus. Zu einem späteren Zeitpunkt wird der Laptop dem Mitarbeiter übergeben und das Unternehmen erhält eine Rechnung. Diese Rechnung wird geprüft und fristgemäß gemäß den vorgegebenen Konditionen beglichen. Obwohl dieser alltägliche Prozess nicht sehr komplex ist, weicht er im Unternehmensalltag häufig vom modellierten Idealzustand ab, was unnötige Kosten und möglicherweise auch Risiken verursacht.

Die Gründe sind vielfältig:

  • Freigaben fehlen
  • Während des Bestellprozesses sind Informationen unvollständig
  • Rechnungen werden aufgrund von unvollständigen Informationen mehrfach korrigiert

Process Mining ermöglicht, den gesamten Prozessverlauf alltäglicher Betriebsabläufe unter die Lupe zu nehmen und faktenbasierte Diskussionen zwischen den Fachabteilungen, Prozessverantwortlichen sowie dem Management in einer Organisation anzuregen. So werden unternehmensweite Prozessverbesserungen möglich – vorausgesetzt, die Methode wird richtig angewandt und ist strategisch durchdacht. Doch wie gelingt eine erfolgreiche unternehmensweite Process-Mining-Initiative über Abteilungsgrenzen hinaus?

Wie sich eine erfolgreiche Process-Mining-Initiative auf den Weg bringen lässt

Jedes Unternehmen ist einzigartig und geht mit unterschiedlichen Fragestellungen an eine Process-Mining-Initiative heran: ob einzelne Prozesse gezielt verbessert, Prozesslebenszyklen verkürzt oder abteilungsübergreifende Abläufe an unterschiedlichen Standorten miteinander verglichen werden. Sie alle haben etwas gemeinsam: Eine erfolgreiche Process-Mining-Initiative erfordert ein strategisches Vorgehen.

Schritt 1: Mit Weitsicht planen und richtig kommunizieren

Wie definiere ich die Ziele und den Umfang der Process-Mining-Initiative?

Die Anfangsphase einer Process-Mining-Initiative dient der Planung und entscheidet häufig über den Erfolg eines Projektes. In erster Linie kommt es darauf an, die Ziele des Projektes zu definieren und die Erfolgsfaktoren zu bestimmen. Die Ziele einer erfolgreichen Process-Mining-Initiative sind SMART definiert: spezifisch, messbar, attainable/relevant, reasonable/umsetzbar und zeitgebunden/time-bound. Mögliche Ziele für das Projekt lassen sich zum Beispiel wie folgt formulieren:

  • Prozessdauer auf 25 Tage reduzieren
  • Hauptunterschiede zwischen zwei Ländern hinsichtlich bestimmter Prozesse identifizieren
  • Prozessautomatisierung um 25% steigern

Unter diesen Voraussetzungen lässt sich auch der Rahmen der Process-Mining-Initiative festlegen: Sie halten fest, welche Prozesse, konkret betroffen sind und wie sie mit den IT-Systemen und Mitarbeiterrollen in Ihrer Organisation verknüpft sind.

Welche Rollen und Verantwortlichkeiten gibt es?

Die Ziele Ihrer Process-Mining-Initiative sollten unternehmensweit geteilt werden: Dies erfordert neben einer klaren Strategie eine transparente Kommunikation in der gesamten Organisation: Indem Sie Ihren Mitarbeitern das nötige Wissen an die Hand geben, um die Initiative erfolgreich mitzugestalten, sichern Sie sich auch ihre Unterstützung.

So verstehen sie nicht nur, warum dieses Projekt sinnvoll ist, sondern sind auch in der Lage, das Wissen auf ihre individuelle Rolle und Situation zu übertragen. Im Rahmen einer Process-Mining-Initiative sind verschiedene Projektbeteiligte in unterschiedlichen Rollen aktiv:

Während Projektträger verantwortlich für die Prozessanalyse sind (z. B. Chief Procurement Officer oder Process Owner), wissen Prozessexperten, wie ein bestimmter Prozess verläuft und kennen die verschiedenen Variationen. Sie nutzen Methoden wie Process Mining, um ihr Wissen zu vertiefen und Diskussionen über die gewonnenen Daten anzustoßen. Sie arbeiten eng mit Business-Analysten zusammen, die die Prozessanalyse vorantreiben. Datenexperten wiederum verfolgen die einzelnen Spuren, die ein Prozess in der IT-Landschaft einer Organisation hinterlässt und bereiten sie so auf, dass sie Aufschluss über die Performance eines Prozesses geben.

Wie gestaltet sich die Zusammenarbeit?

Diese unterschiedlichen Rollen gilt es im Rahmen einer erfolgreichen Process-Mining-Initiative an einen Tisch zu bringen: So können die gewonnen Erkenntnisse gemeinsam im Team interpretiert und diskutiert werden, um die richtigen Veränderungen anzustoßen. Die daraus gewonnen Prozessverbesserungen spiegeln das Know-how des gesamten Teams wider und sind das Ergebnis einer erfolgreichen Zusammenarbeit.

Schritt 2: Die technischen Voraussetzungen schaffen

Wie werden Prozessdaten systemübergreifend aggregiert und aufbereitet?

Nun wird es Zeit für die technischen Vorbereitungen: Entscheidend ist es, alle Anforderungen an die beteiligten IT-Systeme zu durchdenken und die IT-Verantwortlichen so früh wie möglich einzubeziehen. Um valide Daten für Prozessverbesserungen zu generieren, sind diese drei Teilschritte nötig:

  1.  Datenextraktion: Relevante Daten aus unterschiedlichen IT-Systemen werden aggregiert (Datenquellen sind datenbasierte Tabellen aus ERP- und CRM-Lösungen, analytische Daten wie Reports, Logdateien, CSV-Dateien usw.)
  2.  Datenumwandlung gemäß den Anforderungen für Process Mining: Die extrahierten Daten werden in Cases (Abfolge verschiedener Prozessschritte) umgewandelt, mit einem Zeitstempel versehen und in Event-Logs gespeichert.
  3.  Datenübertragung: Die Process-Mining-Software greift auf die gespeicherten Event-Logs zu.

Welche Rolle spielen Konnektoren?

Diese Teilschritte werden erfahrungsgemäß mittels eines Software-Konnektors durchgeführt und in regelmäßigen Abständen wiederholt. Ein Software-Konnektor hat die Aufgabe, die Daten aus der IT-Landschaft eines Unternehmens nach den Anforderungen der Process-Mining-Lösung zu übersetzen. Er wird speziell für die Kombination mit bestimmten IT-Systemen wie SAP, Oracle oder Salesforce entwickelt und steuert die gesamte Datenintegration von der Extraktion über die Umwandlung bis zur Datenübertragung.

Process-Mining-Lösungen wie Signavio Process Intelligence verfügen über Standardkonnektoren sowie über eine API für individuell entwickelte Konnektoren. Im Rahmen der technischen Vorbereitungen gilt es, mit Blick auf das jeweilige Szenario über die Möglichkeiten der Umsetzbarkeit zu entscheiden und andere technische Lösungen zu evaluieren.

Schritt 3: Von der Prozessanalyse zur Prozessverbesserung

Wie lassen sich die ermittelten Daten für Verbesserungen nutzen?

Sind die umgewandelten Daten in der Process-Mining-Lösung verfügbar, beginnt die Prozessauswertung. Durch IT-gestütztes Process Mining erhalten Prozessexperten die Möglichkeit, alle vorliegenden Daten zu visualisieren und einzelne Prozesse detailliert auszuwerten. Die vorliegenden Prozesse werden nun hinsichtlich unterschiedlicher Faktoren untersucht, etwa mit Blick auf Durchlaufzeiten, Performance und den Prozessfluss. Im direkten Vergleich lässt sich auf diesem Wege ermitteln, welche Faktoren sich auf die Erfolgskennzahlen auswirken und an welchen Stellen Verzögerungen oder Abweichungen auftreten.

Die so gewonnen Erkenntnisse bilden eine wichtige Grundlage für faktenbasierte Diskussionen zwischen den verschiedenen Stakeholdern der Process-Mining-Initiative. Doch erst die konkreten Schritte, die aus dieser Datenbasis abgeleitet werden, entscheiden über den Erfolg des Projektes: Entscheidend ist, wie diese Erkenntnisse in die Praxis umgesetzt werden.

 

Eine Process-Mining-Lösung, die nicht als reines Analysetool zur Verfügung steht, sondern in eine umfassende Lösung für die Modellierung, Automatisierung und Analyse professioneller Geschäftsprozesse integriert ist, erleichtert den Schritt von der Business Process Discovery zur Prozessverbesserung. Schließlich gilt es, konkrete Prozessverbesserungen und Änderungen zu planen, in den Unternehmensalltag zu integrieren und die Ergebnisse auszuwerten – auch über das Ende der Process-Mining-Initiative hinaus.

Warum ist ein Process-Mining-Projekt nie vollständig abgeschlossen?  

Wer einmal mit der Prozessverbesserung beginnt, wird feststellen: Viele weitere Stellen in den Prozessen warten nur darauf, verbessert zu werden. Daher lohnt es sich, einige Wochen nach der initialen Prozessverbesserung neue Daten zu extrahieren, um herauszufinden, welche Veränderungen nachweislich zu mehr Effizienz geführt haben. Eine kontinuierliche Messung und Auswertung erleichtert einen umfassenden Blick auf die eigene Organisation:

  • Funktionieren die überarbeiteten Prozesse wie geplant?
  • Haben Prozessveränderungen unvorhersehbare Effekte?
  • Treten Schwachstellen in anderen Prozessen auf?
  • Haben sich die Prozesse verändert, seitdem sie überarbeitet wurden?
  • Wie lässt sich ein bestimmter Prozess weiter verbessern?

Somit lässt sich zusammenfassen: Wem es gelingt, die Datenspuren in den IT-Systemen der eigenen Organisation zu verfolgen, ist auf dem richtigen Weg zur kontinuierlichen Verbesserung. Davon profitieren nicht nur die Prozesse und IT-Systeme, sondern auch die Mitarbeiter in den Organisationen.

Data Leader Days: Die Spitzenmanager der Datenwirtschaft live und direkt

Am 13./14. November 2019 finden in Berlin die fünften Data Leader Days statt. Kommen Sie direkt mit den Spitzenkräften der Datenwirtschaft in Kontakt und freuen Sie sich auf die besten Use-Cases, Live-Demos und Panels rund um Data und AI.

Die Data Leader Days sind das erste Management-Forum für die Datenwirtschaft im deutschsprachigen Raum und senden regelmäßig wichtige Praxisimpulse aus. Eine der Besonderheiten liegt in der besonderen Auswahl der Speaker und der familiären Atmosphäre. Die Referenten gehören zu den führenden Data-Managern von Konzernen und bekannten Start-Ups, die die Digitalisierung maßgeblich prägen. Im Fokus stehen dabei Use Cases, Live Demos, Panels, Interviews und Erfahrungsberichte zu Data Science, Künstliche Intelligenz, Data Engineering & Architecture, Data Visualization sowie auch Agile Development, Blockchain und Data Security.

#Private Stream: Einzigartiges Know-How-Sharing im engen Kreis

In einem zusätzlichen Private Stream können sich die Teilnehmer zudem erstmals im engeren Kreis mit den Speakern austauschen, um Partner zu finden und individuelle Impulse für eigene Dateninitiativen aus erster Hand zu gewinnen.

Nicht die Masse an Vorträgen, sondern die Pole Position der Speaker und die Vielzahl an Take Aways stehen bei den Data Leader Days im Vordergrund. Mit diesem Konzept ist das Event seit Gründung im Jahr 2016 permanent gewachsen und findet mittlerweile an zwei Tagen mit unterschiedlichen Schwerpunkten statt:

  1. November 2019: Retail & Finance Data
  2. November 2019: Automotive & Machine Data

#Aufbruchstimmung im Berliner Spreespeicher

Die Data Leader Days stehen unter dem Zeichen von Aufbruch und familiärer Atmosphäre fernab des betrieblichen Alltags. Passend dazu wurde der Spreespeicher mit seinem alten Mauerwerk und großzügigen Loft-Fenster mit einem einen bezaubernden Blick auf die Spree angemietet.

#Programmvorschau

Mit dabei sind die Chief Data Officer, SVP, Geschäftsführer und Heads of Digital Transformation von Deutsche Bank, Claas, EnBW, eventim, L’Oréal, Lidl, HRS, Signify und viele mehr.

#Data Leader Days App

Zahlreiche Features unserer Data Leader Days App für Smartphones und Tablets (iOS od. Android) sorgen für eine wegweisende Conference Experience:

  • Matchmaking
  • In-App Chatfunktion
  • Bildergalerie und Videos
  • Event Voting
  • Live Fragenstellen
  • Sternebewertung
  • Wall of ideas
  • Digitale Visitenkarte

Die Anmeldung nehmen Sie bitte direkt unter der Konferenzseite www.dataleaderdays.com vor.

A Bird’s Eye View: How Machine Learning Can Help You Charge Your E-Scooters

Bird scooters in Columbus, Ohio

Bird scooters in Columbus, Ohio

Ever since I started using bike-sharing to get around in Seattle, I have become fascinated with geolocation data and the transportation sharing economy. When I saw this project leveraging the mobility data RESTful API from the Los Angeles Department of Transportation, I was eager to dive in and get my hands dirty building a data product utilizing a company’s mobility data API.

Unfortunately, the major bike and scooter providers (Bird, JUMP, Lime) don’t have publicly accessible APIs. However, some folks have seemingly been able to reverse-engineer the Bird API used to populate the maps in their Android and iOS applications.

One interesting feature of this data is the nest_id, which indicates if the Bird scooter is in a “nest” — a centralized drop-off spot for charged Birds to be released back into circulation.

I set out to ask the following questions:

  1. Can real-time predictions be made to determine if a scooter is currently in a nest?
  2. For non-nest scooters, can new nest location recommendations be generated from geospatial clustering?

To answer these questions, I built a full-stack machine learning web application, NestGenerator, which provides an automated recommendation engine for new nest locations. This application can help power Bird’s internal nest location generation that runs within their Android and iOS applications. NestGenerator also provides real-time strategic insight for Bird chargers who are enticed to optimize their scooter collection and drop-off route based on proximity to scooters and nest locations in their area.

Bird

The electric scooter market has seen substantial growth with Bird’s recent billion dollar valuation  and their $300 million Series C round in the summer of 2018. Bird offers electric scooters that top out at 15 mph, cost $1 to unlock and 15 cents per minute of use. Bird scooters are in over 100 cities globally and they announced in late 2018 that they eclipsed 10 million scooter rides since their launch in 2017.

Bird scooters in Tel Aviv, Israel

Bird scooters in Tel Aviv, Israel

With all of these scooters populating cities, there’s much-needed demand for people to charge them. Since they are electric, someone needs to charge them! A charger can earn additional income for charging the scooters at their home and releasing them back into circulation at nest locations. The base price for charging each Bird is $5.00. It goes up from there when the Birds are harder to capture.

Data Collection and Machine Learning Pipeline

The full data pipeline for building “NestGenerator”

Data

From the details here, I was able to write a Python script that returned a list of Bird scooters within a specified area, their geolocation, unique ID, battery level and a nest ID.

I collected scooter data from four cities (Atlanta, Austin, Santa Monica, and Washington D.C.) across varying times of day over the course of four weeks. Collecting data from different cities was critical to the goal of training a machine learning model that would generalize well across cities.

Once equipped with the scooter’s latitude and longitude coordinates, I was able to leverage additional APIs and municipal data sources to get granular geolocation data to create an original scooter attribute and city feature dataset.

Data Sources:

  • Walk Score API: returns a walk score, transit score and bike score for any location.
  • Google Elevation API: returns elevation data for all locations on the surface of the earth.
  • Google Places API: returns information about places. Places are defined within this API as establishments, geographic locations, or prominent points of interest.
  • Google Reverse Geocoding API: reverse geocoding is the process of converting geographic coordinates into a human-readable address.
  • Weather Company Data: returns the current weather conditions for a geolocation.
  • LocationIQ: Nearby Points of Interest (PoI) API returns specified PoIs or places around a given coordinate.
  • OSMnx: Python package that lets you download spatial geometries and model, project, visualize, and analyze street networks from OpenStreetMap’s APIs.

Feature Engineering

After extensive API wrangling, which included a four-week prolonged data collection phase, I was finally able to put together a diverse feature set to train machine learning models. I engineered 38 features to classify if a scooter is currently in a nest.

Full Feature Set

Full Feature Set

The features boiled down into four categories:

  • Amenity-based: parks within a given radius, gas stations within a given radius, walk score, bike score
  • City Network Structure: intersection count, average circuity, street length average, average streets per node, elevation level
  • Distance-based: proximity to closest highway, primary road, secondary road, residential road
  • Scooter-specific attributes: battery level, proximity to closest scooter, high battery level (> 90%) scooters within a given radius, total scooters within a given radius

 

Log-Scale Transformation

For each feature, I plotted the distribution to explore the data for feature engineering opportunities. For features with a right-skewed distribution, where the mean is typically greater than the median, I applied these log transformations to normalize the distribution and reduce the variability of outlier observations. This approach was used to generate a log feature for proximity to closest scooter, closest highway, primary road, secondary road, and residential road.

An example of a log transformation

Statistical Analysis: A Systematic Approach

Next, I wanted to ensure that the features I included in my model displayed significant differences when broken up by nest classification. My thinking was that any features that did not significantly differ when stratified by nest classification would not have a meaningful predictive impact on whether a scooter was in a nest or not.

Distributions of a feature stratified by their nest classification can be tested for statistically significant differences. I used an unpaired samples t-test with a 0.01% significance level to compute a p-value and confidence interval to determine if there was a statistically significant difference in means for a feature stratified by nest classification. I rejected the null hypothesis if a p-value was smaller than the 0.01% threshold and if the 99.9% confidence interval did not straddle zero. By rejecting the null-hypothesis in favor of the alternative hypothesis, it’s deemed there is a significant difference in means of a feature by nest classification.

Battery Level Distribution Stratified by Nest Classification to run a t-test

Battery Level Distribution Stratified by Nest Classification to run a t-test

Log of Closest Scooter Distribution Stratified by Nest Classification to run a t-test

Throwing Away Features

Using the approach above, I removed ten features that did not display statistically significant results.

Statistically Insignificant Features Removed Before Model Development

Model Development

I trained two models, a random forest classifier and an extreme gradient boosting classifier since tree-based models can handle skewed data, capture important feature interactions, and provide a feature importance calculation. I trained the models on 70% of the data collected for all four cities and reserved the remaining 30% for testing.

After hyper-parameter tuning the models for performance on cross-validation data it was time to run the models on the 30% of test data set aside from the initial data collection.

I also collected additional test data from other cities (Columbus, Fort Lauderdale, San Diego) not involved in training the models. I took this step to ensure the selection of a machine learning model that would generalize well across cities. The performance of each model on the additional test data determined which model would be integrated into the application development.

Performance on Additional Cities Test Data

The Random Forest Classifier displayed superior performance across the board

The Random Forest Classifier displayed superior performance across the board

I opted to move forward with the random forest model because of its superior performance on AUC score and accuracy metrics on the additional cities test data. AUC is the Area under the ROC Curve, and it provides an aggregate measure of model performance across all possible classification thresholds.

AUC Score on Test Data for each Model

AUC Score on Test Data for each Model

Feature Importance

Battery level dominated as the most important feature. Additional important model features were proximity to high level battery scooters, proximity to closest scooter, and average distance to high level battery scooters.

Feature Importance for the Random Forest Classifier

Feature Importance for the Random Forest Classifier

The Trade-off Space

Once I had a working machine learning model for nest classification, I started to build out the application using the Flask web framework written in Python. After spending a few days of writing code for the application and incorporating the trained random forest model, I had enough to test out the basic functionality. I could finally run the application locally to call the Bird API and classify scooter’s into nests in real-time! There was one huge problem, though. It took more than seven minutes to generate the predictions and populate in the application. That just wasn’t going to cut it.

The question remained: will this model deliver in a production grade environment with the goal of making real-time classifications? This is a key trade-off in production grade machine learning applications where on one end of the spectrum we’re optimizing for model performance and on the other end we’re optimizing for low latency application performance.

As I continued to test out the application’s performance, I still faced the challenge of relying on so many APIs for real-time feature generation. Due to rate-limiting constraints and daily request limits across so many external APIs, the current machine learning classifier was not feasible to incorporate into the final application.

Run-Time Compliant Application Model

After going back to the drawing board, I trained a random forest model that relied primarily on scooter-specific features which were generated directly from the Bird API.

Through a process called vectorization, I was able to transform the geolocation distance calculations utilizing NumPy arrays which enabled batch operations on the data without writing any “for” loops. The distance calculations were applied simultaneously on the entire array of geolocations instead of looping through each individual element. The vectorization implementation optimized real-time feature engineering for distance related calculations which improved the application response time by a factor of ten.

Feature Importance for the Run-time Compliant Random Forest Classifier

Feature Importance for the Run-time Compliant Random Forest Classifier

This random forest model generalized well on test-data with an AUC score of 0.95 and an accuracy rate of 91%. The model retained its prediction accuracy compared to the former feature-rich model, but it gained 60x in application performance. This was a necessary trade-off for building a functional application with real-time prediction capabilities.

Geospatial Clustering

Now that I finally had a working machine learning model for classifying nests in a production grade environment, I could generate new nest locations for the non-nest scooters. The goal was to generate geospatial clusters based on the number of non-nest scooters in a given location.

The k-means algorithm is likely the most common clustering algorithm. However, k-means is not an optimal solution for widespread geolocation data because it minimizes variance, not geodetic distance. This can create suboptimal clustering from distortion in distance calculations at latitudes far from the equator. With this in mind, I initially set out to use the DBSCAN algorithm which clusters spatial data based on two parameters: a minimum cluster size and a physical distance from each point. There were a few issues that prevented me from moving forward with the DBSCAN algorithm.

  1. The DBSCAN algorithm does not allow for specifying the number of clusters, which was problematic as the goal was to generate a number of clusters as a function of non-nest scooters.
  2. I was unable to hone in on an optimal physical distance parameter that would dynamically change based on the Bird API data. This led to suboptimal nest locations due to a distortion in how the physical distance point was used in clustering. For example, Santa Monica, where there are ~15,000 scooters, has a higher concentration of scooters in a given area whereas Brookline, MA has a sparser set of scooter locations.

An example of how sparse scooter locations vs. highly concentrated scooter locations for a given Bird API call can create cluster distortion based on a static physical distance parameter in the DBSCAN algorithm. Left:Bird scooters in Brookline, MA. Right:Bird scooters in Santa Monica, CA.

An example of how sparse scooter locations vs. highly concentrated scooter locations for a given Bird API call can create cluster distortion based on a static physical distance parameter in the DBSCAN algorithm. Left:Bird scooters in Brookline, MA. Right:Bird scooters in Santa Monica, CA.

Given the granularity of geolocation scooter data I was working with, geospatial distortion was not an issue and the k-means algorithm would work well for generating clusters. Additionally, the k-means algorithm parameters allowed for dynamically customizing the number of clusters based on the number of non-nest scooters in a given location.

Once clusters were formed with the k-means algorithm, I derived a centroid from all of the observations within a given cluster. In this case, the centroids are the mean latitude and mean longitude for the scooters within a given cluster. The centroids coordinates are then projected as the new nest recommendations.

NestGenerator showcasing non-nest scooters and new nest recommendations utilizing the K-Means algorithm

NestGenerator showcasing non-nest scooters and new nest recommendations utilizing the K-Means algorithm.

NestGenerator Application

After wrapping up the machine learning components, I shifted to building out the remaining functionality of the application. The final iteration of the application is deployed to Heroku’s cloud platform.

In the NestGenerator app, a user specifies a location of their choosing. This will then call the Bird API for scooters within that given location and generate all of the model features for predicting nest classification using the trained random forest model. This forms the foundation for map filtering based on nest classification. In the app, a user has the ability to filter the map based on nest classification.

Drop-Down Map View filtering based on Nest Classification

Drop-Down Map View filtering based on Nest Classification

Nearest Generated Nest

To see the generated nest recommendations, a user selects the “Current Non-Nest Scooters & Predicted Nest Locations” filter which will then populate the application with these nest locations. Based on the user’s specified search location, a table is provided with the proximity of the five closest nests and an address of the Nest location to help inform a Bird charger in their decision-making.

NestGenerator web-layout with nest addresses and proximity to nearest generated nests

NestGenerator web-layout with nest addresses and proximity to nearest generated nests

Conclusion

By accurately predicting nest classification and clustering non-nest scooters, NestGenerator provides an automated recommendation engine for new nest locations. For Bird, this application can help power their nest location generation that runs within their Android and iOS applications. NestGenerator also provides real-time strategic insight for Bird chargers who are enticed to optimize their scooter collection and drop-off route based on scooters and nest locations in their area.

Code

The code for this project can be found on my GitHub

Comments or Questions? Please email me an E-Mail!

 

Closing the AI-skills gap with Upskilling

Closing the AI-skills gap with Upskilling

Artificial Intelligent or as it is fancily referred as AI, has garnered huge popularity worldwide.  And given the career prospects it has, it definitely should. Almost everyone interested in technology sector has them rushing towards it, especially young and motivated fresh computer science graduates. Compared to other IT-related jobs AI pays way higher salary and have opportunities. According to a Glassdoor report, Data Scientist, one of the many related jobs, is the number one job with good salary, job openings and more. AI-related jobs include Data Scientists, Analysts, Machine Learning Engineer, NLP experts etc.

AI has found applications in almost every industry and thus it has picked up demand. Home assistants – Siri, Ok Google, Amazon Echo — chatbots, and more some of the popular applications of AI.

Increasing adoption of AI across Industry

The advantages of AI like increased productivity has increased its adoption among companies. According to Gartner, 37 percent of enterprise currently use AI in one way or the other. In fact, in the last four year adoption of AI technologies among companies has increased by 270 percent. In telecommunications, for instance, 52 percent of companies have chatbots deployed for better and smoother customer experience. Now, about 49 percent of businesses are now on their way to alter business models to integrate and adopt AI-driven processes. Further, industry leaders have gone beyond and voiced their concerns about companies that are lagging in AI adoption.

Unfortunately, it has been extremely difficult for employers to find right skilled or qualified candidates for AI-related positions. A reports suggests that there are total 300,000 AI professionals are available worldwide, while there’s demand for millions. In a recent survey conducted by Ernst & Young, 51 percent AI professionals told that lack of talent was the biggest impediment in AI adoption.

Further, O’Reilly, in 2018 conducted a survey, which found the lack of AI skills, among other things, was the major reason that was holding companies back from implementing AI.
The major reason for this is the lack of skills among people who aspire to get into AI-related jobs. According to a report, there demand for millions for jobs in AI. However, only a handful of qualified people are available.

Bridging the skill gap in AI-related jobs

Top companies and government around the world have taken up initiatives to close this gap. Google and Amazon, for instance, have dedicated facilities which trains in AI skills.  Google’s Brain Toronto is a dedicated facility to expand their talent in AI.  Similarly, Amazon has facility near University of Cambridge which is dedicated to AI. Most companies either already have a facility or are in the process of setting up one.

In addition to this, governments around the world are also taking initiatives to address the skill gap. For instance, government across the world are pushing towards AI advancement and are develop collaborative plans which aims at delivering more AI skilled professionals. Recently, the white house launched ai.gov which is further helping to promote AI in the US. The website will offer updates related to AI projects across different sectors.

Other than these, companies have taken this upon themselves to reskills their employees and prepare them for future roles. According to a report from Towards Data Science, about 63 percent of companies have in-house training programs to train employees in AI-related skills.

Overall, though there is demand for AI professionals, lack of skilled talent is a major problem.

Roles in Artificial Intelligence
Artificial Intelligence is the most dominant role for which companies hire across artificial Intelligence. Other than that, following are some of the popular roles:

  1. Machine learning Engineer: These are the people who make machines learn with complex algorithms. On advance level, Machine learning engineers are required to have good knowledge of computer vision. According to Indeed, in the last year, demand for Machine Learning Engineer has grown by 344 percent.
  2. NLP Experts: These experts are equipped with the understanding of making machines computer understand human language. Their expertise includes knowledge of how machines understand human language. Text-to-speech technologies are the common areas which require NLP experts. Demand for engineers who can program computers to understand human speech is growing continuously. It was the fast growing skills in Upwork’s list of in-demand freelancing skills. In Q4, 2016, it had grown 200 percent and since then has been on continuously growing.
  3. Big Data Engineers: This is majorly an analytics role. These gather huge amount of data available from sources and analyze it to derive insights and understand patter, which may be further used for machine learning, prediction modelling, natural language processing. In Mckinsey annual report 2018, it had reported that there was shortage of 190,000 big data professionals in the US alone.

Other roles like Data Scientists, Analysts, and more also in great demand. Then, again due to insufficient talent in the market, companies are struggling to hire for these roles.

Self-learning and upskilling
Artificial Intelligence is a continuously growing field and it has been advancing at a very fast pace, and it makes extremely difficult to keep up with in-demand skills. Hence, it is imperative to keep yourself up with demand of the industry, or it is just a matter of time before one becomes redundant.

On an individual level, learning new skills is necessary. One has to be agile and keep learning, and be ready to adapt new technologies. For this, AI training programs and certifications are ideal.  There are numerous AI programs which individuals can take to further learn new skills. AI certifications can immensely boost career opportunities. Certification programs offer a structured approach to learning which benefits in learning mostly practical and executional skills while keeping fluff away. It is more hands-on. Plus, certifications programs qualify only when one has passed practical test which is very advantageous in tech. AI certifications like AIE (Artificial Intelligence Engineer) are quite popular.

Online learning platforms also offer good a resource to learn artificial intelligence. Most schools haven’t yet adapted their curriculum to skill for AI, while most universities and grad schools are in their way to do so. In the meantime, online learning platforms offer a good way to learn AI skills, where one can start from basic and reach to advance skills.