Illustrative introductions on dimension reduction
"What is your image on dimensions?"
....That might be a cheesy question to ask to reader of Data Science Blog, but most…Spiky cubes, Pac-Man walking, empty M&M's chocolate: curse of dimensionality
"Curse of dimensionality" means the difficulties of machine learning which arise when the dimension of data is higher. In…
Back propagation of LSTM: just get ready for the most tiresome part
First of all, the summary of this article is "please just download my Power Point slides and be patient, following the equations."…
How to develop digital products and solutions for industrial environments?
In this article, we substantiate why Data Science and Engineering should be introduced as new engineering discipline in the Product Lifecycle Management process.
Understanding LSTM forward propagation in two ways
*This article is only for the sake of understanding the equations in the second page of the paper named "LSTM: A Search Space…
Hypothesis Test for real problems
A statistical hypothesis is a belief made about a population parameter. This belief may or might not be right. In other words, hypothesis testing is a proper technique utilized by scientist to support or reject statistical hypotheses. The foremost ideal approach to decide if a statistical hypothesis is correct is examine the whole population.
Must-have Skills to Master Data Science
The need to process a massive amount of data sets is making Data Science the most-demanded job across diverse industry verticals.…
Process Mining mit Celonis - Artikelserie
Insgesamt stellt Celonis ein unabhängiges und leistungsstarkes Process Mining Tool bereit, wobei der Anwender die Wahl zwischen einer on-Premise-Lösung sowie einer Cloud-Lösung hat. Die „prebuild Process-Connectors“ und die vordefinierten Analysen können ein Process Mining Projekt signifikant beschleunigen und somit die Time-to-Value lukrativ verkürzen. Die Analyse Tools sind leicht bedienbar und schaffen dank integrierter Machine Learning Algorithmen Optimierungspotentiale.
AI Voice Assistants are the Next Revolution: How Prepared are You?
According to Jeff Bezos, Amazon CEO, he says we’re already living in the golden era of artificial intelligence as such where the voice assistant flagship already exists, i.e. Alexa.
Test!
Test!
Interesting links
Here are some interesting links for you! Enjoy your stay :)Pages
- @Data Science Blog
- Autor werden!
- Autoren
- Become an Author
- CIO Interviews
- Computational and Data Science
- Coursera Data Science Specialization
- Coursera 用Python玩转数据 Data Processing Using Python
- Data Leader Day 2016 – Rabatt für Data Scientists!
- Data Science
- Data Science Insights
- Data Science Partner
- DATANOMIQ Big Data & Data Science Seminare
- DATANOMIQ Process Mining Workshop
- DATANOMIQ Seminare für Führungskräfte
- DataQuest.io – Interactive Learning
- Datenschutz
- Donation / Spende
- Education / Certification
- Fraunhofer Academy Zertifikatsprogramm »Data Scientist«
- Für Presse / Redakteure
- HARVARD Data Science Certificate Courses
- Home
- Impressum / Imprint
- MapR Big Data Expert
- Masterstudiengang Data Science
- Masterstudiengang Management & Data Science
- MongoDB University Online Courses
- Newsletter
- O’Reilly Video Training – Data Science with R
- Products
- qSkills Workshop: Industrial Security
- Science Digital Intelligence & Marketing Analytics
- Show your Desk!
- Stanford University Online -Statistical Learning
- TU Chemnitz – Masterstudiengang Business Intelligence & Analytics
- TU Dortmund – Datenwissenschaft – Master of Science
- TU Dortmund berufsbegleitendes Zertifikatsstudium
- Weiterbildung mit Hochschulzertifikat Data Science & Business Analytics für Einsteiger
- WWU Münster – Zertifikatsstudiengang “Data Science”
- Zertifikatskurs „Data Science“
- Zertifizierter Business Analyst
Categories
- Apache Spark
- Artificial Intelligence
- Audit Analytics
- Big Data
- Books
- Business Analytics
- Business Intelligence
- Carrier
- Certification / Training
- Cloud
- Connected Car
- Customer Analytics
- Data Engineering
- Data Migration
- Data Mining
- Data Science
- Data Science at the Command Line
- Data Science Hack
- Data Science News
- Data Security
- Data Warehousing
- Database
- Datacenter
- Deep Learning
- Devices
- Education / Certification
- Events
- Excel / Power BI
- Experience
- Gerneral
- GPU-Processing
- Graph Database
- Hacking
- Hadoop
- Hadoop Framework
- Industrie 4.0
- InMemory
- Insights
- Interview mit CIO
- Interviews
- Java
- JavaScript
- Machine Learning
- Main Category
- Manufacturing
- Mathematics
- Mobile Device Management
- Mobile Devices
- Natural Language Processing
- Neo4J
- NoSQL
- Octave
- optimization
- Predictive Analytics
- Process Mining
- Projectmanagement
- Python
- Python
- R Statistics
- Re-Engineering
- Realtime Analytics
- Recommendations
- Scala
- Software Development
- Sponsoring Partner Posts
- SQL
- Statistics
- TensorFlow
- Text Mining
- Tool Introduction
- Tools
- Tutorial
- Uncategorized
- Use Case
- Use Cases
- Visualization
- Web- & App-Tracking
Archive
- September 2020
- August 2020
- July 2020
- June 2020
- May 2020
- April 2020
- March 2020
- February 2020
- January 2020
- December 2019
- November 2019
- October 2019
- September 2019
- August 2019
- July 2019
- June 2019
- May 2019
- April 2019
- March 2019
- February 2019
- January 2019
- December 2018
- November 2018
- October 2018
- September 2018
- August 2018
- July 2018
- June 2018
- May 2018
- April 2018
- March 2018
- February 2018
- January 2018
- December 2017
- November 2017
- October 2017
- September 2017
- August 2017
- July 2017
- June 2017
- May 2017
- April 2017
- March 2017
- February 2017
- January 2017
- December 2016
- November 2016
- October 2016
- September 2016
- August 2016
- July 2016
- June 2016
- May 2016
- April 2016
- March 2016
- February 2016
- January 2016
- December 2015
- November 2015
- October 2015
- September 2015
- August 2015
- July 2015
- June 2015
- May 2015
Integrate Unstructured Data into Your Enterprise to Drive Actionable Insights
/0 Comments/in Big Data, Data Engineering, Data Mining, Data Science, Main Category /by Tehreem NaeemIn an ideal world, all enterprise data is structured – classified neatly into columns, rows, and tables, easily integrated and shared across the organization. The reality is far from it! Datamation estimates that unstructured data accounts for more than 80% of enterprise data, and it is growing at a rate of 55 – 65 percent […]
Introduction to Recommendation Engines
/0 Comments/in Big Data, Data Science, Database, Graph Database, Machine Learning, Neo4J, Python, Tutorial, Use Case /by Aakash ChughThis is the second article of article series Getting started with the top eCommerce use cases. If you are interested in reading the first article you can find it here. What are Recommendation Engines? Recommendation engines are the automated systems which helps select out similar things whenever a user selects something online. Be it Netflix, […]
Wie Process Mining 2020 Ihre erfolgreiche Geschäftstransformation 2020 sicherstellt
/0 Comments/in Process Mining /by SignavioFehlende Informationen über bestehende Prozesse sorgen dafür, dass 70% aller großen Transformationsprojekte und rund 50% aller RPA-Projekte scheitern. Grund hierfür sind mangelndes Verständnis der bestehenden Prozesse und die fehlende Verbindung zwischen der Ermittlung, Visualisierung, Analyse und Ausführung vorhandener Daten. Durch den Einsatz von Process Mining-Technologie erhalten Sie die notwendigen Informationen, die Transparenz und die quantifizierbaren […]
Six ways process mining in 2020 can save your business transformation
/0 Comments/in Process Mining /by SignavioThe lack of information about existing processes kills 70% of large transformation projects and around 50% of RPA projects…alarming statistics. Triggering this failure rate is a lack of understanding about existing processes, and the disconnect between the discovery, visualization, analysis, and execution of existing data. So, banish the process guesswork! Utilizing process mining technology unlocks […]
5 Things You Should Know About Data Mining
/0 Comments/in Data Mining, Uncategorized /by Halley JohnsonThe majority of people spend about twenty-four hours online every week. In that time they give out enough information for big data to know a lot about them. Having people collecting and compiling your data might seem scary but it might have been helpful for you in the past. If you have ever been […]
Artikelserie: BI Tools im Vergleich – Tableau
/0 Comments/in Business Analytics, Business Intelligence, Tool Introduction, Uncategorized, Visualization /by Klaudius KostowDies ist ein Artikel der Artikel-Serie “BI Tools im Vergleich – Einführung und Motivation“. Solltet ihr gerade erst eingestiegen sein, dann schaut euch ruhig vorher einmal die einführenden Worte und die Ausführungen zur Datenbasis an. Power BI machte den Auftakt und ihr findet den Artikel hier. Lizenzmodell Tableau stellt seinen Kunden zu allererst vor die […]
Python vs R: Which Language to Choose for Deep Learning?
/1 Comment/in Data Mining, Data Science, Insights, Python, R Statistics /by Deep MoteriaData science is increasingly becoming essential for every business to operate efficiently in this modern world. This influences the processes composed together to obtain the required outputs for clients. While machine learning and deep learning sit at the core of data science, the concepts of deep learning become essential to understand as it can help […]
Looking for the ‘aha moment’: An expert’s insights on process mining
/1 Comment/in Interviews, Process Mining /by SignavioHenny Selig is a specialist in process mining, with significant expertise in the implementation of process mining solutions and supporting customers with process analysis. As a Solution Owner at Signavio, Henny is also well versed in bringing Signavio Process Intelligence online for businesses of all shapes and sizes. In this interview, Henny shares her thoughts […]
How Finance Organizations Are Dealing with The Growing Demand for Instant Response Times
/1 Comment/in Uncategorized /by Edward HuskinThe financial industry is one of the most innovative industries that has evolved at an incredibly fast-paced over the past decade. Finance is a complex industry that requires a delicate balance between optimal convenience and security. With security being the most important aspect, the role of AI has increased in importance and various financial organizations […]
Wie der C++-Programmierer bei der Analyse großer Datenmengen helfen kann
/0 Comments/in Data Mining, Data Science, Data Science News, Education / Certification, Gerneral, Insights, Main Category /by Anastasia StefanukDie Programmiersprache C wurde von Dennis Ritchie in den Bell Labs in einer Zeit (1969-1973) entwickelt, als jeder CPU-Zyklus und jeder Byte Speicher sehr teuer war. Aus diesem Grund wurde C (und später C++) so konzipiert, dass die maximale Leistung der Hardware mit der Sprachkomplexität erzielt werden konnte. Derzeit ist der C++ Programmierer besonders begehrt […]