Illustrative introductions on dimension reduction
"What is your image on dimensions?"
....That might be a cheesy question to ask to reader of Data Science Blog, but most…Spiky cubes, Pac-Man walking, empty M&M's chocolate: curse of dimensionality
"Curse of dimensionality" means the difficulties of machine learning which arise when the dimension of data is higher. In…
Back propagation of LSTM: just get ready for the most tiresome part
First of all, the summary of this article is "please just download my Power Point slides and be patient, following the equations."…
How to develop digital products and solutions for industrial environments?
In this article, we substantiate why Data Science and Engineering should be introduced as new engineering discipline in the Product Lifecycle Management process.
Understanding LSTM forward propagation in two ways
*This article is only for the sake of understanding the equations in the second page of the paper named "LSTM: A Search Space…
Hypothesis Test for real problems
A statistical hypothesis is a belief made about a population parameter. This belief may or might not be right. In other words, hypothesis testing is a proper technique utilized by scientist to support or reject statistical hypotheses. The foremost ideal approach to decide if a statistical hypothesis is correct is examine the whole population.
Must-have Skills to Master Data Science
The need to process a massive amount of data sets is making Data Science the most-demanded job across diverse industry verticals.…
Process Mining mit Celonis - Artikelserie
Insgesamt stellt Celonis ein unabhängiges und leistungsstarkes Process Mining Tool bereit, wobei der Anwender die Wahl zwischen einer on-Premise-Lösung sowie einer Cloud-Lösung hat. Die „prebuild Process-Connectors“ und die vordefinierten Analysen können ein Process Mining Projekt signifikant beschleunigen und somit die Time-to-Value lukrativ verkürzen. Die Analyse Tools sind leicht bedienbar und schaffen dank integrierter Machine Learning Algorithmen Optimierungspotentiale.
AI Voice Assistants are the Next Revolution: How Prepared are You?
According to Jeff Bezos, Amazon CEO, he says we’re already living in the golden era of artificial intelligence as such where the voice assistant flagship already exists, i.e. Alexa.
Test!
Test!
Interesting links
Here are some interesting links for you! Enjoy your stay :)Pages
- @Data Science Blog
- Autor werden!
- Autoren
- Become an Author
- CIO Interviews
- Computational and Data Science
- Coursera Data Science Specialization
- Coursera 用Python玩转数据 Data Processing Using Python
- Data Leader Day 2016 – Rabatt für Data Scientists!
- Data Science
- Data Science Insights
- Data Science Partner
- DATANOMIQ Big Data & Data Science Seminare
- DATANOMIQ Process Mining Workshop
- DATANOMIQ Seminare für Führungskräfte
- DataQuest.io – Interactive Learning
- Datenschutz
- Donation / Spende
- Education / Certification
- Fraunhofer Academy Zertifikatsprogramm »Data Scientist«
- Für Presse / Redakteure
- HARVARD Data Science Certificate Courses
- Home
- Impressum / Imprint
- MapR Big Data Expert
- Masterstudiengang Data Science
- Masterstudiengang Management & Data Science
- MongoDB University Online Courses
- Newsletter
- O’Reilly Video Training – Data Science with R
- Products
- qSkills Workshop: Industrial Security
- Science Digital Intelligence & Marketing Analytics
- Show your Desk!
- Stanford University Online -Statistical Learning
- TU Chemnitz – Masterstudiengang Business Intelligence & Analytics
- TU Dortmund – Datenwissenschaft – Master of Science
- TU Dortmund berufsbegleitendes Zertifikatsstudium
- Weiterbildung mit Hochschulzertifikat Data Science & Business Analytics für Einsteiger
- WWU Münster – Zertifikatsstudiengang “Data Science”
- Zertifikatskurs „Data Science“
- Zertifizierter Business Analyst
Categories
- Apache Spark
- Artificial Intelligence
- Audit Analytics
- Big Data
- Books
- Business Analytics
- Business Intelligence
- Carrier
- Certification / Training
- Cloud
- Connected Car
- Customer Analytics
- Data Engineering
- Data Migration
- Data Mining
- Data Science
- Data Science at the Command Line
- Data Science Hack
- Data Science News
- Data Security
- Data Warehousing
- Database
- Datacenter
- Deep Learning
- Devices
- Education / Certification
- Events
- Excel / Power BI
- Experience
- Gerneral
- GPU-Processing
- Graph Database
- Hacking
- Hadoop
- Hadoop Framework
- Industrie 4.0
- InMemory
- Insights
- Interview mit CIO
- Interviews
- Java
- JavaScript
- Machine Learning
- Main Category
- Manufacturing
- Mathematics
- Mobile Device Management
- Mobile Devices
- Natural Language Processing
- Neo4J
- NoSQL
- Octave
- optimization
- Predictive Analytics
- Process Mining
- Projectmanagement
- Python
- Python
- R Statistics
- Re-Engineering
- Realtime Analytics
- Recommendations
- Scala
- Software Development
- Sponsoring Partner Posts
- SQL
- Statistics
- TensorFlow
- Text Mining
- Tool Introduction
- Tools
- Tutorial
- Uncategorized
- Use Case
- Use Cases
- Visualization
- Web- & App-Tracking
Archive
- September 2020
- August 2020
- July 2020
- June 2020
- May 2020
- April 2020
- March 2020
- February 2020
- January 2020
- December 2019
- November 2019
- October 2019
- September 2019
- August 2019
- July 2019
- June 2019
- May 2019
- April 2019
- March 2019
- February 2019
- January 2019
- December 2018
- November 2018
- October 2018
- September 2018
- August 2018
- July 2018
- June 2018
- May 2018
- April 2018
- March 2018
- February 2018
- January 2018
- December 2017
- November 2017
- October 2017
- September 2017
- August 2017
- July 2017
- June 2017
- May 2017
- April 2017
- March 2017
- February 2017
- January 2017
- December 2016
- November 2016
- October 2016
- September 2016
- August 2016
- July 2016
- June 2016
- May 2016
- April 2016
- March 2016
- February 2016
- January 2016
- December 2015
- November 2015
- October 2015
- September 2015
- August 2015
- July 2015
- June 2015
- May 2015
Entropie – Und andere Maße für Unreinheit in Daten
/6 Comments/in Artificial Intelligence, Business Analytics, Data Mining, Data Science, Data Science Hack, Machine Learning, Python /by Benjamin AunkoferDieser Artikel ist Teil 1 von 4 der Artikelserie Maschinelles Lernen mit Entscheidungsbaumverfahren. Hierarchische Klassifikationsmodelle, zu denen das Entscheidungsbaumverfahren (Decision Tree) zählt, zerlegen eine Datenmenge iterativ oder rekursiv mit dem Ziel, die Zielwerte (Klassen) im Rahmen des Lernens (Trainingsphase des überwachten Lernens) möglichst gut zu bereiningen, also eindeutige Klassenzuordnungen für bestimmte Eigenschaften in den Features […]
What makes a good Data Scientist? Answered by leading Data Officers!
/2 Comments/in Carrier, Education / Certification, Gerneral, Interviews, Main Category /by Benjamin AunkoferWhat makes a good Data Scientist? A question I got asked recently a lot by data science newbies as well as long-established CIOs and my answer ist probably not what you think: In my opinion is a good Data Scientist somebody with, at least, a good knowledge of computer programming, statistics and the ability of understanding […]
Consider Anonymization – Process Mining Rule 3 of 4
/2 Comments/in Audit Analytics, Big Data, Business Analytics, Business Intelligence, Cloud, Data Migration, Data Mining, Data Science, Data Security, Data Warehousing, Main Category, Process Mining /by Anne Rozinat & Christian W. GüntherThis is article no. 3 of the four-part article series Privacy, Security and Ethics in Process Mining. Read this article in German: “Datenschutz, Sicherheit und Ethik beim Process Mining – Regel 3 von 4“ If you have sensitive information in your data set, instead of removing it you can also consider the use of anonymization. When […]
Interview mit Prof. Dr. Kai Uwe Barthel über Data Science mit Deep Learning
/0 Comments/in Artificial Intelligence, Big Data, Data Mining, Data Science, Deep Learning, Experience, Interview mit CIO, Interviews, Machine Learning, Main Category /by Benjamin AunkoferInterview mit Prof. Dr. Barthel, Chief Visionary Officer der Pixolution GmbH in Berlin, über Funktion, Einsatz und Einstieg in künstliche neuronale Netze. Prof. Kai Barthel ist Gründer und CVO der Pixolution GmbH, ein Unternehmen, das Deep Learning dazu einsetzt, Bilder über ihre Pixelinhalte automatisiert verstehen zu können. Darüber hinaus ist Prof. Barthel in der Forschung und Lehre […]
Der Blick für das Wesentliche: Die Merkmalsselektion
/0 Comments/in Big Data, Business Analytics, Data Mining, Data Science, Data Science Hack, Machine Learning, Predictive Analytics, Python, Tool Introduction, Tutorial /by Christoph GreschIn vielen Wissensbasen werden Datensätze durch sehr große Merkmalsräume beschrieben. Während der Generierung einer Wissensbasis wird versucht jedes mögliche Merkmal zu erfassen, um einen Datensatz möglichst genau zu beschreiben. Dabei muss aber nicht jedes Merkmal einen nachhaltigen Wert für das Predictive Modelling darstellen. Ein Klassifikator arbeitet mit reduziertem Merkmalsraum nicht nur schneller, sondern in der […]
Responsible Handling of Data – Process Mining Rule 2 of 4
/1 Comment/in Big Data, Business Analytics, Business Intelligence, Data Mining, Data Science, Data Security, Data Warehousing, Process Mining, Projectmanagement /by Anne Rozinat & Christian W. GüntherThis is article no. 2 of the four-part article series Privacy, Security and Ethics in Process Mining. Read this article in German: “Datenschutz, Sicherheit und Ethik beim Process Mining – Regel 2 von 4“ Like in any other data analysis technique, you must be careful with the data once you have obtained it. In many projects, […]
Five Illusions about Big Data you can’t help but believe in
/0 Comments/in Big Data, Business Analytics, Main Category, Projectmanagement /by Shreya DharBig Data is a smorgasbord of data. Even the marketing world has acknowledged the gravity of Big Data. But alas! Instead of having such a resplendent data power by our side, we are no closer to construct smart marketing decisions than before, when the concept was not well known. So, something is definitely not right, […]
Lernplattform dataX Academy gewinnt Sonderpreis für “Digitale Bildung”
/0 Comments/in Carrier, Certification / Training, Data Science News, Education / Certification, Gerneral, Sponsoring Partner Posts /by dataX AcademySponsored Post Big Data ist die Zukunft, doch den meisten Unternehmen fehlen ausgebildete Datenexperten. Die Berliner Gründer Leo Marose und Stefan Berntheisel haben eine Lernplattform entwickelt, die Datenkompetenz auf eine völlig neue Art und Weise vermitteln soll – interaktiv und am Beispiel realistischer Szenarien. Für ihr Konzept werden sie jetzt vom Bundeswirtschaftsministerium auf der CeBIT […]
Künstliche Intelligenz und Data Science in der Automobilindustrie
/2 Comments/in Artificial Intelligence, Big Data, Business Analytics, Business Intelligence, Cloud, Data Mining, Data Science, Data Security, Insights, Predictive Analytics, Use Cases /by VolkswagenData Science und maschinelles Lernen sind die wesentlichen Technologien für die automatisch lernenden und optimierenden Prozesse und Produkte in der Automobilindustrie der Zukunft. In diesem Beitrag werde die zugrundeliegenden Begriffe Data Science (bzw. Data Analytics) und maschinelles Lernen sowie deren Zusammenhang definiert. Darüber hinaus wird der Begriff Optimizing Analytics definiert und die Rolle der automatischen […]
Clarify Goal of the Analysis – Process Mining Rule 1 of 4
/3 Comments/in Audit Analytics, Business Analytics, Business Intelligence, Data Mining, Data Science, Data Security, Process Mining, Projectmanagement /by Anne Rozinat & Christian W. GüntherThe good news is that in most situations Process Mining does not need to evaluate personal information, because it usually focuses on the internal organizational processes rather than, for example, on customer profiles. Furthermore, you are investigating the overall process patterns.