Illustrative introductions on dimension reduction
"What is your image on dimensions?"
....That might be a cheesy question to ask to reader of Data Science Blog, but most…Spiky cubes, Pac-Man walking, empty M&M's chocolate: curse of dimensionality
"Curse of dimensionality" means the difficulties of machine learning which arise when the dimension of data is higher. In…
Back propagation of LSTM: just get ready for the most tiresome part
First of all, the summary of this article is "please just download my Power Point slides and be patient, following the equations."…
How to develop digital products and solutions for industrial environments?
In this article, we substantiate why Data Science and Engineering should be introduced as new engineering discipline in the Product Lifecycle Management process.
Understanding LSTM forward propagation in two ways
*This article is only for the sake of understanding the equations in the second page of the paper named "LSTM: A Search Space…
Hypothesis Test for real problems
A statistical hypothesis is a belief made about a population parameter. This belief may or might not be right. In other words, hypothesis testing is a proper technique utilized by scientist to support or reject statistical hypotheses. The foremost ideal approach to decide if a statistical hypothesis is correct is examine the whole population.
Must-have Skills to Master Data Science
The need to process a massive amount of data sets is making Data Science the most-demanded job across diverse industry verticals.…
Process Mining mit Celonis - Artikelserie
Insgesamt stellt Celonis ein unabhängiges und leistungsstarkes Process Mining Tool bereit, wobei der Anwender die Wahl zwischen einer on-Premise-Lösung sowie einer Cloud-Lösung hat. Die „prebuild Process-Connectors“ und die vordefinierten Analysen können ein Process Mining Projekt signifikant beschleunigen und somit die Time-to-Value lukrativ verkürzen. Die Analyse Tools sind leicht bedienbar und schaffen dank integrierter Machine Learning Algorithmen Optimierungspotentiale.
AI Voice Assistants are the Next Revolution: How Prepared are You?
According to Jeff Bezos, Amazon CEO, he says we’re already living in the golden era of artificial intelligence as such where the voice assistant flagship already exists, i.e. Alexa.
Test!
Test!
Interesting links
Here are some interesting links for you! Enjoy your stay :)Pages
- @Data Science Blog
- Autor werden!
- Autoren
- Become an Author
- CIO Interviews
- Computational and Data Science
- Coursera Data Science Specialization
- Coursera 用Python玩转数据 Data Processing Using Python
- Data Leader Day 2016 – Rabatt für Data Scientists!
- Data Science
- Data Science Insights
- Data Science Partner
- DATANOMIQ Big Data & Data Science Seminare
- DATANOMIQ Process Mining Workshop
- DATANOMIQ Seminare für Führungskräfte
- DataQuest.io – Interactive Learning
- Datenschutz
- Donation / Spende
- Education / Certification
- Fraunhofer Academy Zertifikatsprogramm »Data Scientist«
- Für Presse / Redakteure
- HARVARD Data Science Certificate Courses
- Home
- Impressum / Imprint
- MapR Big Data Expert
- Masterstudiengang Data Science
- Masterstudiengang Management & Data Science
- MongoDB University Online Courses
- Newsletter
- O’Reilly Video Training – Data Science with R
- Products
- qSkills Workshop: Industrial Security
- Science Digital Intelligence & Marketing Analytics
- Show your Desk!
- Stanford University Online -Statistical Learning
- TU Chemnitz – Masterstudiengang Business Intelligence & Analytics
- TU Dortmund – Datenwissenschaft – Master of Science
- TU Dortmund berufsbegleitendes Zertifikatsstudium
- Weiterbildung mit Hochschulzertifikat Data Science & Business Analytics für Einsteiger
- WWU Münster – Zertifikatsstudiengang “Data Science”
- Zertifikatskurs „Data Science“
- Zertifizierter Business Analyst
Categories
- Apache Spark
- Artificial Intelligence
- Audit Analytics
- Big Data
- Books
- Business Analytics
- Business Intelligence
- Carrier
- Certification / Training
- Cloud
- Connected Car
- Customer Analytics
- Data Engineering
- Data Migration
- Data Mining
- Data Science
- Data Science at the Command Line
- Data Science Hack
- Data Science News
- Data Security
- Data Warehousing
- Database
- Datacenter
- Deep Learning
- Devices
- Education / Certification
- Events
- Excel / Power BI
- Experience
- Gerneral
- GPU-Processing
- Graph Database
- Hacking
- Hadoop
- Hadoop Framework
- Industrie 4.0
- InMemory
- Insights
- Interview mit CIO
- Interviews
- Java
- JavaScript
- Machine Learning
- Main Category
- Manufacturing
- Mathematics
- Mobile Device Management
- Mobile Devices
- Natural Language Processing
- Neo4J
- NoSQL
- Octave
- optimization
- Predictive Analytics
- Process Mining
- Projectmanagement
- Python
- Python
- R Statistics
- Re-Engineering
- Realtime Analytics
- Recommendations
- Scala
- Software Development
- Sponsoring Partner Posts
- SQL
- Statistics
- TensorFlow
- Text Mining
- Tool Introduction
- Tools
- Tutorial
- Uncategorized
- Use Case
- Use Cases
- Visualization
- Web- & App-Tracking
Archive
- September 2020
- August 2020
- July 2020
- June 2020
- May 2020
- April 2020
- March 2020
- February 2020
- January 2020
- December 2019
- November 2019
- October 2019
- September 2019
- August 2019
- July 2019
- June 2019
- May 2019
- April 2019
- March 2019
- February 2019
- January 2019
- December 2018
- November 2018
- October 2018
- September 2018
- August 2018
- July 2018
- June 2018
- May 2018
- April 2018
- March 2018
- February 2018
- January 2018
- December 2017
- November 2017
- October 2017
- September 2017
- August 2017
- July 2017
- June 2017
- May 2017
- April 2017
- March 2017
- February 2017
- January 2017
- December 2016
- November 2016
- October 2016
- September 2016
- August 2016
- July 2016
- June 2016
- May 2016
- April 2016
- March 2016
- February 2016
- January 2016
- December 2015
- November 2015
- October 2015
- September 2015
- August 2015
- July 2015
- June 2015
- May 2015
Entscheidungsbaum-Algorithmus ID3
/1 Comment/in Artificial Intelligence, Data Mining, Data Science, Data Science Hack, Machine Learning, Main Category, Predictive Analytics /by Benjamin AunkoferDieser Artikel ist Teil 2 von 4 der Artikelserie Maschinelles Lernen mit Entscheidungsbaumverfahren. Entscheidungsbäume sind den Ingenieuren bestens bekannt, um Produkte hierarchisch zu zerlegen und um Verfahrensanweisungen zu erstellen. Die Data Scientists möchten ebenfalls Verfahrensanweisungen erstellen, jedoch automatisiert aus den Daten heraus. Auf diese Weise angewendet, sind Entscheidungsbäume eine Form des maschinellen Lernens: Die Maschine […]
Ways AI & ML Are Changing How We Live
/3 Comments/in Artificial Intelligence, Big Data, Business Analytics, Business Intelligence, Cloud, Data Science, Deep Learning, Machine Learning, Main Category, Predictive Analytics, Use Cases /by Philip PileticFrom Amazon’s Alexa, a personal assistant that can do anything from making your to-do list to giving a wide range of real-time information about the world around you, to Google’s DeepMind that has very recently made headlines for possibly being able to predict the future, AI and ML are the biggest development in human history. […]
Höhere Mathematik als Grundvoraussetzung für Data Scientists
/14 Comments/in Carrier, Data Science News, Education / Certification, Gerneral /by Wolfgang Ecker-LalaData Scientist ist der „sexiest Job“ auf der Welt. Data Science ist die neu erfundene Wissenschaft, die viele unserer Probleme lösen und uns die Zukunft angenehmer gestalten wird. Aber was genau ist Data Science? Was ist ein Datascientist und was macht er? Welche Ausbildung benötigt man, um ein Data Scientist zu sein? Muss er tiefe […]
Überwachtes vs unüberwachtes maschinelles Lernen
/6 Comments/in Artificial Intelligence, Big Data, Business Analytics, Business Intelligence, Data Mining, Data Science, Machine Learning, Main Category /by Benjamin AunkoferDies ist Artikel 1 von 4 aus der Artikelserie – Was ist eigentlich Machine Learning? Der Unterschied zwischen überwachten und unüberwachtem Lernen ist für Einsteiger in das Gebiet des maschinellen Lernens recht verwirrend. Ich halte die Bezeichnung “überwacht” und “unüberwacht” auch gar nicht für besonders gut, denn eigentlich wird jeder Algorithmus (zumindest anfangs) vom Menschen […]
Establish a Collaborative Culture – Process Mining Rule 4 of 4
/1 Comment/in Audit Analytics, Business Analytics, Business Intelligence, Data Mining, Data Science, Data Security, Experience, Main Category, Process Mining, Projectmanagement /by Anne Rozinat & Christian W. GüntherThis is article no. 4 of the four-part article series Privacy, Security and Ethics in Process Mining. Read this article in German: “Datenschutz, Sicherheit und Ethik beim Process Mining – Regel 4 von 4“ Perhaps the most important ingredient in creating a responsible process mining environment is to establish a collaborative culture within your organization. Process […]
Was ist eigentlich Machine Learning? Artikelserie
/5 Comments/in Artificial Intelligence, Business Analytics, Business Intelligence, Data Mining, Data Science, Deep Learning, Machine Learning, Main Category /by Benjamin AunkoferMachine Learning ist Technik und Mythos zugleich. Nachfolgend der Versuch einer verständlichen Erklärung, mit folgenden Artikeln: Unüberwachtes vs überwachtes Lernen Regression vs Klassifikation Parametrisierte vs nicht-parametrisierte Lernenverfahren Online- vs Offline-Lernen Machine Learning ist nicht neu, aber innovativ! Machine Learning oder maschinelles Lernen ist eine Bezeichnung, die dank industrieller Trends wie der Industrie 4.0, Smart Grid […]
Geht mit Künstlicher Intelligenz nur „Malen nach Zahlen“?
/0 Comments/in Artificial Intelligence, Big Data, Business Analytics, Data Mining, Data Science, Data Science News, Deep Learning, Machine Learning, Predictive Analytics, Projectmanagement /by Conny DethloffMit diesem Beitrag möchte ich darlegen, welche Grenzen uns in komplexen Umfeldern im Kontext Steuerung und Regelung auferlegt sind. Auf dieser Basis strebe ich dann nachgelagert eine Differenzierung in Bezug des Einsatzes von Data Science und Big Data, ab sofort mit Big Data Analytics bezeichnet, an. Aus meiner Sicht wird oft zu unreflektiert über Data […]
Unsupervised Learning in R: K-Means Clustering
/0 Comments/in Data Mining, Data Science, Machine Learning, R Statistics, Statistics, Tutorial /by Markus LangDie Clusteranalyse ist ein gruppenbildendes Verfahren, mit dem Objekte Gruppen – sogenannten Clustern zuordnet werden. Die dem Cluster zugeordneten Objekte sollen möglichst homogen sein, wohingegen die Objekte, die unterschiedlichen Clustern zugeordnet werden möglichst heterogen sein sollen. Dieses Verfahren wird z.B. im Marketing bei der Zielgruppensegmentierung, um Angebote entsprechend anzupassen oder im User Experience Bereich zur […]
In eigener Sache: Der Data Leader Day 2017
/0 Comments/in Data Science News, Use Cases /by eventsDer Data Science Blog ist Co-Organisator des Data Leader Day 2017 Der Data Leader Day am 09.11.2017 ist ein Event für Unternehmen aus dem deutschsprachigen Raum, das sich mit den Möglichkeiten und Lösungen rund um die Datennutzung zur Geschäftsoptimierung oder der Bildung von neuen Geschäftsmodellen beschäftigt. Zu den Speakern zählen CIOs, CDOs und Chief Data Scientists aus der ganzen DACH-Region. […]
Artificial Intelligence and Data Science in the Automotive Industry
/8 Comments/in Artificial Intelligence, Big Data, Business Analytics, Business Intelligence, Cloud, Connected Car, Data Science, Machine Learning, Main Category, Manufacturing, Projectmanagement, Use Case, Use Cases /by VolkswagenData science and machine learning are the key technologies when it comes to the processes and products with automatic learning and optimization to be used in the automotive industry of the future. This article defines the terms “data science” (also referred to as “data analytics”) and “machine learning” and how they are related.