## A common trap when it comes to sampling from a population that intrinsically includes outliers

I will discuss a common fallacy concerning the conclusions drawn from calculating a sample mean and a sample standard deviation and more importantly how to avoid it.

Suppose you draw a random sample , , … of size and compute the ordinary (arithmetic) sample mean  and a sample standard deviation from it.  Now if (and only if) the (true) population mean µ (first moment) and population variance (second moment) obtained from the actual underlying PDF  are finite, the numbers and make the usual sense otherwise they are misleading as will be shown by an example.

By the way: The common correlation coefficient will also be undefined (or in practice always point to zero) in the presence of infinite population variances. Hopefully I will create an article discussing this related fallacy in the near future where a suitable generalization to Lévy-stable variables will be proposed.

Drawing a random sample from a heavy tailed distribution and discussing certain measures

As an example suppose you have a one dimensional random walker whose step length is distributed by a symmetric standard Cauchy distribution (Lorentz-profile) with heavy tails, i.e. an alpha-stable distribution with alpha being equal to one. The PDF of an individual independent step is given by , thus neither the first nor the second moment exist whereby the first exists and vanishes at least in the sense of a principal value due to symmetry.

Still let us generate (pseudo) standard Cauchy random numbers in R* to analyze the behavior of their sample mean and standard deviation as a function of the reduced sample size .

*The R-code is shown at the end of the article.

Here are the piecewise sample mean (in blue) and standard deviation (in red) for the mentioned Cauchy sampling. We see that both the sample mean and include jumps and do not converge.

Especially the mean deviates relatively largely from zero even after 3000 observations. The sample has no target due to the population variance being infinite.

If the data is new and no prior distribution is known, computing the sample mean and will be misleading. Astonishingly enough the sample mean itself will have the (formally exact) same distribution as the single step length . This means that the sample mean is also standard Cauchy distributed implying that with a different Cauchy sample one could have easily observed different sample means far of the presented values in blue.

What sense does it make to present the usual interval in such a case? What to do?

The sample median, median absolute difference (mad) and Inter-Quantile-Range (IQR) are more appropriate to describe such a data set including outliers intrinsically. To make this plausible I present the following plot, whereby the median is shown in black, the mad in green and the IQR in orange.

This example shows that the median, mad and IQR converge quickly against their assumed values and contain no major jumps. These quantities do an obviously better job in describing the sample. Even in the presence of outliers they remain robust, whereby the mad converges more quickly than the IQR. Note that a standard Cauchy sample will contain half of its sample in the interval median mad meaning that the IQR is twice the mad.

Drawing a random sample from a PDF that has finite moments

Just for comparison I also show the above quantities for a standard normal (pseudo) sample labeled with the same color as before as a counter example. In this case not only do both the sample mean and median but also the and mad converge towards their expected values (see plot below). Here all the quantities describe the data set properly and there is no trap since there are no intrinsic outliers. The sample mean itself follows a standard normal, so that the in deed makes sense and one could calculate a standard error from it to present the usual stochastic confidence intervals for the sample mean.

A careful observation shows that in contrast to the Cauchy case here the sampled mean and converge more quickly than the sample median and the IQR. However still the sampled mad performs about as well as the . Again the mad is twice the IQR.

And here are the graphs of the prementioned quantities for a pseudo normal sample:

The take-home-message:

Just be careful when you observe outliers and calculate sample quantities right away, you might miss something. At best one carefully observes how the relevant quantities change with sample size as demonstrated in this article.

Such curves should become of broader interest in order to improve transparency in the Data Science process and reduce fallacies as well.

P.S.: Feel free to play with the set random seed in the R-code below and observe how other quantities behave with rising sample size. Of course you can also try different PDFs at the beginning of the code. You can employ a Cauchy, Gaussian, uniform, exponential or Holtsmark (pseudo) random sample.

QUIZ: Which one of the recently mentioned random samples contains a trap** and why?

R-code used to generate the data and for producing plots:

# Der OLAP-Würfel

Alles ist relativ! So auch die Anforderungen an Datenbanksysteme. Je nachdem welche Arbeitskollegen/innen dazu gefragt werden, können unterschiedliche Wünschen und Anforderungen an Datenbanksysteme dabei zu Tage kommen.

Die optimale Ausrichtung des Datenbanksystems auf seine spezielle Anwendung hin, setzt den Grundstein für eine performante und effizientes Informationssystem und sollte daher wohl überlegt sein. Eine klassische Unterscheidung für die Anwendung von Datenbanksystemen lässt sich hierbei zwischen OLTP (Online Transaction Processing) und OLAP (Online Analytical Processing) machen.

OLTP-Datenbanksysteme zeichnen sich insbesondere durch die direkte Verarbeitung bei hohem Durchsatz von Transaktionen, sowie den parallelen Zugriff auf Informationen aus und werden daher vor allem für die Erfassung von operativen Geschäftsfällen eingesetzt. Im Gegensatz zu OLTP-Systemen steht bei OLAP-Systemen die analytische Verarbeitung von großen Datenbeständen im Vordergrund. Die folgende Grafik veranschaulicht das Zusammenwirken von OLTP und OLAP.

Da OLAP-Systeme eine mehrdimensionale und subjektbezogen Datenstruktur aufweisen, können statistisch-analytische Verarbeitungen auf diese Datenmengen effizient angewandt werden. Basierend auf dem Sternen-Schema, werden in diesem Zusammenhang häufig sogenannte OLAP-Würfel (engl. „Cube“) verwendet, welcher die Grundlage für multidimensionale Analysen bildet. Im Folgenden werden wir den OLAP-Würfel etwas näher beleuchten.

## Aufbau des OLAP-Würfels

Der OLAP-Würfel ist eine Zusammensetzung aus multidimensionale Datenarrays. Die logische Anordnung der Daten über mehrere Dimensionen erlaubt dem Benutzer verschiedene Ansichten auf die Daten in gleicher Weise zu erlangen. Der Begriff „Würfel“ („Cube“) referenziert hierbei auf die Darstellung eines OLAP-Würfels mit drei Dimensionen. OLAP-Würfel mit mehr als drei Dimensionen werden daher auch „Hypercubes“ genannt.

Die Achsen des Würfels entsprechen den Dimensionen, also den Attributen/ Eigenschaften des Würfels, welche den Würfel aufspannen. Typische Dimensionen sind: Produkt, Ort und Zeit.

Die Zellen im Schnittpunkt der Koordinaten entsprechen den Kennzahlen auch Maßzahlen (engl. „measures“) genannt. Die Kennzahlen stehen im Mittelpunkt der Datenanalyse und können sowohl Basisgrößen (atomare Werte) als auch abgeleitete Zahlen (berechnete Werte) sein. Oftmals handelt es sich bei den Kennzahlen um numerische Werte wie z.B.: Umsatz, Kosten und Gewinn.

Hierarchien beschreiben eine logische Struktur einzelner Elemente in den Dimensionen und nehmen dabei meist ein hierarchisches Schema an z.B.:  Tag -> Monat -> Jahr ->TOP. Die Werte der jeweils übergeordneten Elemente ergeben sich meistens aus einer Konsolidierung aller untergeordneten Elemente. Das größte Element „TOP“ steht dabei für „alles“ und fasst somit die gesamten Elemente der Dimension zusammen.

Je nachdem in welcher Detailstufe, auch Granularität genannt, die Kennzahlen der einzelnen Dimensionen vorliegen, können verschiedene Würfel-Operationen für Daten bis auf der kleinsten Ebenen ausgeführt werden wie z.B.: einzelne Transaktionen in einer Geschäftsstellen für einen bestimmten Tag betrachten. Bei der Wahl der Granularität ist jedoch unbedingt der Zweck sowie die Leistungsfähigkeit der Datenbank mit zu Berücksichtigen.

## Operationen des OLAP-Würfels

Für die Auswertung von OLAP-Würfeln haben sich spezielle Operationsbezeichnungen durchgesetzt, welche im Folgenden mit grafischen Beispielen vorgestellt werden.

Die Slice Operation wird durch die Selektion bzw. Einschränkung einer Dimension auf ein Dimensionselement erwirkt. In dem hier aufgezeigten Beispiel wird durch das Selektieren auf die Produktsparte „Anzüge“,die entsprechende Scheibe aus dem Würfel „herausgeschnitten“.

Bei der Dice-Operation wird der Würfel auf mehreren Dimensionen, durch eine Menge von Dimensionselementen eingeschränkt. Als Resultat ergibt sich ein neuer verkleinerter, mehrdimensionaler Datenraum. Das Beispiel zeigt, wie der Würfel auf die Zeit-Dimensionselemente: „Q1 „und „Q2“ sowie die Produkt- Dimensionselemente: „Anzüge“ und „Hosen“ beschränkt wird.

Mit der Pivotiting/Rotation-Operation wird der Würfel um die eigene Achse rotiert. Diese Operation ermöglicht dem Benutzer unterschiedliche Sichten auf die Daten zu erhalten, da neue Kombinationen von Dimensionen sichtbar werden.

Im abgebildeten Beispiel wird der Datenwürfel nach rechts und um die Zeitachse gedreht. Die dadurch sichtbar gewordene Kombination von Ländern und Zeit ermöglicht dem Benutzer eine neue Sicht auf den Datenwürfel.

Die Operationen: Drill-down oder Drill-up werden benutzt, um durch die Hierarchien der Dimensionen zu navigieren. Je nach Anwendung verdichten sich die Daten bei der Drill-up Operation, während die Drill-down Operation einen höheren Detailgrad ermöglicht.

Beispiel werden die Dimensionen auf die jeweils höchste Klassifikationsstufe verdichtet. Das Ergebnis zeigt das TOP-Element der aggregierten Daten, mit einem Wert von 9267 €.

## Technische Umsetzung

In den meisten Fällen werden OLAP-Systeme oberhalb des Data Warehouses platziert und nutzen dieses als Datenquelle.  Für die Datenspeicherung wird vor allem zwischen den klassischen Konzepten „MOLAP“ und „ROLAP“ unterschieden. Die folgende Gegenüberstellung, zeigt die wesentlichen Unterschiede der beiden Konzepte auf.

#### MOLAP

##### Bedeutung
Relationales-OLAP Multidimensionales-OLAP
##### Datenspeicherung
Daten liegen in relationalen Datenbanken vor. Daten werden in multidimensionalen Datenbanken als Datenwürfel gespeichert
##### Daten Form
Relationale Tabellen Multidimensionale Arrays
##### Datenvolumen
Hohes Datenvolumen und hohe Nutzerzahl Mittleres Datenvolum, da Detaildaten in komprimiertem Format vorliegen
##### Technologie
Benötigt Komplexe SQL Abfragen, um Daten zu beziehen Vorberechneter Datenwürfel hält Aggregationen vor
##### Skalierbarkeit
Beliebig Eingeschränkt
Langsam Schnell

## Fazit

OLAP Würfel können effizient dafür genutzt werden, Informationen in logische Strukturen zu speichern. Die Dimensionierung sowie der Aufbau von logischen Hierarchien, erlauben dem Benutzer ein intuitives Navigieren und Betrachten des Datenbestandes. Durch die Vorberechnung der Aggregationen bei MOLAP-Systemen, können sehr komplexe Analyseabfragen mit hoher Geschwindigkeit und unabhängig von der Datenquelle durchgeführt werden. Für die betriebliche Datenanalyse ist die Nutzung des Datenwürfels insbesondere für fortgeschrittene Datenanalyse, daher eine enorme Bereicherung.

I am often asked how the Business Intelligence department should be set up and how it should interact and collaborate with other departments. First and foremost: There is no magic recipe here, but every company must find the right organization for itself.

Before we can talk about organization of BI, we need to have a clear definition of roles for team members within a BI department.

A Data Engineer (also Database Developer) uses databases to save structured, semi-structured and unstructured data. He or she is responsible for data cleaning, data availability, data models and also for the database performance. Furthermore, a good Data Engineer has at least basic knowledge about data security and data privacy. A Data Engineer uses SQL and NoSQL-Technologies.

A Data Analyst (also BI Analyst or BI Consultant) uses the data delivered by the Data Engineer to create or adjust data models and implementing business logic in those data models and BI dashboards. He or she needs to understand the needs of the business. This job requires good communication and consulting skills as well as good developing skills in SQL and BI Tools such like MS Power BI, Tableau or Qlik.

A Business Analyst (also Business Data Analyst) is a person form any business department who has basic knowledge in data analysis. He or she has good knowledge in MS Excel and at least basic knowledge in data analysis and BI Tools. A Business Analyst will not create data models in databases but uses existing data models to create dashboards or to adjust existing data analysis applications. Good Business Analyst have SQL Skills.

A Data Scientist is a Data Analyst with extended skills in statistics and machine learning. He or she can use very specific tools and analytical methods for finding pattern in unknow or big data (Data Mining) or to predict events based on pattern calculated by using historized data (Predictive Analytics). Data Scientists work mostly with Python or R programming.

### Organization Type 1 – Central Approach (Data Lab)

The first type of organization is the data lab approach. This organization form is easy to manage because it’s focused and therefore clear in terms of budgeting. The data delivery is done centrally by experts and their method and technology knowledge. Consequently, the quality expectation of data delivery and data analysis as well as the whole development process is highest here. Also the data governance is simple and the responsibilities clearly adjustable. Not to be underestimated is the aspect of recruiting, because new employees and qualified applicants like to join a central team of experts.

However, this form of organization requires that the company has the right working attitude, especially in the business intelligence department. A centralized business intelligence department acts as a shared service. Accordingly, customer-oriented thinking becomes a prerequisite for the company’s success – and customers here are the other departments that need access to the capacities of those centralized data experts. Communication boundaries must be overcome and ways of simple and effective communication must be found.

### Organization Type 2 – Stakeholder Focus Approach

Other companies want to shift more responsibility for data governance, and especially data use and analytics, to those departments where data plays a key role right now. A central business intelligence department manages its own projects, which have a meaning for the entire company. The specialist departments, which have a special need for data analysis, have their own data experts who carry out critical projects for the specialist department. The central Business Intelligence department does not only provide the technical delivery of data, but also through methodical consulting. Although most of the responsibility lies with the Business Intelligence department, some other data-focused departments are at least co-responsible.

The advantage is obvious: There are special data experts who work deeper in the actual departments and feel more connected and responsible to them. The technical-business focus lies on pain points of the company.

However, this form of Ogranization also has decisive disadvantages: The danger of developing isolated solutions that are so special in some specific areas that they will not really work company-wide increases. Typically the company has to deal with asymmetrical growth of data analytics
know-how. Managing data governance is more complex and recruitment is becoming more difficult as the business intelligence department is weakened and smaller, and data professionals for other departments need to have more business focus, which means they are looking for more specialized profiles.

### Organization Type 3 – Decentral Approach

Some companies are also taking a more extreme approach in the other direction. The Business Intelligence department now has only Data Engineers building and maintaining the data warehouse or data lake. As a result, the central department only provides data; it is used and analyzed in all other departments, specifically for the respective applications.

The advantage lies in the personal responsibility of the respective departments as „pain points“ of the company are in focus in belief that business departments know their problems and solutions better than any other department does. Highly specialized data experts can understand colleagues of their own department well and there is no no shared service mindset neccessary, except for the data delivery.

Of course, this organizational form has clear disadvantages since many isolated solutions are unavoidable and the development process of each data-driven solution will be inefficient. These insular solutions may work with luck for your own department, but not for the whole company. There is no one single source of truth. The recruiting process is more difficult as it requires more specialized data experts with more business background. We have to expect an asymmetrical growth of data analytics know-how and a difficult data governance.