Posts

Einführung und Vertiefung in R Statistics mit den Dortmunder R-Kursen!

Im Rahmen der Dortmunder R Kurse bieten wir unsere Expertise in Schulungen für die Programmiersprache R an. Zielgruppe unserer Fortbildungen sind nicht nur Statistiker, sondern auch Anwender jeder Fachrichtung aus Industrie und Forschungseinrichtungen, die mit R ihre Daten analysieren wollen. Die Dortmunder R-Kurse werden ausschließlich von Statistikern mit langjähriger Erfahrung angeboten. Die Referenten gehören zum engsten Kreis der internationalen R-Gemeinschaft. Die angebotenen Kurse haben sich vielfach national und international bewährt.

Unsere Termine für die Online-Durchführung in diesem Jahr:

8., 9. und 10. Juni: R-Basiskurs (jeweils 9:00 – 14:00 Uhr)

22., 23., 24. und 25. Juni: R-Vertiefungskurs (jeweils 9:00 – 13:00 Uhr)

Kosten jeweils 750.00€, bei Buchung beider Kurse im Juni erhalten Sie einen Preisnachlass von 200€.

Zur Anmeldung gelangen Sie über den nachfolgenden Link:
https://www.zhb.tu-dortmund.de/zhb/wb/de/home/Seminare/Andere_Veranst/index.html

R Basiskurs

Das Seminar R Basiskurs für Anfänger findet am 8., 9. und 10. Juni 2020 statt. Den Teilnehmern wird der praxisrelevante Part der Programmiersprache näher gebracht, um so die Grundlagen zur ersten Datenanalyse — von Datensatz zu statistischen Kennzahlen und ersten Visualisierungen — zu schaffen. Anmeldeschluss ist der 25. Mai 2020.

Programm:

  • Installation von R und zugehöriger Entwicklungsumgebung
  • Grundlagen von R: Syntax, Datentypen, Operatoren, Funktionen, Indizierung
  • R-Hilfe effektiv nutzen
  • Ein- und Ausgabe von Daten
  • Behandlung fehlender Werte
  • Statistische Kennzahlen
  • Visualisierung

R Vertiefungskurs

Das Seminar R-Vertiefungskurs für Fortgeschrittene findet am 22., 23., 24. und 25. Juni (jeweils von 9:00 – 13:00 Uhr) statt. Die Veranstaltung ist ideal für Teilnehmende mit ersten Vorkenntnissen, die ihre Analysen effizient mit R durchführen möchten. Anmeldeschluss ist der 11. Juni 2020.

Der Vertiefungskurs baut inhaltlich auf dem Basiskurs auf. Es besteht aber keine Verpflichtung, bei Besuch des Vertiefungskurses zuvor den Basiskurs zu absolvieren, wenn bereits entsprechende Vorkenntnisse in R vorhanden sind.

Programm:

  • Eigene Funktionen, Schleifen vermeiden durch *apply
  • Einführung in ggplot2 und dplyr
  • Statistische Tests und Lineare Regression
  • Dynamische Berichterstellung
  • Angewandte Datenanalyse anhand von Fallbeispielen

Links zur Veranstaltung direkt:

R-Basiskurs: https://dortmunder-r-kurse.de/kurse/r-basiskurs/

R-Vertiefungskurs: https://dortmunder-r-kurse.de/kurse/r-vertiefungskurs/

Dortmunder R-Kurse | Neue Termine im Herbst 2019

Erweitern Sie Ihre Fähigkeiten in der Anwendung der Open Source Statistiksoftware R: In der Tagesseminarreihe „Dortmunder R-Kurse“ an der Technischen Universität Dortmund geben erfahrene Wissenschaftler der Fakultät Statistik ihre Expertise an Sie weiter.

Sie erwerben dadurch Qualifikationen zur selbstständigen Analyse eigener Daten sowie Schlüsselkompetenzen im Umgang mit Big Data. Die Kurse richten sich an Anwenderinnen und Anwender jeder Fachrichtung aus Industrie und Forschungseinrichtungen, die ihre Daten mit R auswerten möchten.

Das Angebot umfasst Kurse für Einsteiger und Fortgeschrittene, wo Sie Ihre Kenntnisse in R erlernen und vertiefen können.

  • R Basiskurs
    Inhalte: Grundlagen zur ersten Datenanalyse
    Termine: 5. & 6. November 2019
  • R Vertiefungskurs
    Inhalt: Effiziente Analysen mit R
    Termine: 21. & 22. November 2019
  • Weitere Inhouse Themen auf Anfrage: Machine Learning in R, Shiny Apps mit R

Weitere Informationen zu den R-Kursen finden Sie unter:
http://dortmunder-r-kurse.de/

 

A common trap when it comes to sampling from a population that intrinsically includes outliers

I will discuss a common fallacy concerning the conclusions drawn from calculating a sample mean and a sample standard deviation and more importantly how to avoid it.

Suppose you draw a random sample x_1, x_2, … x_N of size N and compute the ordinary (arithmetic) sample mean  x_m and a sample standard deviation sd from it.  Now if (and only if) the (true) population mean µ (first moment) and population variance (second moment) obtained from the actual underlying PDF  are finite, the numbers x_m and sd make the usual sense otherwise they are misleading as will be shown by an example.

By the way: The common correlation coefficient will also be undefined (or in practice always point to zero) in the presence of infinite population variances. Hopefully I will create an article discussing this related fallacy in the near future where a suitable generalization to Lévy-stable variables will be proposed.

 Drawing a random sample from a heavy tailed distribution and discussing certain measures

As an example suppose you have a one dimensional random walker whose step length is distributed by a symmetric standard Cauchy distribution (Lorentz-profile) with heavy tails, i.e. an alpha-stable distribution with alpha being equal to one. The PDF of an individual independent step is given by p(x) = \frac{\pi^{-1}}{(1 + x^2)} , thus neither the first nor the second moment exist whereby the first exists and vanishes at least in the sense of a principal value due to symmetry.

Still let us generate N = 3000 (pseudo) standard Cauchy random numbers in R* to analyze the behavior of their sample mean and standard deviation sd as a function of the reduced sample size n \leq N.

*The R-code is shown at the end of the article.

Here are the piecewise sample mean (in blue) and standard deviation (in red) for the mentioned Cauchy sampling. We see that both the sample mean and sd include jumps and do not converge.

Especially the mean deviates relatively largely from zero even after 3000 observations. The sample sd has no target due to the population variance being infinite.

If the data is new and no prior distribution is known, computing the sample mean and sd will be misleading. Astonishingly enough the sample mean itself will have the (formally exact) same distribution as the single step length p(x). This means that the sample mean is also standard Cauchy distributed implying that with a different Cauchy sample one could have easily observed different sample means far of the presented values in blue.

What sense does it make to present the usual interval x_m \pm sd / \sqrt{N} in such a case? What to do?

The sample median, median absolute difference (mad) and Inter-Quantile-Range (IQR) are more appropriate to describe such a data set including outliers intrinsically. To make this plausible I present the following plot, whereby the median is shown in black, the mad in green and the IQR in orange.

This example shows that the median, mad and IQR converge quickly against their assumed values and contain no major jumps. These quantities do an obviously better job in describing the sample. Even in the presence of outliers they remain robust, whereby the mad converges more quickly than the IQR. Note that a standard Cauchy sample will contain half of its sample in the interval median \pm mad meaning that the IQR is twice the mad.

Drawing a random sample from a PDF that has finite moments

Just for comparison I also show the above quantities for a standard normal (pseudo) sample labeled with the same color as before as a counter example. In this case not only do both the sample mean and median but also the sd and mad converge towards their expected values (see plot below). Here all the quantities describe the data set properly and there is no trap since there are no intrinsic outliers. The sample mean itself follows a standard normal, so that the sd in deed makes sense and one could calculate a standard error \frac{sd}{\sqrt{N}} from it to present the usual stochastic confidence intervals for the sample mean.

A careful observation shows that in contrast to the Cauchy case here the sampled mean and sd converge more quickly than the sample median and the IQR. However still the sampled mad performs about as well as the sd. Again the mad is twice the IQR.

And here are the graphs of the prementioned quantities for a pseudo normal sample:

The take-home-message:

Just be careful when you observe outliers and calculate sample quantities right away, you might miss something. At best one carefully observes how the relevant quantities change with sample size as demonstrated in this article.

Such curves should become of broader interest in order to improve transparency in the Data Science process and reduce fallacies as well.

Thank you for reading.

P.S.: Feel free to play with the set random seed in the R-code below and observe how other quantities behave with rising sample size. Of course you can also try different PDFs at the beginning of the code. You can employ a Cauchy, Gaussian, uniform, exponential or Holtsmark (pseudo) random sample.

 

QUIZ: Which one of the recently mentioned random samples contains a trap** and why?

**in the context of this article

 

R-code used to generate the data and for producing plots:

 

 

Bringing intelligence to where data lives: Python & R embedded in T-SQL

Introduction

Did you know that you can write R and Python code within your T-SQL statements? Machine Learning Services in SQL Server eliminates the need for data movement. Instead of transferring large and sensitive data over the network or losing accuracy with sample csv files, you can have your R/Python code execute within your database. Easily deploy your R/Python code with SQL stored procedures making them accessible in your ETL processes or to any application. Train and store machine learning models in your database bringing intelligence to where your data lives.

You can install and run any of the latest open source R/Python packages to build Deep Learning and AI applications on large amounts of data in SQL Server. We also offer leading edge, high-performance algorithms in Microsoft’s RevoScaleR and RevoScalePy APIs. Using these with the latest innovations in the open source world allows you to bring unparalleled selection, performance, and scale to your applications.

If you are excited to try out SQL Server Machine Learning Services, check out the hands on tutorial below. If you do not have Machine Learning Services installed in SQL Server,you will first want to follow the getting started tutorial I published here: 

How-To Tutorial

In this tutorial, I will cover the basics of how to Execute R and Python in T-SQL statements. If you prefer learning through videos, I also published the tutorial on YouTube.

Basics

Open up SQL Server Management Studio and make a connection to your server. Open a new query and paste this basic example: (While I use Python in these samples, you can do everything with R as well)

Sp_execute_external_script is a special system stored procedure that enables R and Python execution in SQL Server. There is a “language” parameter that allows us to choose between Python and R. There is a “script” parameter where we can paste R or Python code. If you do not see an output print 7, go back and review the setup steps in this article.

Parameter Introduction

Now that we discussed a basic example, let’s start adding more pieces:

Machine Learning Services provides more natural communications between SQL and R/Python with an input data parameter that accepts any SQL query. The input parameter name is called “input_data_1”.
You can see in the python code that there are default variables defined to pass data between Python and SQL. The default variable names are “OutputDataSet” and “InputDataSet” You can change these default names like this example:

As you executed these examples, you might have noticed that they each return a result with “(No column name)”? You can specify a name for the columns that are returned by adding the WITH RESULT SETS clause to the end of the statement which is a comma separated list of columns and their datatypes.

Input/Output Data Types

Alright, let’s discuss a little more about the input/output data types used between SQL and Python. Your input SQL SELECT statement passes a “Dataframe” to python relying on the Python Pandas package. Your output from Python back to SQL also needs to be in a Pandas Dataframe object. If you need to convert scalar values into a dataframe here is an example:

Variables c and d are both scalar values, which you can add to a pandas Series if you like, and then convert them to a pandas dataframe. This one shows a little bit more complicated example, go read up on the python pandas package documentation for more details and examples:

You now know the basics to execute Python in T-SQL!

Did you know you can also write your R and Python code in your favorite IDE like RStudio and Jupyter Notebooks and then remotely send the execution of that code to SQL Server? Check out these documentation links to learn more: https://aka.ms/R-RemoteSQLExecution https://aka.ms/PythonRemoteSQLExecution

Check out the SQL Server Machine Learning Services documentation page for more documentation, samples, and solutions. Check out these E2E tutorials on github as well.

Would love to hear from you! Leave a comment below to ask a question, or start a discussion!

Neues Weiterbildungsangebot zu Programmiersprache R an der TU Dortmund

Anzeige: Neues Weiterbildungsangebot zu Programmiersprache R an der TU Dortmund

In der Tagesseminarreihe Dortmunder R-Kursean der Technischen Universität Dortmund vermitteln erfahrene Experten die praktische Anwendung der Open-Source Statistiksoftware R. Die Teilnehmenden erwerben dadurch Schlüsselkompetenzen im Umgang mit Big Data.

Das Seminar R-Basiskurs für Anfänger findet am 22.02. & 23.02.18 statt. Den Teilnehmern wird der praxisrelevante Part der Programmiersprache näher gebracht, um so die Grundlagen zur ersten Datenanalyse — vom Datensatz zu statistischen Kennzahlen und ersten Datenvisualisierungen — zu schaffen. Anmeldeschluss ist der 01.02.2018.

Das Seminar R-Vertiefungskurs für Fortgeschrittene findet am 06.03. & 07.03.18 statt. Die Veranstaltung ist ideal für Teilnehmende mit ersten Vorkenntnissen, die ihre Analysen effizient mit R durchführen möchten. Anmeldeschluss ist der 13.02.2018.

Weitere inhaltliche Informationen zu den R-Kursen finden Sie unter:
http://dortmunder-r-kurse.de/

Shiny Web Applikationen

Jede Person, die irgendwie mit Daten arbeitet, kommt nicht herum, aus Analysen oder Modellen gezogene Erkenntnisse mit anderen zu teilen. Meist haben diese Personen keinen statistischen oder mathematischen Hintergrund. Für diese sollten die Ergebnisse nicht nur verständlich, sondern im besten Fall auch visuell ansprechend aufbereitet sein. Neben recht teuren Softwarelösungen wie Tableau oder QlikView gibt es von R-Studio auch eine (zumindest im kleinen Rahmen) kostenfreie Lösung – R-Shiny.

Shiny ist ein R Paket, mit dessen Hilfe man interaktive Webapplikationen oder Dashboards erstellen kann, bei dem man auf den vollen Funktionsumfang aller R-Pakete zugreifen kann.

Bei der Erstellung für einfache Shiny-Apps sind keine HTML, CSS oder Javascript Kenntnisse nötig. Shiny teilt sich im Prinzip in zwei Programme: Das Front-End wird in der Datei ui.r festgelegt. Alles was im Back-End passiert, wird in der Datei server.r beschrieben. R-Studio übernimmt danach das Rendern des Front- Ends und man erhält eine übliche HTML-Datei, in dessen Backend R läuft.

Die Vorteile der Einfachheit, nur mit R eine funktionale Web-App erstellen können, hat natürlich auch seine Nachteile. Shiny ist, was das Design betrifft, eher limitiert und auch die Platzierung von Inputs wie Slidern, Drop-Downs oder auch Outputs wie Grafiken oder Tabellen ist stark beschränkt.

Eine kaum bekannte und dokumentierte Funktion von R-Shiny ist die Funktion „htmlTemplate“. Mit dieser lassen sich komplett in HTML, CSS und gegebenenfalls Javascript geschriebene Websites mit der vollen Funktionalität von R im Back-End integrieren – und sehen um Längen besser aus als rein in R geschriebene Web-Apps.

Wie man auf diese Art Shiny Apps programmiert zeige ich nun anhand des Folgenden Beispiels. Die folgenden Erklärungen sind mit Absicht kurz gehalten und stellen kein Tutorial dar, sondern sollen vielmehr die Möglichkeiten der Funktion „htmlTemplate“ zeigen.

Zunächst zur ui.R:

Der Code in der ui.R Datei ist recht einfach gehalten. Es werden nur die Bibliotheken geladen, auf die R zugreifen muss. Danach wird das html Template mit dem entsprechenden Namen geladen. Ansonsten werden in dieser Datei nur Input und Output als Variablen festgelegt.

 

In der Server.R Datei wird in diesem Beispiel der bekannte und oft verwendete Datensatz Mtcars verwendet. Zunächst wird mit dem Paket dplyr und der Funktion filter ein neuer Datensatz berechnet, der auf Nutzereingaben reagiert (sliderInput, siehe ui.R). Wenn in R-Shiny in DataFrames Berechnungen durchgeführt werden, müssen diese immer in einem sog. reactive Statement stehen. Danach werden mittels ggplot2 insgesamt drei Plots zu dem Datensatz erstellt.

Plot 1 stellt einen Zusammenhang zwischen Gewicht und Benzinverbrauch mittels linearer Regression dar. Plot 2 zeigt an, wie viele Zylinder die Fahrzeuge aus dem gefilterten Datensatz haben und Plot 3 zeigt die Korrelationen zwischen den Variablen an. Diese drei Plots sollen dem Endnutzer interaktiv zur Verfügung stehen.

 

In dieser HTML Datei wird die Struktur der Web App festgelegt. Diese enthält neben reichlich HTML auch ein paar Zeilen Internal Javascript, mit dem sich die die Diagramme ein- und ausblenden lassen. Das wichtigste in dieser Datei ist jedoch die Funktionsweise, mit der die in der ui.R Datei die Variablen an das Template übergeben werden. Jede template.html muss im Kopf (<head> … /<head>) die Funktion {{ headContent() }} enthalten. Damit werden die für Shiny benötigte Depedencies beim Rendern geladen. Diese übrigen, in der ui.R Datei deklarierten Variablen, werden ebenfalls mittels zwei geschweiften Klammern an das Template übergeben.

 

Nun muss für das Styling der App nur doch eine CSS-Datei geladen werden. Wichtig ist zu beachten, dass externe CSS Dateien bei Shiny immer in einem gesonderten Ordner mit dem Namen „www“ abgespeichert werden müssen. Auf diesen Ordner wird in der HTML Datei nicht gesondert verwiesen. Es reicht der Verweis <link rel=’stylesheet’ href=’style.css’/>.

Für den Upload der Datei müssen server.R, ui.R und template.html auf einer Ebene liegen, während wie bereits erwähnt die CSS Datei in einem gesonderten Ordner namens „www“ abliegen muss.

Die Web App liegt unter folgendem Link ab: https://markuslang1987.shinyapps.io/CustomShiny/

Einiges an der App ist sicherlich Spielerei, der Artikel soll in erster Linie aber die Möglichkeiten zeigen, die man mit einem selbst erstellten HTML Template im Gegensatz zu den recht eingeschränkten Möglichkeiten der normalen Shiny Programmierung zur Verfügung hat. Außerdem möchte ich mit diesem Artikel zeigen, dass Webentwicklung und Data Science/Analytics nicht zwangsläufig komplett voneinander unabhängige Welten sind.

Unsupervised Learning in R: K-Means Clustering

Die Clusteranalyse ist ein gruppenbildendes Verfahren, mit dem Objekte Gruppen – sogenannten Clustern zuordnet werden. Die dem Cluster zugeordneten Objekte sollen möglichst homogen sein, wohingegen die Objekte, die unterschiedlichen Clustern zugeordnet werden möglichst heterogen sein sollen. Dieses Verfahren wird z.B. im Marketing bei der Zielgruppensegmentierung, um Angebote entsprechend anzupassen oder im User Experience Bereich zur Identifikation sog. Personas.

Es gibt in der Praxis eine Vielzahl von Cluster-Verfahren, eine der bekanntesten und gebräuchlichsten Verfahren ist das K-Means Clustering, ein sog. Partitionierendes Clusterverfahren. Das Ziel dabei ist es, den Datensatz in K Cluster zu unterteilen. Dabei werden zunächst K beliebige Punkte als Anfangszentren (sog. Zentroiden) ausgewählt und jedem dieser Punkte der Punkt zugeordnet, zu dessen Zentrum er die geringste Distanz hat. K-Means ist ein „harter“ Clusteralgorithmus, d.h. jede Beobachtung wird genau einem Cluster zugeordnet. Zur Berechnung existieren verschiedene Distanzmaße. Das gebräuchlichste Distanzmaß ist die quadrierte euklidische Distanz:

D^2 = \sum_{i=1}^{v}(x_i - y_i)^2

Nachdem jede Beobachtung einem Cluster zugeordnet wurde, wird das Clusterzentrum neu berechnet und die Punkte werden den neuen Clusterzentren erneut zugeordnet. Dieser Vorgang wird so lange durchgeführt bis die Clusterzentren stabil sind oder eine vorher bestimmte Anzahl an Iterationen durchlaufen sind.
Das komplette Vorgehen wird im Folgenden anhand eines künstlich erzeugten Testdatensatzes erläutert.

Zunächst wird ein Testdatensatz mit den Variablen „Alter“ und „Einkommen“ erzeugt, der 12 Fälle enthält. Als Schritt des „Data preprocessing“ müssen zunächst beide Variablen standardisiert werden, da ansonsten die Variable „Alter“ die Clusterbildung zu stark beeinflusst.

Das Ganze geplottet:

Wie bereits eingangs erwähnt müssen Cluster innerhalb möglichst homogen und zu Objekten anderer Cluster möglichst heterogen sein. Ein Maß für die Homogenität die „Within Cluster Sums of Squares“ (WSS), ein Maß für die Heterogenität „Between Cluster Sums of Squares“ (BSS).

Diese sind beispielsweise für eine 3-Cluster-Lösung wie folgt:

Sollte man die Anzahl der Cluster nicht bereits kennen oder sind diese extern nicht vorgegeben, dann bietet es sich an, anhand des Verhältnisses von WSS und BSS die „optimale“ Clusteranzahl zu berechnen. Dafür wird zunächst ein leerer Vektor initialisiert, dessen Werte nachfolgend über die Schleife mit dem Verhältnis von WSS und WSS gefüllt werden. Dies lässt sich anschließend per „Screeplot“ visualisieren.

Die „optimale“ Anzahl der Cluster zählt sich am Knick der Linie ablesen (auch Ellbow-Kriterium genannt). Alternativ kann man sich an dem Richtwert von 0.2 orientieren. Unterschreitet das Verhältnis von WSS und BSS diesen Wert, so hat man die beste Lösung gefunden. In diesem Beispiel ist sehr deutlich, dass eine 3-Cluster-Lösung am besten ist.

Fazit: Mit K-Means Clustering lassen sich schnell und einfach Muster in Datensätzen erkennen, die, gerade wenn mehr als zwei Variablen geclustert werden, sonst verborgen blieben. K-Means ist allerdings anfällig gegenüber Ausreißern, da Ausreißer gerne als separate Cluster betrachtet werden. Ebenfalls problematisch sind Cluster, deren Struktur nicht kugelförmig ist. Dies ist vor der Durchführung der Clusteranalyse mittels explorativer Datenanalyse zu überprüfen.

R als Tool im Process Mining

Die Open Source Sprache R ermöglicht eine Vielzahl von Analysemöglichkeiten, die von einer einfachen beschreibenden Darstellung eines Prozesses bis zur umfassenden statistischen Analyse reicht. Dabei können Daten aus einem Manufacturing Execution System, kurz MES, als Basis der Prozessanalyse herangezogen werden. R ist ein Open Source Programm, welches sich für die Lösung von statischen Aufgaben im Bereich der Prozessoptimierung sehr gut eignet, erfordert jedoch auf Grund des Bedienungskonzepts als Scriptsprache, grundlegende Kenntnisse der Programmierung. Aber auch eine interaktive Bedienung lässt sich mit einer Einbindung der Statistikfunktionen in ein Dashboard erreichen. Damit können entsprechend den Anforderungen, automatisierte Analysen ohne Programmierkenntnisse realisiert werden.

Der Prozess als Spagetti Diagramm

Um einen Überblick zu erhalten, wird der Prozess in einem „process value flowchart“, ähnlich einem Spagetti‐ Diagramm dargestellt und je nach Anforderung mit Angaben zu den Key Performance Indicators ergänzt. Im konkreten Fall werden die absolute Anzahl und der relative Anteil der bearbeiteten Teile angegeben. Werden Teile wie nachfolgend dargestellt, aufgrund von festgestellten Mängel bei der Qualitätskontrolle automatisiert ausgeschleust, können darüber Kennzahlen für den Ausschuss ermittelt werden.

Der Prozess in Tabellen und Diagrammen

Im folgenden Chart sind grundlegende Angaben zu den ausgeführten Prozessschritten, sowie deren Varianten dargestellt. Die Statistikansicht bietet eine Übersicht zu den Fällen, den sogenannte „Cases“, sowie zur Dauer und Taktzeit der einzelnen Aktivitäten. Dabei handelt es sich um eine Fertigungsline mit hohem Automatisierungsgrad, bei der jeder Fertigungsschritt im MES dokumentiert wird. Die Tabelle enthält statistische Angaben zur Zykluszeit, sowie der Prozessdauer zu den einzelnen Aktivitäten. In diesem Fall waren keine Timestamps für das Ende der Aktivität vorhanden, somit konnte die Prozessdauer nicht berechnet werden.

Die Anwendung von Six Sigma Tools

R verfügt über eine umfangreiche Sammlung von Bibliotheken zur Datendarstellung, sowie der Prozessanalyse. Darin sind auch Tools aus Six Sigma enthalten, die für die weitere Analyse der Prozesse eingesetzt werden können. In den folgenden Darstellungen wird die Möglichkeit aufgezeigt, zwei Produktionszeiträume, welche über eine einfache Datumseingabe im Dashboard abgegrenzt werden, gegenüber zu stellen. Dabei handelt es sich um die Ausbringung der Fertigung in Stundenwerten, die für jeden Prozessschritt errechnet wird. Das xbar und r Chart findet im Bereich der Qualitätssicherung häufig Anwendung zur ersten Beurteilung des Prozessoutputs.

Zwei weitere Six Sigma typische Kennzahlen zur Beurteilung der Prozessfähigkeit sind der Cp und Cpk Wert und deren Ermittlung ein Bestandteil der R Bibliotheken ist. Bei der Berechnung wird von einer Normalverteilung der Daten ausgegangen, wobei das Ergebnis aus der Überprüfung dieser Annahme im Chart durch Zahlen, als auch grafisch dargestellt wird.

Von Interesse ist auch die Antwort auf die Frage, welchem Trend folgt der Prozess? Bereits aus der Darstellung der beiden Produktionszeiträume im Box‐Whiskers‐Plot könnte man anhand der Mediane auf einen Trend zu einer Verschlechterung der Ausbringung schließen, den der Interquartilsabstand nicht widerspiegelt. Eine weitere Absicherung einer Aussage über den Trend, kann über einen statistischen Vergleichs der Mittelwerte erfolgen.

Der Modellvergleich

Besteht die Anforderung einer direkten Gegenüberstellung des geplanten, mit dem vorgefundenen, sogenannten „Discovered Model“, ist aufgrund der Komplexität beim Modellvergleich, dieser in R mit hohem Programmieraufwand verbunden. Besser geeignet sind dafür spezielle Process Miningtools. Diese ermöglichen den direkten Vergleich und unterstützen bei der Analyse der Ursachen zu den dargestellten Abweichungen. Bei Produktionsprozessen handelt es sich meist um sogenannte „Milestone Events“, die bei jedem Fertigungsschritt durch das MES dokumentiert werden und eine einfache Modellierung des Target Process ermöglichen. Weiterführende Analysen der Prozessdaten in R sind durch einen direkten Zugriff über ein API realisierbar oder es wurde vollständig integriert. Damit eröffnen sich wiederum die umfangreichen Möglichkeiten bei der statistischen Prozessanalyse, sowie der Einsatz von Six Sigma Tools aus dem Qualitätsmanagement. Die Analyse kann durch eine, den Kundenanforderungen entsprechende Darstellung in einem Dashboard vereinfacht werden, ermöglicht somit eine zeitnahe, weitgehend automatisierte Prozessanalyse auf Basis der Produktionsdaten.

Resümee

Process Mining in R ermöglicht zeitnahe Ergebnisse, die bis zur automatisierten Analyse in Echtzeit reicht. Der Einsatz beschleunigt erheblich das Process Controlling und hilft den Ressourceneinsatz bei der Datenerhebung, sowie deren Analyse zu reduzieren. Es kann als stand‐alone Lösung zur Untersuchung des „Discovered Process“ oder als Erweiterung für nachfolgende statistische Analysen eingesetzt werden. Als stand‐alone Lösung eignet es sich für Prozesse mit geringer Komplexität, wie in der automatisierten Fertigung. Besteht eine hohe Diversifikation oder sollen standortübergreifende Prozessanalysen durchgeführt werden, übersteigt der Ressourcenaufwand rasch die Kosten für den Einsatz einer Enterprise Software, von denen mittlerweile einige angeboten werden.

 

R Data Frames meistern mit dplyr – Teil 2

Dieser Artikel ist Teil 2 von 2 aus der Artikelserie R Data Frames meistern mit dplyr.

Noch mehr Datenbank-Features

Im ersten Teil dieser Artikel-Serie habe ich die Parallelen zwischen Data Frames in R und Relationen in SQL herausgearbeitet und gezeigt, wie das Paket dplyr eine Reihe von SQL-analogen Operationen auf Data Frames standardisiert und optimiert. In diesem Teil möchte ich nun drei weitere Analogien aufzeigen. Es handelt sich um die

  • Window Functions in dplyr als Entsprechung zu analytischen Funktionen in SQL,
  • Joins zwischen Data Frames als Pendant zu Tabellen-Joins
  • Delegation von Data Frame-Operationen zu einer bestehenden SQL-Datenbank

Window Functions

Im letzten Teil habe ich gezeigt, wie durch die Kombination von group_by() und summarise() im Handumdrehen Aggregate entstehen. Das Verb group_by() schafft dabei, wie der Name schon sagt, eine Gruppierung der Zeilen des Data Frame anhand benannter Schlüssel, die oft ordinaler oder kategorialer Natur sind (z.B. Datum, Produkt oder Mitarbeiter).

Ersetzt man die Aggregation mit summarise() durch die Funktion mutate(), um neue Spalten zu bilden, so ist der Effekt des group_by() weiterhin nutzbar, erzeugt aber „Windows“, also Gruppen von Datensätzen des Data Frames mit gleichen Werten der Gruppierungskriterien. Auf diesen Gruppen können nun mittels mutate() beliebige R-Funktionen angewendet werden. Das Ergebnis ist im Gegensatz zu summarise() keine Verdichtung auf einen Datensatz pro Gruppe, sondern eine Erweiterung jeder einzelnen Zeile um neue Werte. Das soll folgendes Beispiel verdeutlichen:

Das group_by() unterteilt den Data Frame nach den 4 gleichen Werten von a. Innerhalb dieser Gruppen berechnen die beispielsweise eingesetzten Funktionen

  • row_number(): Die laufende Nummer in dieser Gruppe
  • n(): Die Gesamtgröße dieser Gruppe
  • n_distinct(b): Die Anzahl verschiedener Werte von b innerhalb der Gruppe
  • rank(desc(b)): Den Rang innerhalb der selben Gruppe, absteigend nach b geordnet
  • lag(b): Den Wert von b der vorherigen Zeile innerhalb derselben Gruppe
  • lead(b): Analog den Wert von b der folgenden Zeile innerhalb derselben Gruppe
  • mean(b): Den Mittelwert von b innerhalb der Gruppe
  • cumsum(b): Die kumulierte Summe der b-Werte innerhalb der Gruppe.

Wichtig ist hierbei, dass die Anwendung dieser Funktionen nicht dazu führt, dass die ursprüngliche Reihenfolge der Datensätze im Data Frame geändert wird. Hier erweist sich ein wesentlicher Unterschied zwischen Data Frames und Datenbank-Relationen von Vorteil: Die Reihenfolge von Datensätzen in Data Frames ist stabil und definiert. Sie resultiert aus der Abfolge der Elemente auf den Vektoren, die die Data Frames bilden. Im Gegensatz dazu haben Tabellen und Views keine Reihenfolge, auf die man sich beim SELECT verlassen kann. Nur mit der ORDER BY-Klausel über eindeutige Schlüsselwerte erreicht man eine definierte, stabile Reihenfolge der resultierenden Datensätze.

Die Wirkungsweise von Window Functions wird noch besser verständlich, wenn in obiger Abfrage das group_by(a) entfernt wird. Dann wirken alle genannten Funktionen auf der einzigen Gruppe, die existiert, nämlich dem gesamten Data Frame:

Anwendbar sind hierbei sämtliche Funktionen, die auf Vektoren wirken. Diese müssen also wie in unserem Beispiel nicht unbedingt aus dplyr stammen. Allerdings komplettiert das Package die Menge der sinnvoll anwendbaren Funktionen um einige wichtige Elemente wie cumany() oder n_distinct().

Data Frames Hand in Hand…

In relationalen Datenbanken wird häufig angestrebt, das Datenmodell zu normalisieren. Dadurch bekommt man die negativen Folgen von Datenredundanz, wie Inkonsistenzen bei Datenmanipulationen und unnötig große Datenvolumina, in den Griff. Dies geschieht unter anderem dadurch, dass tabellarische Datenbestände aufgetrennt werden Stammdaten- und Faktentabellen. Letztere beziehen sich über Fremdschlüsselspalten auf die Primärschlüssel der Stammdatentabellen. Durch Joins, also Abfragen über mehrere Tabellen und Ausnutzen der Fremdschlüsselbeziehungen, werden die normalisierten Tabellen wieder zu einem fachlich kompletten Resultat denormalisiert.

In den Data Frames von R trifft man dieses Modellierungsmuster aus verschiedenen Gründen weit seltener an als in RDBMS. Dennoch gibt es neben der Normalisierung/Denormalisierung andere Fragestellungen, die sich gut durch Joins beantworten lassen. Neben der Zusammenführung von Beobachtungen unterschiedlicher Quellen anhand charakteristischer Schlüssel sind dies bestimmte Mengenoperationen wie Schnitt- und Differenzmengenbildung.

Die traditionelle R-Funktion für den Join zweier Data Frames lautet merge(). dplyr erweitert den Funktionsumfang dieser Funktion und sorgt für sprechendere Funktionsnamen und Konsistenz mit den anderen Operationen.

Hier ein synthetisches Beispiel:

Nun gilt es, die Verkäufe aus dem Data Frame sales mit den Produkten in products zusammenzuführen und auf Basis von Produkten Bilanzen zu erstellen. Diese Denormalisierung geschieht durch das Verb inner_join() auf zweierlei Art und Weise:

Die Ergebnisse sind bis auf die Reihenfolge der Spalten und der Zeilen identisch. Außerdem ist im einen Fall der gemeinsame Schlüssel der Produkt-Id als prod_id, im anderen Fall als id enthalten. dplyr entfernt also die Spalten-Duplikate der Join-Bedingungen. Letzere wird bei Bedarf im by-Argument der Join-Funktion angegeben. R-Experten erkennen hier einen „Named Vector“, also einen Vektor, bei dem jedes Element einen Namen hat. Diese Syntax verwendet dplyr, um elegant die äquivalenten Spalten zu kennzeichnen. Wird das Argument by weggelassen, so verwendet dplyr im Sinne eines „Natural Join“ automatisch alle Spalten, deren Namen in beiden Data Frames vorkommen.

Natürlich können wir dieses Beispiel mit den anderen Verben erweitern, um z.B. eine Umsatzbilanz pro Produkt zu erreichen:

dplyr bringt insgesamt 6 verschiedene Join-Funktionen mit: Neben dem bereits verwendeten Inner Join gibt es die linksseitigen und rechtsseitigen Outer Joins und den Full Join. Diese entsprechen genau der Funktionalität von SQL-Datenbanken. Daneben gibt es die Funktion semi_join(), die in SQL etwa folgendermaßen ausgedrückt würde:

Das Gegenteil, also ein NOT EXISTS, realisiert die sechste Join-Funktion: anti_join(). Im folgenden Beispiel sollen alle Produkte ausgegeben werden, die noch nie verkauft wurden:

… und in der Datenbank

Wir schon mehrfach betont, hat dplyr eine Reihe von Analogien zu SQL-Operationen auf relationalen Datenbanken. R Data Frames entsprechen Tabellen und Views und die dplyr-Operationen den Bausteinen von SELECT-Statements. Daraus ergibt sich die Möglichkeit, dplyr-Funktionen ohne viel Zutun auf eine bestehende Datenbank und deren Relationen zu deligieren.

Mir fallen folgende Szenarien ein, wo dies sinnvoll erscheint:

  • Die zu verarbeitende Datenmenge ist zu groß für das Memory des Rechners, auf dem R läuft.
  • Die interessierenden Daten liegen bereits als Tabellen und Views auf einer Datenbank vor.
  • Die Datenbank hat Features, wie z.B. Parallelverarbeitung oder Bitmap Indexe, die R nicht hat.

In der aktuellen Version 0.5.0 kann dplyr nativ vier Datenbank-Backends ansprechen: SQLite, MySQL, PostgreSQL und Google BigQuery. Ich vermute, unter der Leserschaft des Data Science Blogs dürfte MySQL (oder der Fork MariaDB) die weiteste Verbreitung haben, weshalb ich die folgenden Beispiele darauf zeige. Allerdings muss man beachten, dass MySQL keine Window Funktionen kennt, was sich 1:1 auf die Funktionalität von dplyr auswirkt.

Im folgenden möchte ich zeigen, wie dplyr sich gegen eine bestehende MySQL-Datenbank verbindet und danach einen bestehenden R Data Frame in eine neue Datenbanktabelle wegspeichert:

Die erste Anweisung verbindet R mit einer bestehenden MySQL-Datenbank. Danach lade ich den Data Frame diamonds aus dem Paket ggplot2. Mit str() wird deutlich, dass drei darin enthaltene Variablen vom Typ Factor sind. Damit dplyr damit arbeiten kann, werden sie mit mutate() in Character-Vektoren gewandelt. Dann erzeugt die Funktion copy_to() auf der MySQL-Datenbank eine leere Tabelle namens diamonds, in die die Datensätze kopiert werden. Danach erhält die Tabelle noch drei Indexe (von dem der erste aus drei Segmenten besteht), und zum Schluß führt dplyr noch ein ANALYSE der Tabelle durch, um die Werteverteilungen auf den Spalten für kostenbasierte Optimierung zu bestimmen.

Meistens aber wird bereits eine bestehende Datenbanktabelle die interessierenden Daten enthalten. In diesem Fall lautet die Funktion zum Erstellen des Delegats tbl():

Die Rückgabewerte von copy_to() und von tbl() sind natürlich keine reinrassigen Data Frames, sondern Objekte, auf die die Operationen von dplyr wirken können, indem sie auf die Datenbank deligiert werden. Im folgenden Beispiel sollen alle Diamanten, die ein Gewicht von mindestens 1 Karat haben, pro Cut, Color und Clarity nach Anzahl und mittlerem Preis bilanziert werden:

Die Definition der Variablen bilanz geschieht dabei komplett ohne Interaktion mit der Datenbank. Erst beim Anzeigen von Daten wird das notwendige SQL ermittelt und auf der DB ausgeführt. Die ersten 10 resultierenden Datensätze werden angezeigt. Mittels der mächtigen Funktion explain() erhalten wir das erzeugte SQL-Kommando und sogar den Ausführungsplan auf der Datenbank. SQL-Kundige werden erkennen, dass die verketteten dplyr-Operationen in verschachtelte SELECT-Statements umgesetzt werden.

Zu guter Letzt sollen aber meistens die Ergebnisse der dplyr-Operationen irgendwie gesichert werden. Hier hat der Benutzer die Wahl, ob die Daten auf der Datenbank in einer neuen Tabelle gespeichert werden sollen oder ob sie komplett nach R transferiert werden sollen. Dies erfolgt mit den Funktionen compute() bzw. collect():

Durch diese beiden Operationen wurde eine neue Datenbanktabelle „t_bilanz“ erzeugt und danach der Inhalt der Bilanz als Data Frame zurück in den R-Interpreter geholt. Damit schließt sich der Kreis.

Fazit

Mit dem Paket dplyr von Hadley Wickham wird die Arbeit mit R Data Frames auf eine neue Ebene gehoben. Die Operationen sind konsistent, vollständig und performant. Durch den Verkettungs-Operator %>% erhalten sie auch bei hoher Komplexität eine intuitive Syntax. Viele Aspekte der Funktionalität lehnen sich an Relationale Datenbanken an, sodass Analysten mit SQL-Kenntnissen rasch viele Operationen auf R Data Frames übertragen können.

Zurück zu R Data Frames meistern mit dplyr – Teil 1.

 

Warenkorbanalyse in R

Was ist die Warenkorbanalyse?

Die Warenkorbanalyse ist eine Sammlung von Methoden, die die beim Einkauf gemeinsam gekauften Produkte oder Produktkategorien aus einem Handelssortiment untersucht. Ziel der explorativen Warenkorbanalyse ist es, Strukturen in den Daten zu finden, so genannte Regeln, die beschreiben, welche Produkte oder Produktkategorien gemeinsam oder eben nicht gemeinsam gekauft werden.

Beispiel: Wenn ein Kunde Windeln und Bier kauft, kauft er auch Chips.

Werden solche Regeln gefunden, kann das Ergebnis beispielsweise für Verbundplatzierungen im Verkaufsraum oder in der Werbung verwendet werden.

Datenaufbau

Die Daten, die für diese Analyse untersucht werden, sind Transaktionsdaten des Einzelhandels. Meist sind diese sehr umfangreich und formal folgendermaßen aufgebaut:

data-bsp

Ausschnitt eines Beispieldatensatzes: Jede Transaktion (= Warenkorb = Einkauf) hat mehrere Zeilen, die mit der selben Transaktionsnummer (Spalte Transaction) gekennzeichnet sind. In den einzelnen Zeilen der Transaktion stehen dann alle Produkte, die sich in dem Warenkorb befanden. In dem Beispiel sind zudem noch zwei Ebenen von Produktkategorien als zusätzliche Informationen enthalten.

Es gibt mindestens 2 Spalten: Spalte 1 enthält die Transaktionsnummer (oder die Nummer des Kassenbons, im Beispielbild Spalte Transaction), Spalte 2 enthält den Produktnamen. Zusätzlich kann es weitere Spalten mit Infos wie Produktkategorie, eventuell in verschiedenen Ebenen, Preis usw. geben. Sind Kundeninformationen vorhanden, z.B. über Kundenkarten, so können auch diese Informationen enthalten sein und mit ausgewertet werden.

Beschreibende Datenanalyse

Die Daten werden zunächst deskriptiv, also beschreibend, analysiert. Dazu werden z.B. die Anzahl der Transaktionen und die Anzahl der Produkte im Datensatz berechnet. Zudem wird die Länge der Transaktionen, also die Anzahl der Produkte in den einzelnen Transaktionen untersucht. Dies wird mit deskriptiven Maßzahlen wie Minimum, Maximum, Median und Mittelwert in Zahlen berichtet sowie als Histogramm grafisch dargestellt, siehe folgende Abbildung.

hist-sizes
Histogramm der Längenverteilung der Transaktionen.

Die häufigsten Produkte werden ermittelt und können gesondert betrachtet werden. Als Visualisierung kann hier ein Balkendiagramm mit den relativen Häufigkeiten der häufigsten Produkte verwendet werden, wie im folgenden Beispiel.

relfreq-items
Relative Häufigkeiten der häufigsten Produkte, hier nach relativer Häufigkeit größer 0,1 gefiltert.

Ähnliche Analysen können bei Bedarf auch auf Kategorien-Ebene oder nach weiteren erhobenen Merkmalen selektiert durchgeführt werden, je nachdem, welche Informationen in den Daten stecken und welche Fragestellungen für den Anwender interessant sind.

Verbundanalyse

Im nächsten Schritt wird mit statistischen Methoden nach Strukturen in den Daten gesucht, auch Verbundanalyse genannt. Als Grundlage werden Ähnlichkeitsmatrizen erstellt, die für jedes Produktpaar die Häufigkeit des gemeinsamen Vorkommens in Transaktionen bestimmen. Solch eine Ähnlichkeitsmatrix ist zum Beispiel eine Kreuztabelle in der es für jedes Produkt eine Spalte und eine Zeile gobt. In den Zellen in der Tabelle steht jeweils die Häufigkeit, wie oft dieses Produktpaar gemeinsam in Transaktionen in den Daten vorkommt, siehe auch folgendes Beispiel.

screenshot-crosstable-ausschnitt

Ähnlichkeitsmatrix oder Kreuztabelle der Produkte: Frankfurter und Zitrusfrüchte werden in 64 Transaktionen zusammen gekauft, Frankfurter und Berries in 22 usw.

Auf Basis solch einer Ähnlichkeitsmatrix wird dann z.B. mit Mehrdimensionaler Skalierung oder hierarchischen Clusteranalysen nach Strukturen in den Daten gesucht und Gemeinsamkeiten und Gruppierungen gefunden. Die hierarchische Clusteranalyse liefert dann ein Dendrogram, siehe folgende Abbildung, in der ähnliche Produkte miteinander gruppiert werden.

dendrogram

Dendrogram als Visualisierung des Ergebnisses der hierarchischen Clusterananlyse. Ähnliche Produkte (also Produkte, die zusammen gekauft werden) werden zusammen in Gruppen geclustert. Je länger die vertikale Verbindungslinie ist, die zwei Gruppen oder Produkte zusammen fasst, um so unterschiedlicher sind diese Produkte bzw. Gruppen.

Assoziationsregeln

Schließlich sollen neben den Verbundanalysen am Ende in den Daten Assoziationsregeln gefunden werden. Es werden also Regeln gesucht und an den Daten geprüft, die das Kaufverhalten der Kunden beschreiben. Solch eine Regel ist zum Beispiel „Wenn ein Kunde Windeln und Bier kauft, kauft er auch Chips.“ Formal: {Windeln, Bier} → {Chips}

Für diese Regeln lassen sich statistische Maßzahlen berechnen, die die Güte und Bedeutung der Regeln beschreiben. Die wichtigsten Maßzahlen sind Support, Confidence und Lift:

Support ist das Signifikanzmaß der Regel. Es gibt an, wie oft die gefundene Regel in den Daten anzuwenden ist. Wie oft also die in der Regel enthaltenen Produkte gemeinsam in einer Transaktion vorkommen. In dem Beispiel oben: Wie oft kommen Windeln, Bier und Chips in einer Transaktion gemeinsam vor?

Confidence ist das Qualitätsmaß der Regel. Es beschreibt, wie oft die Regel richtig ist. In dem oben genanten Beispiel: Wie oft ist in einer Transaktion Chips enthalten, wenn auch Windeln und Bier enthalten sind?

Lift ist das Maß der Bedeutung der Regel. Es sagt aus wie oft die Confidence den Erwartungswert übersteigt. Wie ist die Häufigkeit des gemeinsamen Vorkommens von Windeln, Bier und Chips im Verhältlnis zur erwarteten Häufigkeit des Vorkommens, wenn die Ereignisse stochastisch unabhängig sind?

Algorithmen

In den Daten werden zunächst alle möglichen Regeln gesammelt, die einen Mindestwert an Support und Confidence haben. Die Mindestwerte werden dabei vom Nutzer vorgegeben. Da es sich bei Transaktionsdaten um große Datenmengen handelt und häufig große Anzahlen von Produkten enthalten sind, wird die Suche nach Regeln zu einem komplexen Problem. Es wurden verschiedene effiziente Algorithmen als Suchstrategien entwickelt, z.B. der APRIORI-Algorithmus von Agrawal und Srikant (1994), der auch im weiter unten vorgestellten Paket arules von R verwendet wird.

Sind die Assoziationsregeln gefunden, können Sie vom Nutzer genauer untersucht werden und z.B. nach den oben genannten Kennzahlen sortiert betrachtet werden, oder es werden die Regeln für spezielle Warenkategorien genauer betrachtet, siehe folgendes Beispiel.

screenshot-rules

Beispielausgabe von Regeln, hier die drei Regeln mit dem besten Lift. In der ersten Regel sieht man: Wenn Bier und Wein gekauft wird, wird auch Likör gekauft. Diese Regel hat einen Support von 0,002. Diese drei Produkte kommen also in 0,2 % der Transaktionen vor. Die Confidence von 0,396 zeigt, dass in 39,6 % der Transaktionen auch Likör gekauft wird, wenn Bier und Wein gekauft wird.

Umsetzung mit R

Die hier vorgestellten Methoden zur Warenkorbanalyse lassen sich mit dem Paket arules der Software R gut umsetzen. Im Folgenden gebe ich eine Liste von nützlichen Befehlen für diese Analysen mit dieser Software. Dabei wird mit data hier durchgehend der Datensatz der Transaktionsdaten bezeichnet.

Zusammenfassung des Datensatzes:

  • Anzahl der Transaktionen und Anzahl der Warengruppen
  • die häufigsten Produkte werden genannt mit Angabe der Häufigkeiten
  • Längenverteilung der Transaktionen (Anzahl der Produkte pro Transaktion): Häufigkeiten, deskriptive Maße wie Quartile
  • Beispiel für die Datenstruktur (Levels)

Längen der Transaktionen (Anzahl der Produkte pro Transaktion)

Histogramm als grafische Darstellung der Transaktionslängen

rel. Häufigkeiten der einzelnen Produkte, hier nur die mit mindestens 10 % Vorkommen

Äquivalenzmatrix: Häufigkeiten der gemeinsamen Käufe für Produktpaare

Unähnlichkeitsmatrix für die hierarchische Clusteranalyse

Hierarchische Clusteranalyse

Dendrogram der hierarchischen Clusteranalyse

Assoziationsregeln finden mit APRIORI-Algorithmus, hier Regeln mit mindestens 1% Support und 20 % Confidence

Zusammenfassung der oben gefundenen Regeln (Anzahl, Eigenschaften Support, Confidence, Lift)

Einzelne Regeln betrachten, hier die laut Lift besten 5 Regeln

Referenzen:

  • Michael Hahsler, Kurt Hornik, Thomas Reutterer: Warenkorbanalyse mit Hilfe der Statistik-Software R, Innovationen in Marketing, S.144-163, 2006.
  • Michael Hahsler, Bettina Grün, Kurt Hornik, Christian Buchta, Introduciton to arules – A computational environment for mining association rules and frequent item sets. (Link zum PDF)
  • Rakesh Agrawal, Ramakrishnan Srikant, Fast algorithms for mining association rules, Proceedings of the 20th VLDB Conference Santiago, Chile, 1994
  • Software R:  R Core Team (2016). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. Link: R-Project.org.
  • Paket: arules: Mining Association Rules using R.

Beispieldatensatz: Groceries aus dem Paket arules

Events

Nothing Found

Sorry, no posts matched your criteria