Wie Process Mining 2020 Ihre erfolgreiche Geschäftstransformation 2020 sicherstellt

Fehlende Informationen über bestehende Prozesse sorgen dafür, dass 70% aller großen Transformationsprojekte und rund 50% aller RPA-Projekte scheitern. Grund hierfür sind mangelndes Verständnis der bestehenden Prozesse und die fehlende Verbindung zwischen der Ermittlung, Visualisierung, Analyse und Ausführung vorhandener Daten. Durch den Einsatz von Process Mining-Technologie erhalten Sie die notwendigen Informationen, die Transparenz und die quantifizierbaren Zahlen, die zur Verbesserung der Ende-zu-Ende-Prozesse für eine nachhaltige Transformation erforderlich sind.

Process Mining im Jahr 2020

Ihr Datenabdruck

Betrachtet man die oben genannten Zahlen (von McKinsey bzw. Ernst & Young (EY)) wird eines deutlich: Die Digitalisierung von Produkten und Dienstleistungen zwingt Unternehmen aller Größen und Branchen dazu, ihre bestehenden Geschäftsmodelle und Prozesse drastisch zu überdenken. Umso wichtiger wird Process Mining. Die Technik nutzt eindeutige Daten – sozusagen den geschäftlichen Fingerabdruck Ihres Unternehmens – um automatisch alle bestehenden Geschäftsprozesse zusammenzufügen und digital darzustellen.

Dieser digitale Nachweis ermöglicht es uns, die Funktionsweise von Prozessen (sowohl in konventioneller als auch variabler Ausführung) bis hin zu einzelnen Prozessinstanzen genau zu visualisieren. Mit anderen Worten: Process Mining deckt verborgene oder inaktive Prozesse auf, legt versteckten Mehrwert offen und ermöglicht ein sofortiges Verständnis.

Mit den richtigen Prozessen zum Erfolg

Mithilfe standardisierter und konfigurierbarer Benachrichtigungen und KPIs können Sie die unmittelbaren Auswirkungen von Prozessänderungen besser nachvollziehen. Auf diese Weise werden Fehlerraten gesenkt und das Vertrauen in das Unternehmen gestärkt. Und das ist noch nicht alles: Jeder, vom neuen Mitarbeiter bis zur C-Suite, kann die Prozesse seiner Organisation besser visualisieren, verstehen und erklären. Dies stellt sicher, dass Prozesse langfristig erfolgreich verändert werden.

Das Potenzial von Prozessen voll ausschöpfen

Im Geschäftsleben ist nicht nur die Kommunikation von entscheidender Bedeutung, sondern auch die Reaktion auf Probleme mit passenden Lösungen. Die täglichen Unternehmensabläufe – gemeint sind die zugrunde liegenden Prozesse – bilden die Verbindung zur eingesetzten Geschäftstechnologie, vom Process Mining bis zur robotergestützten „Prozessautomatisierung“. Ohne ein Verständnis für die Prozesse und tatsächliche Funktionsweise eines Unternehmens ist die Technologie jedoch redundant. Prozesse sind sozusagen das Lebenselixier eines Unternehmens.

Process Mining: Ihr Differenzierungsmerkmal

Integration transformativer, digitaler Technologien

Process Mining bietet weit mehr als Erkennen, Visualisieren und Analysieren: Anhand Ihrer vorhandenen Daten können Sie die Ausführung von Prozessen automatisch in Echtzeit überwachen. Diese einfache Bewertung per Mausklick ermöglicht ein sofortiges Verständnis komplexer Prozesse. Innerhalb von Transformationsprojekten, die aufgrund ihrer Natur tief greifende Änderungen in geschäftlichen und organisatorischen Aktivitäten erfordern, liefert Process Mining die visuelle Übersicht und ermöglicht sofortige Maßnahmen.

Dieser selbsttragende Ansatz führt zu nachhaltigen Ergebnissen und schafft eine Prozesskultur innerhalb des gesamten Unternehmens. Experten für digitale Transformation und Excellence können mithilfe eines solch Ansatzes leichter Prozesse nutzen, ihre Projekte und Programme untermauern und Herausforderungen bei Verhaltensänderungen bewältigen. Hierzu zählen eine leichtere Integration transformativer, digitaler Technologien, bessere operative Agilität und Flexibilität, optimierte Unternehmensführung und -kultur sowie Mitarbeiterförderung.

Drei Wege zu einem erfolgreichen Transformationsprojekt mithilfe von Process Mining:

  • Sie benötigen 100% operative Transparenz: Um all Ihre Transaktionen darstellen zu können, ist vollständige Prozesstransparenz erforderlich. Sie ermöglicht den direkten Vergleich zwischen dem Ist-Zustand und dem geplanten Prozessverlauf. Diese Konformitätsprüfung kann automatisch die Probleme und Aufgaben mit der höchsten Priorität identifizieren und die Hauptursachen für Diskrepanzen zwischen Soll und Ist hervorheben, sodass sofort Maßnahmen ergriffen werden können.
  • Sie müssen Kosten senken und die Effizienz steigern: Untersuchungen von Signavio zeigen, dass fast 60% der Unternehmen aufgrund von Ineffizienzen bei den Prozessen unnötige zusätzliche Kosten tragen mussten. Process Mining kann Ihrem Unternehmen helfen, die Kosten zu senken, da es Schwachstellen und Abweichungen entdeckt und gleichzeitig aufzeigt, welche Prozesse ausbremsen – einschließlich der Engpässe und Ineffizienzen, die sich auf den Umsatz auswirken. Process Mining bietet die Möglichkeit zu Prozessverbesserungen und vorausschauenden Strategien und somit zu positiven geschäftlichen Veränderungen.
  • Sie müssen den Einkaufs- und Verkaufszyklus optimieren: Dauert der Versand zu lange? Welcher Lieferant unterstützt Sie unzureichend? Welcher Lieferant ist der Beste? Process Mining ist Ihr One Click Trick, um Antworten auf solche Fragen zu finden und zu ermitteln, welche Einheiten die beste Leistung erbringen und welche nur Zeit und Geld verschwenden.

Process Mining und Robotic Process Automation (RPA)

Die vorteilhafte Kombination beider Technologien

RPA (Robotic Process Automation) ermöglicht die Automatisierung manueller, sich wiederholender und fehleranfälliger Aufgaben. Dies setzt jedoch voraus, dass Prozessverantwortliche genau wissen, wie und mit welchem Ziel sie Software-Roboter einsetzen und ihre Leistung kontinuierlich messen. Daher bietet die Kombination aus RPA und Process Mining Unternehmen viele Vorteile: Über die gesamte RPA-Initiative hinweg können sie die Leistung und die Vorteile ihrer Software-Roboter messen und sie bestmöglich für ihr Szenario einsetzen.

Upgrade robotergestützter Automatisierung

Mit diesen Erkenntnissen eignet sich Process Mining hervorragend als Vorbereitung für die Prozessautomatisierung: Um die Vorteile der robotergesteuerten Automatisierung vollumfänglich auszuschöpfen, müssen Organisationen nicht nur ihre bestehenden Systeme verstehen, sondern auch Möglichkeiten zur Automatisierung ermitteln. Process Mining-Werkzeuge bieten während des gesamten RPA-Zyklus wertvolle Erkenntnisse über die Prozessdaten: von der Festlegung der Strategie bis hin zu kontinuierlichen Verbesserungen und Innovationen.

 Drei Wege zu einem erfolgreichen RPA Lifecycle-Projekt mithilfe von Process Mining:

  • Sie benötigen Prozessübersichten nach bestimmten Kriterien: Um einen vollständigen Überblick über die Ende-zu-Ende-Prozesse zu erhalten, müssen Prozesse mit hohem ROI identifiziert werden, die sich für die RPA-Implementierung eignen. Auf diese Weise können Sie den optimalen Prozessfluss/-pfad ermitteln und redundante Prozesse aufdecken, die Ihnen vor der Automatisierung möglicherweise gar nicht bewusst waren.
  • Sie sind unsicher, wie Sie die Mensch-Maschine-Zyklen am besten optimieren: Indem Sie den optimalen Prozessfluss/-pfad ermitteln, können Sie auch ineffiziente Mensch-Roboter-Übergaben besser erkennen und erhalten quantifizierbare Daten zu den finanziellen Auswirkungen jedes „digitalen Mitarbeiters“ oder Prozesses. Auf diese Weise können Sie die Arbeit von Mensch und Roboter in Bezug auf Genauigkeit, Effizienz, Kosten und Projektdauer vergleichen.
  • Sie müssen besser verstehen, wie RPA ältere Prozesse und Systeme unterstützt: Durch die Integration in Cloud- und Web-/App-basierte Services können Unternehmen dank RPA auch ihre Legacy-Systeme weiter nutzen. Auf diese Weise lassen sich Legacy-Funktionen mit modernen Tools, Anwendungen und sogar mobilen Apps verbinden. Effizienz und Effektivität werden in allen wichtigen Unternehmensabteilungen, einschließlich HR, Finanzwesen und Legal, verbessert.

Process Mining für ein besseres Kundenerlebnis und Mapping

Denken Sie Kundenzufriedenheit neu

Die Integration von Process Mining in andere Technologien ist auch für eine bessere Prozessqualität und das Wachstum am Markt von entscheidender Bedeutung. So steht beim Prozessmanagement bereits die Kundenbindung im Fokus. Ein erfolgreiches Prozessmanagement ermöglicht es Unternehmen, den Kunden im Rahmen von umfassenden Effektivitätszielen zu geringstmöglichen Kosten zu begeistern, anstatt einseitige Effizienzziele zu verfolgen.

Darüber hinaus bietet Process Mining im Rahmen des Customer Journey Mapping (CJM) – insbesondere in Verknüpfung mit den zugrunde liegenden Prozessen – die Möglichkeit, bessere geschäftliche Erkenntnisse zu erzielen und diese Prozesse mit einer Outside-In-Kundenperspektive zu betrachten. Durch die Kombination aus Process Mining mit einer kundenorientierten Sicht auf die geschäftlichen Tätigkeiten wird die Kundenzufriedenheit zu einem strategischen Faktor für den geschäftlichen Erfolg.

Das volle Potenzial von Prozessen nutzen

Setzen Sie bei Process Mining-Initiativen auf Signavio Process Intelligence und erfahren Sie, wie Ihr Unternehmen den versteckten Mehrwert von Prozessen für sich nutzen, neue Ideen generieren und Zeit und Geld sparen kann.

Six ways process mining in 2020 can save your business transformation

The lack of information about existing processes kills 70% of large transformation projects and around 50% of RPA projects…alarming statistics. Triggering this failure rate is a lack of understanding about existing processes, and the disconnect between the discovery, visualization, analysis, and execution of existing data. So, banish the process guesswork! Utilizing process mining technology unlocks the information, visibility, and quantifiable numbers needed to improve end-to-end processes for sustainable transformation.

Process mining in 2020

Your data fingerprint

If we consider the figures again (from McKinsey and Ernst & Young (EY) respectively), the digitization of products and services is forcing companies of all shapes and sizes, and in all industries, to dramatically reconsider their existing business models and the processes they implement. Because all activities are different, process mining uses the unique data—your company’s business fingerprint—to automatically piece together a digital representation of all your existing business processes.

This digital evidence enables us to visualize exactly how processes are operating (both the conventional path and variable executions) down to individual process instances. In other words, you can unearth processes which lie unseen or dormant, revealing hidden value, and providing an instant understanding of complex processes in minutes rather than days.

Triggering dormant success

Then, with standardized and configurable notifications and KPIs, you can further understand the immediate impact of any process change made—meaning that failure rates decrease, and company confidence is improved. And that’s not all: everyone from new employees to the C-suite can better visualize, understand, and explain their organization’s processes. This ensures that the right process change is secure and that improvement has the intended impact, every time.

Unleash the power of process

In business, we all answer to somebody, and it is critical to connect problems to real solutions. The everyday functions of companies—the processes upon which they are built—are the connection to business tech, from “process” mining to robotic “process” automation. Without process understanding, the tech is redundant because we have no idea how work has flowed in an existing application. Process is the lifeblood of operations.

Process mining: your point of differentiation

Transformative digital technology integration

In addition to the DVA of process mining—discover, visualize, analyze—is the power to monitor real-time process execution automatically from your existing data. This simple point and click assessment can provide an instant understanding of complex processes. Within transformation projects, which by their very nature require the profound transformation of business and organizational activities, processes, competencies, and models, process mining provides the visual map to facilitate immediate action.

This self-sustaining approach across an entire organization is what leads to genuinely sustainable outcomes, and builds a process culture within an organization. By taking this holistic approach, digital transformation and excellence professionals will find it easier to leverage processes, justify their projects and programs, and address behavioral change challenges.

This includes the facilitation of transformative digital technology integration, operational agility and flexibility, leadership and culture, and workforce enablement.

Three ways process mining can save your business in a transformation project:

  • You require 100% operational transparency: To chart all your transactions requires complete process transparency. This capability allows the direct comparison of actual operations to the ways that processes were designed to occur. This conformance checking can automatically identify the highest priority issues and tasks, and highlight root causes, so we can take immediate action.
  • You must reduce costs and increase efficiency: Signavio research shows that almost 60% of companies incurred additional charges from suppliers due to process inefficiencies. Process mining can help your business reduce costs because it finds vulnerabilities and deviations, whilst highlighting what is slowing you down, including the bottlenecks and inefficiencies hampering revenue. Process mining beefs up operational health via process improvements and pre-emptive strategies.
  • You must optimize the buying and selling cycle: Is shipping taking too long? Which of your suppliers supports you least? Who is outperforming whom? Process mining is your one-click trick to finding these answers and identifying which units are performing best and which are wasting time and money.

Process mining and robotic process automation (RPA)

The beneficial fusion of both technologies

Robotic process automation (RPA) provides a virtual workforce to automatize manual, repetitive, and error-prone tasks. However, successful process automation requires exact knowledge about the intended (and potential) benefits, effective training of the robots, and continuous monitoring of their performance. With this, process mining supports organizations throughout the lifecycle of RPA initiatives by monitoring and benchmarking robots to ensure sustainable benefits.

Upgrade robot-led automation

These insights are especially valuable for process miners and managers with a particular interest in process automation. To further upgrade the impact of robot-led automation, there is also a need for a solid understanding of legacy systems, and an overview of automation opportunities. Process mining tools provide critical insights throughout the entire RPA journey, from defining the strategy to continuous improvement and innovation.

 Three ways process mining can save your business in an RPA lifecycle project

  • You require process overviews, based on specific criteria: To provide a complete overview of end-to-end processes, involves the identification of high ROI processes suitable for RPA implementation. This, in turn, helps determine the best-case process flow/path, enabling you to spot redundant processes, which you may not be aware of, before automating.
  • You are unsure how best to optimize human-digital worker cycles: By mining the optimal process flow/path, we can better discover inefficient human-robot hand-off, providing quantifiable data on the financial impact of any digital worker or process. This way, we can compare human vs. digital labor in terms of accuracy, efficiency, cost, and project duration.
  • You need to understand better how RPA supports legacy processes and systems: RPA enables enterprises to keep legacy systems by making integration with cloud and web/app-based services, transforming abilities to connect legacy with modern tools, applications, and even mobile apps. Efficiency and effectiveness will be improved across crucial departments, including HR, finance, and legal.

Process mining for improved customer experience and mapping

Reconfigure customer delight

The integration of process mining with other technologies is also essential in growing the process excellence and management market. With process management, we already talk about customer engagement, which empowers companies to shift away from lopsided efficiency goals, which often frustrate customers, towards all-inclusive effectiveness goals, built around delighting customers at the lowest organizational cost possible.

Further, the application of process mining within customer journey mapping (CJM)—especially when linked to the underlying processes—offers the bundled capability of better business understanding and outside-in customer perspective, connected to the processes that deliver them. So, by connecting process mining with a customer-centric view across producing, marketing, selling, and providing products and services, customer delight becomes a strategic catalyst for success.

Unlock the full potential of process

Trigger process mining initiatives with Signavio Process Intelligence, and see how it can help your organization uncover the hidden value of process, generate fresh ideas, and save time and money.

Looking for the ‘aha moment’: An expert’s insights on process mining

Henny Selig is a specialist in process mining, with significant expertise in the implementation of process mining solutions and supporting customers with process analysis. As a Solution Owner at Signavio, Henny is also well versed in bringing Signavio Process Intelligence online for businesses of all shapes and sizes. In this interview, Henny shares her thoughts about the challenges and opportunities of process mining. 

Henny, could you give a simple explanation of the concept of process mining?

Basically, process mining is a combination of data analysis and business process management. IT systems support almost every business process, meaning they leave behind digital traces. We extrapolate all the data from the IT systems connected to a particular process, then visualize and evaluate it with the help of data science technology.

In short, process mining builds a bridge between employees, process experts and management, allowing for a data-driven and fact-based approach to business process optimization. This helps avoid thinking in siloes, as well as enabling transparent design of handovers and process steps that cross departmental boundaries within an organization.

When a business starts to analyze their process data, what are the sorts of questions they ask? Do they have at least have some expectation about what process mining can offer?

That’s a really good question! There isn’t really a single good answer to it, as it is different for different companies. For example, there was one procurement manager, and we were presenting the complete data set to him, and it turned out there was an approval at one point, but it should have been at another. He was really surprised, but we weren’t, because we sat outside the process itself and were able to take a broader view. 

We also had different questions that the company hadn’t considered, things like what was the process flow if an order amount is below 1000 euros, and how often that occurs—just questions that seem clear to an outsider but often do not occur to process owners.

So do people typically just have an idea that something is wrong, or do they generally understand there is a specific problem in one area, and they want to dive deeper? 

There are those people who know that a process is running well, but they know a particular problem pops up repeatedly. Usually, even if people say they don’t have a particular focus or question, most of them actually do because they know their area. They already have some assumptions and ideas, but it is sometimes so deep in their mind they can’t actually articulate it.

Often, if you ask people directly how they do things, it can put pressure on them, even if that’s not the intention. If this happens, people may hide things without meaning to, because they already have a feeling that the process or workflow they are describing is not perfect, and they want to avoid blame. 

The approvals example I mentioned above is my favorite because it is so simple. We had a team who all said, over and over, “We don’t approve this type of request.” However, the data said they did–the team didn’t even know. 

We then talked to the manager, who was interested in totally different ideas, like all these risks, approvals, are they happening, how many times this, how many times that — the process flow in general. Just by having this conversation, we were able to remove the mismatch between management and the team, and that is before we even optimized the actual process itself. 

So are there other common issues or mismatches that people should be aware of when beginning their process mining initiative?

The one I often return to is that not every variation that is out of line with the target model is necessarily negative. Very few processes, apart from those that run entirely automatically, actually conform 100% to the intended process model—even when the environment is ideal. For this reason, there will always be exceptions requiring a different approach. This is the challenge in projects: finding out which variations are desirable, and where to make necessary exceptions.

So would you say that data-based process analysis is a team effort?

Absolutely! In every phase of a process mining project, all sorts of project members are included. IT makes the data available and helps with the interpretation of the data. Analysts then carry out the analysis and discuss the anomalies they find with IT, the process owners, and experts from the respective departments. Sometimes there are good reasons to explain why a process is behaving differently than expected. 

In this discussion, it is incredibly helpful to document the thought process of the team with technical means, such as Signavio Process Intelligence. In this way, it is possible to break down the analysis into individual processes and to bring the right person into the discussion at the right point without losing the thread of the discussion. Then, the next colleague who picks up the topic can then see the thread of the analysis and properly classify the results.

At the very least, we can provide some starting points. Helping people reach an “aha moment” is one of the best parts of my job!

To find out more about how process mining can help you understand and optimize your business processes, visit the Signavio Process Intelligence product page. If you would like to get a group effort started in your organization right now, why not sign up for a free 30-day trial with Signavio, today.

How Finance Organizations Are Dealing with The Growing Demand for Instant Response Times

The financial industry is one of the most innovative industries that has evolved at an incredibly fast-paced over the past decade. Finance is a complex industry that requires a delicate balance between optimal convenience and security. 

With security being the most important aspect, the role of AI has increased in importance and various financial organizations are taking strides to innovate unique solutions to meet the growing demand for faster and instant response rates. 

In a recent study, it was found that automation and digital intelligence save US banks over $1trillion on an annual basis. From a world perspective, more countries in different parts of the world are adopting AI tools to meet the growing demand for instant response time.

The client experience

Despite the fast rate of digital integration into various industries, clients still want to feel a personal connection to a brand experience. The advances in machine learning have allowed for a vast improvement in personalized services using customer data. This feature uses AI tools to better understand and respond to client needs. 

A feature of this nature allows financial organizations to develop improved products and increase speeds in response rates. The client not only experiences faster service but also gains access to products that are relevant to their needs and interested.

The improved customer experience has also improved by eliminating the need to go to the physical office of a financial institution to solve a problem. The incorporation of chatbots for customer service allows clients to easily solve queries remotely. 

A recent example is the Bank of America’s chatbot, known as Erica, who is accessible at all times of the day is currently used by a million people. This eliminates having to deal with human assistants meaning that it is easier to access solutions. Customer service is on the areas that allow financial institutions to thrive and the client is increasingly demanding optimal customer service. 

Improved security and fraud prevention 

More financial organizations are making use of biometric data to record customer data. Some financial institutions have decided to replace passwords, thus simplifying client verification. Despite the simplicity, it offers a higher level of security beyond a simple pin code. 

In the future, clients are anticipated to simply use their biometrics to access their funds at an ATM or the bank. Another aspect of improving response times to limit cybercrime and prevent fraud by easily identifying client patterns. The knowledge of client patterns allows clients to be contacted in the event of unusual activities. 

Disruption from startup innovation

The term disruption has transformed into a positive term in the past decade because disruptors have created technology that speeds up and streamlines payments, product maintenance for clients and increasing the value chain. 

Financial institutions are finding ways to work collaboratively with disruptors and innovative FinTech companies to create improved technology-driven solutions. The culture of disruption has allowed financial institutions to deliver more innovative money management solutions and simple avenues to process transactions with minimal delays. 

Disruptors generally evolve at a rapid pace and are also becoming institutions that are becoming standalone financial service providers. The expanded competition only creates room for a wide range of institutions to choose from dedicated to solving client problems. 

Using robotics to eliminate the risk

The growing alliance between financial services and technology companies focused on AI allows the financial industry to have a better understanding of consumer patterns to develop products relevant to them. 

The joy of incorporating AI tools means that the client does not have to resort to interacting with a bank teller to solve an issue. The integration of AI tools is a good way to ensure that tasks are performed with minimal human error and eliminate hurdles that arise due to inaccuracies. 

NLP AI Technology has also worked towards assisting financial institutions make informed decisions by developing different useful apps. For example, there are apps that use NLP to gather data on influencers, marketers and blog posts, that data is then used to advise financiers on how to invest. There is also other software that helps digitize financial documentation processes using NLP and that is just a few examples amongst quite a few.

Taking advantage of the sharing economy 

A recent innovation in finance has been the recognition of the power of a shared economy which has been realized in industries such as transport and hospitality. The client is always looking for fast means to meet their needs and the cheapest possible options. 

The rise of digital currencies and the decentralized model have shown banks that people respond to a system that allows for decentralized asset sharing. 

With the rise of cryptocurrency, financial institutions have also started exploring the potential of employing blockchain to create a system that presents a public ledger and improve internal operation within an organization to deliver at high speed. 

Moving infrastructure to the cloud

Financial institutions are growing more and more to use the cloud to manage their operations and this allows for easier management. Financial institutions realize the importance of automating processes such as data management, CRM, accounting and even HR. 

Using analytical tools allows for the fast-tracking of data gathering and delivering solutions to clients. This allows functions like client payment, statement generation, credit checks and more to become automated and more accurate. 

Once again, the issue of cybersecurity is forefronted in machines ‘taking over’ and the concern stems from the fact that the software is being sourced from third parties and requirements in the industry are highly sophisticated. 

The rapid growth of data-driven solutions has placed pressure on financial institutions to work with trustworthy service providers or develop inhouse data management systems to avoid third-party interactions. 

Conclusion

The language of convenience is one that is universal; everyone wants everything to work faster, be delivered to their doorstep and accommodate their needs. The financial industry is no exception to these expectations from customers. Finance organizations are taking the leap into incorporating AI tools to partly manage operations because it simplifies monitoring, reporting and processing large volumes of data. 

The sophistication of analytical tools ensures that issues are resolved before they become larger issues that are beyond an organization’s control. It is certainly exciting to see how financial industries and organizations will transform in 2020 to incorporate tech tools to streamline security and operations. 

Im Interview mit Henny Selig zu Process Mining: “Für den Kunden sind solche Aha-Momente toll“

Henny Selig ist Spezialistin für Process Mining und verfügt über umfassende Erfahrung bei der Umsetzung von Process-Mining-Lösungen und der Unterstützung von Kunden bei der Prozessanalyse. Als Solution Owner bei Signavio ist Henny auch mit der Implementierung von Signavio Process Intelligence bei Unternehmen jeglicher Größe bestens vertraut. In diesem Interview geht Henny auf die Herausforderungen und Chancen von Process Mining ein. 

Henny, wie würdest du das Konzept „Process Mining“ erklären?

Process Mining ist eine Kombination aus Datenanalyse und Business Process Management. Nahezu jeder Geschäftsprozess stützt sich auf IT-Systeme und hinterlässt digitale Spuren. Aus diesen IT-Systemen extrahieren wir alle Daten, die einen bestimmten Prozess betreffen, visualisieren sie und werten diese dann mithilfe von Data Science-Technologien aus.

Kurz gesagt: Process Mining bildet eine wichtige Brücke zwischen Fachabteilungen, Prozessverantwortlichen und dem Management. Damit sind datengestützte und faktenbasierte Diskussionen zur Optimierung von Geschäftsprozessen möglich. So lassen sich vor allem Übergaben und abteilungsübergreifende Schritte transparent gestalten und Silo-Denken vermeiden.

Welche Fragen beschäftigen Unternehmen, die mit Process Mining beginnen? Gibt es bestimmte Erwartungen, die durch den Einsatz von Process Mining erfüllt werden sollen?

Jedes Unternehmen ist anders und hat unterschiedliche Fragen und Erwartungen. Ein Beispiel: Ein Beschaffungsmanager, mit dem ich vor Kurzem zusammengearbeitet habe, war von den analysierten Daten überrascht. Denn es stellte sich heraus, dass zu einem bestimmten Zeitpunkt im Prozess eine Genehmigung vorlag, die eigentlich in einem anderen Moment erfolgen sollte. Für den Kunden sind solche Aha-Momente toll. Sie treten ganz automatisch auf, wenn man eine objektive und transparente Sicht auf den jeweiligen Prozess hat. 

Es wurden auch Fragen von uns aufgeworfen, die das Unternehmen bisher nicht berücksichtigt hatte, z. B. wie sich der Prozessablauf bei einem Bestellbetrag unter 1.000 Euro gestaltet und wie oft dies vorkommt. Fragen, die einem Außenstehenden klar erscheinen, die sich Prozessverantwortliche aber oft nicht stellen.

Ahnen Unternehmen häufig nur, dass ein Prozess nicht wie gewünscht läuft? Oder wissen die Meisten um spezifische Probleme in einem Bereich? 

Es gibt Unternehmen, die wissen, dass ein Prozess prinzipiell gut läuft, ein bestimmtes Problem aber immer wieder auftritt. Die involvierten Mitarbeiter sagen in diesen Fällen häufig, dass sie kein bestimmtes Anliegen oder keine konkrete Frage haben. Das stimmt natürlich nicht: Bei genauerem Nachfragen äußern sie dann erste Vermutungen oder Ideen.

Wenn man Mitarbeiter eines Unternehmens direkt fragt, wie sie bestimmte Dinge erledigen, sorgt das oft völlig unbeabsichtigt für Stress. Viele halten zunächst Informationen zurück, weil sie das Gefühl haben, dass der von ihnen beschriebene Prozess oder Workflow nicht perfekt ist. So wollen sie Vorwürfe vermeiden. 

Das oben erwähnte Genehmigungsbeispiel ist mein Favorit, weil es so eindeutig ist. Im betreffenden Unternehmen gab es zum Beispiel ein Team, das immer wieder sagte: „Diese Art von Anträgen genehmigen wir nicht.“ Die Daten sagten jedoch etwas ganz anderes – dem Team war das überhaupt nicht bewusst. 

Wir sprachen dann mit dem Manager. Dieser hatte sich bisher über ganz andere Dinge Gedanken gemacht wie etwa Risiken, den Prozessfluss im Allgemeinen und vieles andere. Nur allein durch dieses Gespräch konnten wir schon die Unstimmigkeiten zwischen dem Management und dem Team beseitigen, noch bevor der eigentliche Prozess selbst optimiert wurde. 

Gibt es noch andere Aspekte, die Unternehmen beachten sollten, wenn sie mit ihrer Process Mining-Initiative beginnen?

Nicht jede Varianz jenseits des Soll-Modells eines Prozesses ist automatisch negativ. Die wenigsten Prozesse, die nicht rein automatisiert ablaufen, sind zu 100% prozesskonform – selbst wenn die Rahmenbedingungen ideal sind. Daher wird es immer Ausnahmen geben, die einen anderen Ansatz erfordern. Und genau das ist die Herausforderung im Projekt: Man muss herausfinden, welche Variationen gewünscht und wo notwendige Ausnahmen zu treffen sind.

Würdest du sagen, dass eine datenbasierte Prozessanalyse eine Teamleistung ist?

Absolut! In jeder Phase eines Process Mining-Projekts sind ganz unterschiedliche Projektmitglieder involviert. Die IT stellt die Daten bereit und hilft bei deren Interpretation. Analysten führen dann die Prozessanalyse durch und diskutieren die gefundenen Auffälligkeiten mit der IT, den Prozessverantwortlichen und den Experten aus den Fachabteilungen. Denn manchmal gibt es gute Gründe für ein bestimmtes Prozessverhalten, das ohne das Wissen der Experten nicht erklärbar ist. 

Bei der Diskussion hilft es natürlich ungemein, den Gedankengang des Teams mit technischen Mitteln wie Signavio Process Intelligence zu dokumentieren. Auf diese Weise ist es möglich, die Analyse auf einzelne Prozesse herunterzubrechen und die richtige Person an der richtigen Stelle in die Diskussion einzubeziehen. So verliert man auch nicht den roten Faden. Und der nächste Kollege, der sich mit dem Thema beschäftigt, kann die Analyse nachvollziehen und das Ergebnis richtig einordnen.

Weitere Informationen dazu, wie Sie mit Process Mining Ihre Geschäftsprozesse besser verstehen und optimieren können, finden Sie auf der Produktseite von Signavio Process Intelligence. Oder melden Sie sich noch heute für eine kostenlose 30-Tage-Testversion bei Signavio an und legen Sie direkt los.

Top influential AI skills to target in 2020

Artificial intelligence in 2020: a trustable year!

The AI market is deemed to reach USD70 billion in the present year, thus causing a drastic effect on the government market, consumer, enterprise globally. 

With market uproars, it is certain obstacles are bound to intercept. However, the effects of artificial intelligence are poised to have huge potential in democratizing expensive services, or boost poor customer service, or assist during medical breakthroughs, and even lightened the work of the overburdened workforce. 

If you’re a tech optimist who believes in creating a world where man and machine can come closer and work together with humans, then you better need to possess mandatory AI skills. 

Based on this report, “2020 Workplace Learning Trends Report: The Skills of the Future,” you will come across how AI is reshaping the world and what are the skills that are a must-know for upcoming AI professionals. 

The report also states that the investment funds that are managed by AI are accounted for 35% of the stock market in America.

Finance machines will rise says a recent article in ‘The Economist.’ 

Trending by the industry’s insights and job trends, these are the skills AI professionals need to master in 2020:

  • Machine learning 

People often use the terms artificial intelligence and machine learning interchangeably, both being entirely different from each other. There’s a lot of confusion between both these terms, however, let us briefly understand what exactly is machine learning. 

Machine learning uses algorithms that obtain knowledge and skill through experience and without human intervention. It relies on big data sets that remind the data to find common patterns. 

For instance, if you provide machine learning programs with a lot of data on skin conditions and tell them what these conditions signify, these algorithms can easily mine the images (data) and help in analyzing the skin conditions even in the future. 

Now the algorithms will compare the images with the previous image data and try to identify the pattern that exists between them that have similar kind of patterns. 

However, if the algorithm is given a new image of a skin condition and the condition is unknown in the future as well. The algorithm will take the image to analyze it with the past and the present situation, thus the prediction of the condition will remain improper since one needs to feed new data for the algorithm to learn in order to predict what the condition is. However, AI will only learn by obtaining knowledge and learn how to apply these knowledges. Artificial intelligence helps to train computers aiming at a result that could provide a better outcome than a human can do. 

 

  • Python 

As the phrase is used, ‘orange is the new black’ so are AI and ML becoming the new black of the IT industry. With the extensive expansion of volumes of data, machine learning and artificial intelligence are used progressively for processing as well as analysis. To be honest, a human brain can function and analyze huge amounts of data but a human brain is restricted by limitations and can only contain a certain amount of processing or analyzing. 

AI in that aspect has a huge capacity and requires no limitation. 

Now Python plays a major impact on AI and machine learning as we undergo an upsurge for AI engineers. 

According to the latest trend search on Indeed, Python is said to be the most popular language for AI and ML, as stated by Jean Francois Puget, from the machine learning department in IBM. 

 

The how’s and why’s?

  • Python offers a low entry barrier for data scientists to effectively use Python without wasting much effort in learning the language. 
  • It has a great choice of library ecosystem, no wonder why everybody loves Python. For instance, Pandas for producing high-level data structure or data analysis, Matplotlib to create 2D plots and histograms, or Keras that is widely used for deep learning. 
  • Python as a language is flexible and is a great choice for machine learning. AI professionals can easily use Python along with other programming languages to achieve their target. 
  • Python offers easy readability for every developer, thus making it easy to understand the codes of their senior, change or develop a new one whenever needed. 

React (web)

If you’re a web developer thriving to enter the AI world, here’s a great chance for you. You can now build sweet AI apps using React.js. These offers web developers a new platform to bridge the gap between web developers and professionals who are getting trained in AI skills. 

A web developer can now easily build apps leveraging artificial intelligence that can learn from experiences or learns to react to the user’s inputs like facial expression, etc. 

Angular

If one isn’t aware, Google AI is build using Angular. Building a chatbot from scratch using a Dialog flow conversation platform, previously known as API.ai can be challenging. NLP (natural language processing) could be tough to deal with in machine learning. 

Docker 

Docker is now used in every field of the software industry. Confused with the term? Well, Docker is nothing but a DevOps tool. 

Docker can also be called as an exploiter tool exploiting operating-system-level virtualization that basically helps in developing and delivering software in packages that are called containers. 

Though this may sound complicated, you need to simply know that Docker is a complete environment that offers you a platform to build as well as deploy software. 

In a nutshell, one may say that Docker can be employed for varied phases of the machine learning development cycle like data aggregation, data-gathering, model training, predictive analysis, and application deployment, etc. 

Tech professionals such as DevOps engineers and AI engineers will need to supercharge their skill set in 2020. Till the time this knowledge gap persists, we will continue to see talent shortage in the job market.

 

Stop processing the same mistakes! Four steps to business & IT alignment

Digitization. Agility. Tech-driven. Just three strategy buzzwords that promise IT transformation and business alignment, but often fade out into merely superficial change. In fact, aligning business and IT still vexes many organizations because company leaders often forget that transformation is not a move from A to B, or even from A to Z––it’s a move from a fixed starting point, to a state of continual change.

Within this state of perpetual flux, adaptive technology is necessary, not only to keep up with industry developments but also with the expansion of technology-enabled customer experiences. After all, alignment assumes that business and technology are separate entities, when in fact they are inextricably linked!

Metrics that matter: From information technology to business technology

Information technology is continuing to challenge the way companies organize their business processes, communicate with customers and potential customers, and deliver services. Although there is no single dominant reorganization strategy, common company structures lean towards decentralizing IT, shifting it closer to end-users and melding the knowledge-base with business strategy. Business-IT alignment is more than ever vital for market impact and growth.

This tactic means as business goals pivot, IT can more readily respond with permanent solutions to support and maintain enterprise momentum. In turn, technological advances and improvements are hardwired into current and future strategies and initiatives. As working ecosystems replace strict organizational structures, the traditional question “Which department do you work in?” has been replaced by, “How do you work?”

But how does IT prove its value and win the trust of the C-suite? Well, according to Gartner, almost 20% of companies have already invested in tools capable of monitoring business-relevant metrics, with this number predicted to reach 60% by 2021. The problem is many infrastructure and operations (I&O) leaders don’t know where to begin when initiating an IT monitoring strategy.

Reach beyond the everyday: Four challenges to alignment

With this, CIOs are under mounting pressure to address digital needs that grow and transform, as well as to renovate the operational environment with new functions. They also must still demonstrate how IT is meeting a given business strategy. So looking forward, no matter how big or small your business is, technology can deliver tangible and intangible benefits (like speed and performance) to hit revenue and operational targets efficiently, and meet your customers’ expectations of innovation.

 

Put simply, having a good technological infrastructure enriches the culture, efficiency, and relationships of your business.

Business and IT alignment: The rate of change

This continuous strategic loop means enterprises function better, make more profit, and see better ROI because they achieve their goals with less effort. And while there may be no standard way to align successfully, an organization where IT and business strategy are in lock-step can further improve agility and operational efficiencies. This battle of the ‘effs’, efficiency vs. effectiveness, has never been so critical to business survival.

In fact, successful companies are those that dive deeper; such is the importance of this synergy. Amazon and Apple are prime examples—technology and technological innovation is embedded and aligned within their operational structure. In several cases, they created the integral technology and business strategies themselves!

Convergence and Integration

These types of aligned companies have also increased the efficiency of technology investments and significantly reduced the financial and operational risks associated with business and technical change.

However, if this rate of change and business agility is as fast as we continually say, we need to be talking about convergence and integration, not just alignment. In other words, let’s do the research and learn, but empower next-level thinking so we can focus on the co-creation of “true value” and respond quickly to customers and users.

Granular strategies

Without this granular strategy, companies may spend too much on technology without ever solving the business challenges they face, simply due to differing departmental objectives, cultures, and incentives. Simply put, business-IT alignment integrates technology with the strategy, mission, and goals of an organization. For example:

  • Faster time-to-market
  • Increased profitability
  • Better customer experience
  • Improved collaboration
  • Greater industry and IT agility
  • Strategic technological transformation

Hot topic

View webinar recording Empowering Collaboration Between Business and IT, with Fabio Gammerino, Signavio Pre-Sales Consultant.

The power of process: Four steps to better business-IT alignment

While it may seem intuitive, many organizations struggle to achieve the elusive goal of business-IT alignment. This is not only because alignment is a cumbersome and lengthy process, but because the overall process is made up of many smaller sub-processes. Each of these sub-processes lacks a definitive start and endpoint. Instead, each one comprises some “learn and do” cycles that incrementally advance the overall goal.

These cycles aren’t simple fixes, and this explains why issues still exist in the modern digital world. But by establishing a common language, building internal business relationships, ensuring transparency, and developing precise corporate plans of action, the bridge between the two stabilizes.

Four steps to best position your business-IT alignment strategy:

  1. Plan: Translate business objectives into measurable IT services, so resources are effectively allocated to maximize turnover and ROI – This step requires ongoing communication between business and IT leaders.
  2. Model: IT designs infrastructure to increase business value and optimize operations – IT must understand business needs and ensure that they are implementing systems critical to business services.
  3. Manage: Service is delivered based on company objectives and expectations – IT must act as a single point-of-service request, and prioritize those requests based on pre-defined priorities.
  4. Measure: Improvement of cross-organization visibility and service level commitments – While metrics are essential, it is crucial that IT ensures a business context to what they are measuring, and keeps a clear relationship between the measured parameter and business goals.

Signavio Says

Temporarily rotating IT employees within business operations is a top strategy in reaching business-IT alignment because it circulates company knowledge. This cross-pollination encourages better relationships between the IT department and other silos and broadens skill-sets, especially for entry-level employees. Better knowledge depth gives the organization more flexibility with well-rounded employees who can fill various roles as demand arises.

Get in touch

Discover how Signavio can lead your business to IT transformation and operational excellence with the  Signavio Business Transformation Suite. Try it for yourself by registering now for a free 30-day trial.

4 Industries Likely to Be Further Impacted by Data and Analytics in 2020

The possibilities for collecting and analyzing data have skyrocketed in recent years. Company leaders no longer must rely primarily on guesswork when making decisions. They can look at the hard statistics to get verification before making a choice.

Here are four industries likely to notice continuing positive benefits while using data and analytics in 2020.

  1. Transportation

If the transportation sector suffers from problems like late arrivals or buses and trains never showing up, people complain. Many use transportation options to reach work or school, and use long-term solutions like planes to visit relatives or enjoy vacations.

Data analysis helps transportation authorities learn about things such as ridership numbers, the most efficient routes and more. Digging into data can also help professionals in the sector verify when recent changes pay off.

For example, New York City recently enacted a plan called the 14th Street Busway. It stops cars from traveling on 14th Street for more than a couple of blocks from 6 a.m. to 10 p.m. every day. One of the reasons for making the change was to facilitate the buses that carry passengers along 14th Street. Data confirms the Busway did indeed encourage people to use the bus. Ridership jumped 24% overall, and by 20% during the morning rush hour.

Data analysis could also streamline air travel. A new solution built with artificial intelligence can reportedly make flights more on time and reduce fuel consumption by improving traffic flow in the terminals. The system also crunches numbers to warn people about long lines in an airport. Then, some passengers might make schedule adjustments to avoid those backups.

These examples prove why it’s smart for transportation professionals to continually see what the data shows. Becoming more aware of what’s happening, where problems exist and how people respond to different transit options could lead to better decision-making.

  1. Agriculture

People in the agriculture industry face numerous challenges, such as climate change and the need to produce food for a growing global population. There’s no single, magic fix for these challenges, but data analytics could help.

For example, MIT researchers are using data to track the effects of interventions on underperforming African farms. The outcome could make it easier for farmers to prove that new, high-tech equipment will help them succeed, which could be useful when applying for loans.

Elsewhere, scientists developed a robot called the TerraSentia that can collect information about a variety of crop traits, such as the height and biomass. The machine then transfers that data to a farmer’s laptop or computer. The robot’s developers say their creation could help farmers figure out which kinds of crops would give the best yields in specific locations, and that the TerraSentia will do it much faster than humans.

Applying data analysis to agriculture helps farmers remove much of the guesswork from what they do. Data can help them predict the outcome of a growing season, target a pest or crop disease problem and more. For these reasons and others, data analysis should remain prominent in agriculture for the foreseeable future.

  1. Energy 

Statistics indicate global energy demand will increase by at least 30% over the next two decades. Many energy industry companies have turned to advanced data analysis technologies to prepare for that need. Some solutions examine rocks to improve the detection of oil wells, while others seek to maximize production over the lifetime of an oilfield.

Data collection in the energy sector is not new, but there’s been a long-established habit of only using a small amount of the overall data collected. That’s now changing as professionals are more frequently collecting new data, plus converting information from years ago into usable data.

Strategic data analysis could also be a good fit for renewable energy efforts. A better understanding of weather forecasts could help energy professionals pinpoint how much a solar panel or farm could contribute to the electrical grid on a given day.

Data analysis helps achieve that goal. For example, some solutions can predict the weather up to a month in advance. Then, it’s possible to increase renewable power generation by up to 10%.

  1. Construction

Construction projects can be costly and time-consuming, although the results are often impressive. Construction professionals must work with a vast amount of data as they meet customers’ needs. Site plans, scheduling specifics, weather information and regulatory documents all help define how the work progresses and whether everything stays under budget.

Construction firms increasingly use big data analysis software to pull all the information into one place and make it easier to use. That data often streamlines customer communications and helps with meeting expectations. In one instance, a construction company depended on a real-time predictive modeling solution and combined it with in-house estimation software.

The outcome enabled instantly showing a client how much a new addition would cost. Other companies that are starting to use big data in construction note that having the option substantially reduces their costs — especially during the planning phase before construction begins. Another company is working on a solution that can analyze job site photos and use them to spot injury risks.

Data Analysis Increases Success

The four industries mentioned here have already enjoyed success by investigating the potential data analysis offers. People should expect them to continue making gains through 2020.

NetApp INSIGHT™ 2020

Erleben Sie mit uns gemeinsam die NetApp INSIGHT™ 2020 am 24. und 25. März 2020 in Berlin! Wir zeigen Ihnen, wie Sie mit Ihrer eigenen Data Fabric Ihre hybride Multi-Cloud-Umgebung aufbauen können. Und das Beste? Sie hören nicht nur unsere Experten über die Data Fabric sprechen – Sie lernen, wie Sie Ihre eigene Data Fabric aufbauen können.

Verändern Sie Ihre Welt mit Daten.

Erfahren Sie gemeinsam mit anderen NetApp Kunden und Partnern, wie Sie mit Hilfe von Daten Innovation vorantreiben und so den Einsatz von KI und Ihre Applikationsentwicklung beschleunigen können. Tauschen Sie sich mit Gleichgesinnten aus und entdecken Sie neue Möglichkeiten, wie alle Unternehmensbereiche von der Leistungsfähigkeit der Cloud profitieren können. Lernen Sie NetApp Technologie in der Praxis kennen. Gewinnen Sie in interaktiven Breakout-Sessions tiefgehende Einblicke. Und auch der Spaß kommt dabei nicht zu kurz. 

Jetzt kostenlos registrieren


Die Tickets für unsere regionalen INSIGHT Veranstaltungen in EMEA sind in diesem Jahr kostenfrei. Wir bitten Sie jedoch, Ihre Anreise und Unterkunft individuell zu organisieren. Weitere Informationen finden Sie unter insight.netapp.com.

Herzliche Grüße,

Ihr NetApp INSIGHT Berlin Team

Mit den richtigen Prozessen zum Erfolg: vier Schritte zum Business-IT Alignment

Digitalisierung, Agilität, Tech-basiert: Sowohl in der IT-Transformation als auch im Business-Alignment stecken diese drei strategischen Schlagworte. Häufig sorgen sie jedoch nur für oberflächliche Veränderungen. Tatsächlich ist die Abstimmung von Business und IT für viele Unternehmen nach wie vor eine Herausforderung. Die Transformation ist schließlich keine einmalige Umstellung von A auf B, sondern ein dauerhafter Zustand der ständigen Veränderungen.

Für ein erfolgreiches Business-IT Alignment benötigen Unternehmen vor allem adaptive Technologien. Nur so können sie mit den Entwicklungen in der Branche und dem zunehmend geforderten Kundenerlebnis auf Technologiebasis Schritt halten. Alignment bedeutet also, die bis dato als getrennt wahrgenommenen Bereiche Business und Technologie miteinander zu verbinden.

Von der Informations- zur Business-Technologie

Ob es um die Organisation von Geschäftsprozessen, die Kommunikation mit Kunden oder die Erbringung von Dienstleistungen geht: Informationstechnologie sorgt in all diesen Bereichen für Veränderungen. Dabei ist die Abstimmung von Business und IT für den Markteinfluss und das Wachstum mehr denn je von entscheidender Bedeutung. Auch wenn es keine vorherrschende Reorganisationsstrategie gibt, tendieren die meisten Unternehmen dazu, ihre IT zu dezentralisieren. Dadurch wird sie näher an die Endnutzer gebracht, die Wissensbasis verschmilzt zudem häufig mit der Geschäftsstrategie. 

Bei dieser Taktik stehen die Geschäftsziele im Mittelpunkt: Die IT kann die Dynamik des Unternehmens schneller mit permanenten Lösungen unterstützen und aufrechterhalten. Technologischer Fortschritt und Verbesserungen werden wiederum in aktuelle und zukünftige Strategien und Initiativen integriert. Besonders erfolgreiche Unternehmen zeichnen sich dadurch aus, dass sie strenge Organisationsstrukturen hinter sich lassen – die traditionelle Frage „In welcher Abteilung arbeiten Sie?“ wird zu „Wie arbeiten Sie?“.

Aber wie beweist die IT ihren Wert und gewinnt das Vertrauen der C-Suite? Laut Gartner haben fast 20% der Unternehmen bereits in Tools investiert, mit denen geschäftsrelevante Kennzahlen überwacht werden können. Bis 2021 sollen es voraussichtlich 60% sein. Das Problem ist jedoch, dass viele I&O-Führungskräfte nicht wissen, wo sie ansetzen sollen, wenn sie eine IT-Überwachungsstrategie initiieren. 

Vier Herausforderungen des Business-IT Alignments

CIOs stehen unter dem zunehmenden Druck, die wachsenden und sich verändernden digitalen Anforderungen zu erfüllen. Zugleich sollen sie auch die Betriebsumgebung mit neuen Funktionen ausstatten und nachweisen, dass die IT einer bestimmten Geschäftsstrategie entspricht. Unabhängig von der Größe eines Unternehmens gilt: Zukunftsorientierten Organisationen kann die Technologie konkrete Vorteile (wie Geschwindigkeit und Leistung) bieten, um operative und Umsatzziele effizient zu erreichen und die Innovationserwartungen ihrer Kunden zu erfüllen. Eine gute technologische Infrastruktur bereichert die Kultur, Effizienz und Kundenbeziehungen eines Unternehmens.

Von 0 auf 100: Business- und IT Alignment

Wer eine kontinuierliche Strategie implementiert, wird mit einer besser funktionierenden Organisation, mehr Gewinn und einem besseren ROI belohnt. Schließlich erreicht man seine Ziele mit weniger Aufwand und agiert dadurch effizienter. Natürlich gibt es keine Standardmethode für eine erfolgreiche Abstimmung. Eine Organisation, in der sich die IT- und Geschäftsstrategie im Einklang befindet, kann ihre Flexibilität und betriebliche Effizienz mit einer maßgeschneiderten Strategie deutlich verbessern. Dieser Kampf zwischen Effizienz und Effektivität war noch nie so entscheidend für das Überleben von Unternehmen wie heute.

In der Tat sind es vor allem erfolgreiche Unternehmen, die sich umfassend mit den Zusammenhängen zwischen IT und Business befassen und die Bedeutung dieser Synergie verstehen. Hervorragende Beispiele hierfür sind Amazon und Apple. Bei beiden Konzernen sind Technologie und technologische Innovation integraler Bestandteil der Betriebsstruktur. In einigen Fällen haben sie ihre Technologie- und Geschäftsstrategien sogar selbst entwickelt.

Konvergenz und Integration

Viele erfolgreiche Unternehmen haben die Effizienz ihrer Technologieinvestitionen gesteigert und die finanziellen und operativen Risiken, die mit geschäftlichen und technologischen Veränderungen einhergehen, erheblich reduziert.

Wenn das Tempo von Veränderungen und geschäftlicher Agilität derart hoch ist, muss man jedoch auch die Konvergenz und Integration einbeziehen und nicht nur die Abstimmung von IT und Business. Mit anderen Worten: Unternehmen müssen ihre Denkweise verändern und auf eine neue Ebene bringen, sodass sich alle Mitarbeiter auf die gemeinsame Schaffung von „echtem Mehrwert“ konzentrieren und schnell auf Kunden und Nutzer reagieren können.

Granulare Strategien

Fehlt eine granulare Strategie, können abweichende Abteilungsziele, Kulturen und Anreize dazu führen, dass Unternehmen zu viel Geld für Technologie ausgeben, ohne dadurch ihre geschäftlichen Herausforderungen zu lösen. Einfacher ausgedrückt: Beim Business-IT Alignment sollte die Technologie in die Strategie, Mission und Ziele eines Unternehmens integriert werden, um folgende Ziele zu erreichen: 

  • Schnellere Markteinführungszeit
  • Höhere Rentabilität
  • Besseres Kundenerlebnis
  • Bessere Zusammenarbeit
  • Mehr Unternehmens- und IT-Agilität
  • Strategische, technologische Transformation

Hot Topic

Sehen Sie sich die Webinaraufzeichnung Empowering Collaboration Between Business and IT mit Fabio Gammerino, Signavio Pre-Sales Consultant, an.

Das Potenzial von Prozessen: vier Schritte zum optimalen Business-IT Alignment

Business-IT Alignment erscheint vielen Organisationen als intuitiver Prozess. Dennoch haben  viele Unternehmen Schwierigkeiten, dieses hochgesteckte Ziel auch tatsächlich zu erreichen. Das liegt nicht nur daran, dass die Abstimmung von IT und Fachbereichen ein aufwendiger und langwieriger Prozess ist. 

Darüber hinaus besteht der Gesamtprozess aus vielen kleineren Teilprozessen. Diese Teilprozesse haben keinen definitiven Start- und Endpunkt, sondern beinhalten einige Lern- und Umsetzungszyklen, die das Gesamtziel schrittweise vorantreiben. Sie sind also keine simplen Lösungen. Durch den Aufbau einer gemeinsamen Sprache und abteilungsübergreifender Beziehungen, die Gewährleistung von Transparenz und die Entwicklung präziser, unternehmensweiter Maßnahmepläne wird eine Brücke zwischen den beiden Bereichen geschaffen.

Vier Schritte zur optimalen Positionierung Ihrer Business-IT Alignment-Strategie:

  1. Planen: Wandeln Sie Geschäftsziele in messbare IT-Services um, sodass Ressourcen effektiv zur Verbesserung von Umsatz und ROI genutzt werde können – dieser Schritt erfordert eine kontinuierliche Kommunikation zwischen den Unternehmens- und IT-Verantwortlichen.
  2. Modellieren: Die IT-Abteilung entwirft eine Infrastruktur zur Optimierung und Verbesserung der geschäftlichen Prozesse. Die IT-Abteilung muss die geschäftlichen Anforderungen verstehen und sicherstellen, dass sie Systeme implementiert, die für das Unternehmen von entscheidender Bedeutung sind.
  3. Verwalten: Der Service erfolgt auf Basis der Unternehmensziele und -erwartungen. Die IT muss als zentraler Ansprechpartner für Serviceanfragen fungieren und auf diese Anfragen entsprechend der vordefinierten Prioritäten eingehen.
  4. Messen: Verbesserung der organisationsweiten Transparenz und der Service Level Commitments. Obgleich Kennzahlen von entscheidender Bedeutung sind, ist es weitaus wichtiger, dass die IT einen Geschäftskontext für die von ihnen gemessenen Daten und eine klare Beziehung zwischen den gemessenen Parametern und den Geschäftszielen sicherstellt.

Die Meinung von Signavio

Die vorübergehende Rotation von IT-Mitarbeitern innerhalb des Unternehmens ist eine der Hauptstrategien für die Ausrichtung von Business und IT, da hierdurch internes Wissen im Unternehmen geteilt wird. Diese Wissensweitergabe sorgt für eine bessere Beziehung zwischen der IT-Abteilung und anderen Unternehmensbereichen und erweitert die Kompetenzen, insbesondere bei neuen Mitarbeitern. Profunde Kenntnisse geben der Organisation mehr Flexibilität, gut ausgebildete Mitarbeiter bei Bedarf in anderen Rollen einzusetzen.

 

Kontaktieren Sie uns

Erfahren Sie, wie Signavio mit der Signavio Business Transformation Suite Ihr Unternehmen bei der IT-Transformation und operativen Exzellenz unterstützen kann. Registrieren Sie sich jetzt für eine kostenlose 30-Tage-Testversion.

EnglishGermanEurope