Posts

Interview: Data Science in der Finanzbranche

Interview mit Torsten Nahm von der DKB (Deutsche Kreditbank AG) über Data Science in der Finanzbranche

Torsten Nahm ist Head of Data Science bei der DKB (Deutsche Kreditbank AG) in Berlin. Er hat Mathematik in Bonn mit einem Schwerpunkt auf Statistik und numerischen Methoden studiert. Er war zuvor u.a. als Berater bei KPMG und OliverWyman tätig sowie bei dem FinTech Funding Circle, wo er das Risikomanagement für die kontinentaleuropäischen Märkte geleitet hat.

Hallo Torsten, wie bist du zu deinem aktuellen Job bei der DKB gekommen?

Die Themen Künstliche Intelligenz und maschinelles Lernen haben mich schon immer fasziniert. Den Begriff „Data Science“ gibt es ja noch gar nicht so lange. In meinem Studium hieß das „statistisches Lernen“, aber im Grunde ging es um das gleiche Thema: dass ein Algorithmus Muster in den Daten erkennt und dann selbstständig Entscheidungen treffen kann.

Im Rahmen meiner Tätigkeit als Berater für verschiedene Unternehmen und Banken ist mir klargeworden, an wie vielen Stellen man mit smarten Algorithmen ansetzen kann, um Prozesse und Produkte zu verbessern, Risiken zu reduzieren und das Kundenerlebnis zu verbessern. Als die DKB jemanden gesucht hat, um dort den Bereich Data Science weiterzuentwickeln, fand ich das eine äußerst spannende Gelegenheit. Die DKB bietet mit über 4 Millionen Kunden und einem auf Nachhaltigkeit fokussierten Geschäftsmodell m.E. ideale Möglichkeiten für anspruchsvolle aber auch verantwortungsvolle Data Science.

Du hast viel Erfahrung in Data Science und im Risk Management sowohl in der Banken- als auch in der Versicherungsbranche. Welche Rolle siehst du für Big Data Analytics in der Finanz- und Versicherungsbranche?

Banken und Versicherungen waren mit die ersten Branchen, die im großen Stil Computer eingesetzt haben. Das ist einfach ein unglaublich datengetriebenes Geschäft. Entsprechend haben komplexe Analysemethoden und auch Big Data von Anfang an eine große Rolle gespielt – und die Bedeutung nimmt immer weiter zu. Technologie hilft aber vor allem dabei Prozesse und Produkte für die Kundinnen und Kunden zu vereinfachen und Banking als ein intuitives, smartes Erlebnis zu gestalten – Stichwort „Die Bank in der Hosentasche“. Hier setzen wir auf einen starken Kundenfokus und wollen die kommenden Jahre als Bank deutlich wachsen.

Kommen die Bestrebungen hin zur Digitalisierung und Nutzung von Big Data gerade eher von oben aus dem Vorstand oder aus der Unternehmensmitte, also aus den Fachbereichen, heraus?

Das ergänzt sich idealerweise. Unser Vorstand hat sich einer starken Wachstumsstrategie verschrieben, die auf Automatisierung und datengetriebenen Prozessen beruht. Gleichzeitig sind wir in Dialog mit vielen Bereichen der Bank, die uns fragen, wie sie ihre Produkte und Prozesse intelligenter und persönlicher gestalten können.

Was ist organisatorische Best Practice? Finden die Analysen nur in deiner Abteilung statt oder auch in den Fachbereichen?

Ich bin ein starker Verfechter eines „Hub-and-Spoke“-Modells, d.h. eines starken zentralen Bereichs zusammen mit dezentralen Data-Science-Teams in den einzelnen Fachbereichen. Wir als zentraler Bereich erschließen dabei neue Technologien (wie z.B. die Cloud-Nutzung oder NLP-Modelle) und arbeiten dabei eng mit den dezentralen Teams zusammen. Diese wiederum haben den Vorteil, dass sie direkt an den jeweiligen Kollegen, Daten und Anwendern dran sind.

Wie kann man sich die Arbeit bei euch in den Projekten vorstellen? Was für Profile – neben dem Data Scientist – sind beteiligt?

Inzwischen hat im Bereich der Data Science eine deutliche Spezialisierung stattgefunden. Wir unterscheiden grob zwischen Machine Learning Scientists, Data Engineers und Data Analysts. Die ML Scientists bauen die eigentlichen Modelle, die Date Engineers führen die Daten zusammen und bereiten diese auf und die Data Analysts untersuchen z.B. Trends, Auffälligkeiten oder gehen Fehlern in den Modellen auf den Grund. Dazu kommen noch unsere DevOps Engineers, die die Modelle in die Produktion überführen und dort betreuen. Und natürlich haben wir in jedem Projekt noch die fachlichen Stakeholder, die mit uns die Projektziele festlegen und von fachlicher Seite unterstützen.

Und zur technischen Organisation, setzt ihr auf On-Premise oder auf Cloud-Lösungen?

Unsere komplette Data-Science-Arbeitsumgebung liegt in der Cloud. Das vereinfacht die gemeinsame Arbeit enorm, da wir auch sehr große Datenmengen z.B. direkt über S3 gemeinsam bearbeiten können. Und natürlich profitieren wir auch von der großen Flexibilität der Cloud. Wir müssen also z.B. kein Spark-Cluster oder leistungsfähige Multi-GPU-Instanzen on premise vorhalten, sondern nutzen und zahlen sie nur, wenn wir sie brauchen.

Gibt es Stand heute bereits Big Data Projekte, die die Prototypenphase hinter sich gelassen haben und nun produktiv umgesetzt werden?

Ja, wir haben bereits mehrere Produkte, die die Proof-of-Concept-Phase erfolgreich hinter sich gelassen haben und nun in die Produktion umgesetzt werden. U.a. geht es dabei um die Automatisierung von Backend-Prozessen auf Basis einer automatischen Dokumentenerfassung und -interpretation, die Erkennung von Kundenanliegen und die Vorhersage von Prozesszeiten.

In wie weit werden unstrukturierte Daten in die Analysen einbezogen?

Das hängt ganz vom jeweiligen Produkt ab. Tatsächlich spielen in den meisten unserer Projekte unstrukturierte Daten eine große Rolle. Das macht die Themen natürlich anspruchsvoll aber auch besonders spannend. Hier ist dann oft Deep Learning die Methode der Wahl.

Wie stark setzt ihr auf externe Vendors? Und wie viel baut ihr selbst?

Wenn wir ein neues Projekt starten, schauen wir uns immer an, was für Lösungen dafür schon existieren. Bei vielen Themen gibt es gute etablierte Lösungen und Standardtechnologien – man muss nur an OCR denken. Kommerzielle Tools haben wir aber im Ergebnis noch fast gar nicht eingesetzt. In vielen Bereichen ist das Open-Source-Ökosystem am weitesten fortgeschritten. Gerade bei NLP zum Beispiel entwickelt sich der Forschungsstand rasend. Die besten Modelle werden dann von Facebook, Google etc. kostenlos veröffentlicht (z.B. BERT und Konsorten), und die Vendors von kommerziellen Lösungen sind da Jahre hinter dem Stand der Technik.

Letzte Frage: Wie hat sich die Coronakrise auf deine Tätigkeit ausgewirkt?

In der täglichen Arbeit eigentlich fast gar nicht. Alle unsere Daten sind ja per Voraussetzung digital verfügbar und unsere Cloudumgebung genauso gut aus dem Home-Office nutzbar. Aber das Brainstorming, gerade bei komplexen Fragestellungen des Feature Engineering und Modellarchitekturen, finde ich per Videocall dann doch deutlich zäher als vor Ort am Whiteboard. Insofern sind wir froh, dass wir uns inzwischen auch wieder selektiv in unseren Büros treffen können. Insgesamt hat die DKB aber schon vor Corona auf unternehmensweites Flexwork gesetzt und bietet dadurch per se flexible Arbeitsumgebungen über die IT-Bereiche hinaus.

AI Experts: The Next Frontier in AI After the 2020 Job Crisis

Beware the perils of AI boom!

Isn’t this something that should ring alarm bells to upgrade your AI skills.

Artificial intelligence has grown smarter putting people in awe with a question, “Is my job safe?” Should we be afraid? It is but a simple question with a rather perplexing answer, I’m not skilled ready. Your view will depend on whether you’ll be able to develop skills that will surpass the redundant skills you possess today.No doubt, the AI domain is thriving and humans are scared. 

Even organizations such as McKinsey predicts the doom and gloom scenario where one-third of the workers’ jobs will be taken over due to automation by 2030.

In the next decade, AI and automation could banish 54 million Americans out of their workspace. With rapid technological growth, machines are now outperforming the number of tasks traditionally done by manpower.

What’s more?

  • Walmart has the fastest automated truck unloader that helps scan unloaded items on a priority basis. 
  • McDonald replaces drive-thru workers with order-taking AI and cashiers along with self-checkout kiosks. 
  • While farms in California hire robots to harvest lettuce. 

Fear facts appearing real

Near about 670,000 U.S. jobs were replaced between 1990 to 2007, mostly in the manufacturing sector. But this trend is already accelerating as it advances in mobile technology, data transfer, AI, and computing speed. 

On its face, jobs that involve physical tasks in predictable environments will be at higher risk. For instance, The Palm Beach County Court recently made use of four robots (Rosie Tobor, Kitt Robbie, Speedy, and Wally Bishop) to read out the court filings, input data into the case management system, and fill out docket sheets. Also, at certain places in China, waiters were being replaced with robots.

On the contrary, jobs that include creative thinking, social interaction, and managing people will barely involve automation.

Though you think your job is safe, it isn’t. 

History has warned us of the apocalyptic happenings about technology replacing our jobs. There has always been a difficult transition to jobs that require newer skillsets. McKinsey, in its study, mentioned 8-9% of 2030’s labor demand will be in newer job roles that did not exist before. 

AI to take over the world – or is it? 

There is still but a grim prognostic about the robot apocalypse. But it’s not the time to celebrate.

As warned by Russian president Vladimir Putin, “The nation that leads in AI will be the ruler of the world.”

Artificial intelligence is yet to replace the human workforce, but it is still considered an invaluable tool today.

According to Forrester, firms will now address the pragmatic side of AI about having a better understanding of the challenges faced, to embrace the idea which is, no pain means no AI gain. The AI reality is here, right now. Organizations have now realized what they can do and what they cannot. Their focus is now projected toward taking proactive measures to produce more AI talents like AI experts and AI specialists, etc. 

Is there a timeframe where AI will overtake the human race?

It is only a matter of time when artificial intelligence will become smarter than its human creators.

Experts have already started to build a world that is brimming with AI. But sadly, in the present, most individuals are yet to know what AI even is. By the next decade, AI is predicted to outperform human in multiple activities such as,

  • Translating languages – 2024
  • Writing high-school essays – 2025
  • Driving a truck – 2027
  • Working in the retail sector – 2031
  • Or writing a best-selling book – 2049
  • Work as a surgeon – 2053

Beyond the shadow of a doubt, as artificial intelligence continues to grow, some experts say we’ll eventually hit the plateau. On the research side, there will be a snowball of AI challenges. Therefore, to tackle these challenges, the demand for AI experts will dramatically upsurge.

In addition to the dearth of AI talent, the transition may bring new challenges both for policymakers as well as AI professionals. 

“High-level machine intelligence will start performing any task better than the humans by 2060, and will take away human jobs by 2136, predicted a study done by multiple researchers from Yale and Oxford University.”

To stay prepared for the upcoming challenges, upskilling is the right way to reshape and overcome the AI jobs crisis. 

Upskilling in AI is the new mandate

Notably, as AI takes on to become the next technology revolution, certifications in artificial intelligence will keep you one step ahead. 

The advent of artificial intelligence has advanced at a level where there is a dire need for AI engineers. Now is the right time to pursue a career in artificial intelligence.

The current job market is flooded with multiple AI career options, but there’s a significant dearth of talent in the AI field. Professionals like software engineers have an upper hand in the AI industry. Additional certification programs have the capability of boosting the credibility of such individuals. 

Just like any other technology predictions, it’s an ideal decision to take up AI certifications. Staying up-to-date will prevent you from unnecessary panic – where AI could help you and not hurt you.

An economist Yale Brozen from the University of Chicago found out about technology destroying approximately 12 million jobs in the 1950s. But consecutively it also created over 20 million jobs as vast productivity leading toward the demand for more workers to keep up the pace with the rising demand.

Do you still need a reason not to adopt AI?

The AI catastrophe that dooms us is a threat to humans today. The pronouncement has retreated into a grim future where ignorance is not the solution. 

The pervasive answer is, only individuals that can make progress in their AI career will make it through the job crisis. 

Do you think your job is safe? Think again!

Essential Tips To Know In Order To Get Hired As A Data Scientist

In today’s day and age, information is a significant asset of any company. Thanks to technology, companies receive loads of data on a daily basis. It takes time and skill to filter out and sift through all the information in order to determine which areas are useful for the company. This is where your job as a data scientist, also referred to as a data analyst, comes in.

If you’ve long been wanting to work as a data scientist, here are some tips you can follow:

  1. Know What A Data Scientist Really Does

When you wish to be hired as a data scientist, you have to know what the job entails. More than just the job title, you also have to be aware of the day-to-day operations in the workplace. Because data is overflowing, it’s the job of a data scientist to analyze data and use their technical skills to solve problems relating to the data presented. When there aren’t any problems found, they also strive to find possible problems.

As a data scientist, you get to enjoy numerous specializations in your job. Xcede data scientist jobs, for instance, have other responsibilities that can include working as a mathematician, and even as statistics and economics experts. To be hired as a data scientist, you must first be familiar with the ins and outs of the job.

  1. Know The Basic Qualifications

Before you even apply for entry-level data scientist jobs, you also have to be aware of its basic qualifications. If you’ve completed a bachelor’s degree or even a master’s degree in data science or data analysis, then you’re a likely candidate for the job.

But if you don’t have this degree, don’t be dismayed. There are still related courses that can land you the job. Some of these include having a background in Mathematics, Economics, Finance, and Statistics.

Additional basic academic qualifications that you need in order to be hired as a data scientist include:

  • Bachelor’s degree in any of the related fields as mentioned above
  • Master’s degree in any of the fields related to data, mathematics, statistics, and economics
  • At least one to two years of experience in a related field before fully applying as a data scientist
  1. Obtain Further Studies And Experience

While information is an asset that’s highly in-demand today, it doesn’t mean that you’re going to land a job right after your first interview. Especially if you’re a fresh graduate, it’s highly advised that you work in a job that’s related to the course you’ve just finished. In most cases, prior experience is needed before you can get a job in data science. For instance, if you’ve graduated from a Mathematics course, work in this field first.

A critical piece of advice you should remember is that the data science industry is a highly competitive one. While you can successfully find entry-level data science jobs, others might be looking for additional qualifications. In this case, grab the opportunity to further your knowledge and studies, whether that’s getting additional certifications, continuing your education to obtain a higher degree, or familiarizing yourself with the different software and skills needed for the job. Moreover, make it a point to attend training programs as well as seminars relating to data science. Doing this will increase your chances of getting hired.

  1. Know The Basic Skills Needed

More than just your educational attainment, employers are also looking for this basic set of skills:

  • Mathematical Capabilities: As a data scientist, you will be facing a lot of data and statistics, but not all of them will be relevant. In their raw form, it’s up to you to process and study the data deeper so these statistics can be arranged and translated into useful information.
  • Data Management and Manipulation: This means having basic knowledge on data management software in order to keep up with the times, as well as analyze, arrange, and interpret data in a more efficient and timely manner.
  • Programming: This is an integral part of data science. Hence, you must also possess the basic skills involving primary programming languages, such as Java and C++. This is necessary since data analysis tools that require knowledge in computer science and programming will be used to analyze and process the data that you’re presented with. This is where your expertise in programming can come in handy.

Possessing these skills can give you an edge over other applicants, especially if you’re familiar with the software a particular company is using.

Conclusion

Applying as a data scientist or data analyst is not entirely different from when you’re applying to other jobs. It may sound more technical, but the principles are still the same: you need to first understand your job description, responsibilities, and the basic skills and qualifications needed in order to be efficient in the workplace. You can also increase your chances of getting hired by enhancing your credentials and certifications through further studies. Take a masters’ degree, if necessary. These tips, along with patience and determination, can help kickstart your career as a data scientist.

Closing the AI-skills gap with Upskilling

Closing the AI-skills gap with Upskilling

Artificial Intelligent or as it is fancily referred as AI, has garnered huge popularity worldwide.  And given the career prospects it has, it definitely should. Almost everyone interested in technology sector has them rushing towards it, especially young and motivated fresh computer science graduates. Compared to other IT-related jobs AI pays way higher salary and have opportunities. According to a Glassdoor report, Data Scientist, one of the many related jobs, is the number one job with good salary, job openings and more. AI-related jobs include Data Scientists, Analysts, Machine Learning Engineer, NLP experts etc.

AI has found applications in almost every industry and thus it has picked up demand. Home assistants – Siri, Ok Google, Amazon Echo — chatbots, and more some of the popular applications of AI.

Increasing adoption of AI across Industry

The advantages of AI like increased productivity has increased its adoption among companies. According to Gartner, 37 percent of enterprise currently use AI in one way or the other. In fact, in the last four year adoption of AI technologies among companies has increased by 270 percent. In telecommunications, for instance, 52 percent of companies have chatbots deployed for better and smoother customer experience. Now, about 49 percent of businesses are now on their way to alter business models to integrate and adopt AI-driven processes. Further, industry leaders have gone beyond and voiced their concerns about companies that are lagging in AI adoption.

Unfortunately, it has been extremely difficult for employers to find right skilled or qualified candidates for AI-related positions. A reports suggests that there are total 300,000 AI professionals are available worldwide, while there’s demand for millions. In a recent survey conducted by Ernst & Young, 51 percent AI professionals told that lack of talent was the biggest impediment in AI adoption.

Further, O’Reilly, in 2018 conducted a survey, which found the lack of AI skills, among other things, was the major reason that was holding companies back from implementing AI.
The major reason for this is the lack of skills among people who aspire to get into AI-related jobs. According to a report, there demand for millions for jobs in AI. However, only a handful of qualified people are available.

Bridging the skill gap in AI-related jobs

Top companies and government around the world have taken up initiatives to close this gap. Google and Amazon, for instance, have dedicated facilities which trains in AI skills.  Google’s Brain Toronto is a dedicated facility to expand their talent in AI.  Similarly, Amazon has facility near University of Cambridge which is dedicated to AI. Most companies either already have a facility or are in the process of setting up one.

In addition to this, governments around the world are also taking initiatives to address the skill gap. For instance, government across the world are pushing towards AI advancement and are develop collaborative plans which aims at delivering more AI skilled professionals. Recently, the white house launched ai.gov which is further helping to promote AI in the US. The website will offer updates related to AI projects across different sectors.

Other than these, companies have taken this upon themselves to reskills their employees and prepare them for future roles. According to a report from Towards Data Science, about 63 percent of companies have in-house training programs to train employees in AI-related skills.

Overall, though there is demand for AI professionals, lack of skilled talent is a major problem.

Roles in Artificial Intelligence
Artificial Intelligence is the most dominant role for which companies hire across artificial Intelligence. Other than that, following are some of the popular roles:

  1. Machine learning Engineer: These are the people who make machines learn with complex algorithms. On advance level, Machine learning engineers are required to have good knowledge of computer vision. According to Indeed, in the last year, demand for Machine Learning Engineer has grown by 344 percent.
  2. NLP Experts: These experts are equipped with the understanding of making machines computer understand human language. Their expertise includes knowledge of how machines understand human language. Text-to-speech technologies are the common areas which require NLP experts. Demand for engineers who can program computers to understand human speech is growing continuously. It was the fast growing skills in Upwork’s list of in-demand freelancing skills. In Q4, 2016, it had grown 200 percent and since then has been on continuously growing.
  3. Big Data Engineers: This is majorly an analytics role. These gather huge amount of data available from sources and analyze it to derive insights and understand patter, which may be further used for machine learning, prediction modelling, natural language processing. In Mckinsey annual report 2018, it had reported that there was shortage of 190,000 big data professionals in the US alone.

Other roles like Data Scientists, Analysts, and more also in great demand. Then, again due to insufficient talent in the market, companies are struggling to hire for these roles.

Self-learning and upskilling
Artificial Intelligence is a continuously growing field and it has been advancing at a very fast pace, and it makes extremely difficult to keep up with in-demand skills. Hence, it is imperative to keep yourself up with demand of the industry, or it is just a matter of time before one becomes redundant.

On an individual level, learning new skills is necessary. One has to be agile and keep learning, and be ready to adapt new technologies. For this, AI training programs and certifications are ideal.  There are numerous AI programs which individuals can take to further learn new skills. AI certifications can immensely boost career opportunities. Certification programs offer a structured approach to learning which benefits in learning mostly practical and executional skills while keeping fluff away. It is more hands-on. Plus, certifications programs qualify only when one has passed practical test which is very advantageous in tech. AI certifications like AIE (Artificial Intelligence Engineer) are quite popular.

Online learning platforms also offer good a resource to learn artificial intelligence. Most schools haven’t yet adapted their curriculum to skill for AI, while most universities and grad schools are in their way to do so. In the meantime, online learning platforms offer a good way to learn AI skills, where one can start from basic and reach to advance skills.

Business Intelligence Organizations

I am often asked how the Business Intelligence department should be set up and how it should interact and collaborate with other departments. First and foremost: There is no magic recipe here, but every company must find the right organization for itself.

Before we can talk about organization of BI, we need to have a clear definition of roles for team members within a BI department.

A Data Engineer (also Database Developer) uses databases to save structured, semi-structured and unstructured data. He or she is responsible for data cleaning, data availability, data models and also for the database performance. Furthermore, a good Data Engineer has at least basic knowledge about data security and data privacy. A Data Engineer uses SQL and NoSQL-Technologies.

A Data Analyst (also BI Analyst or BI Consultant) uses the data delivered by the Data Engineer to create or adjust data models and implementing business logic in those data models and BI dashboards. He or she needs to understand the needs of the business. This job requires good communication and consulting skills as well as good developing skills in SQL and BI Tools such like MS Power BI, Tableau or Qlik.

A Business Analyst (also Business Data Analyst) is a person form any business department who has basic knowledge in data analysis. He or she has good knowledge in MS Excel and at least basic knowledge in data analysis and BI Tools. A Business Analyst will not create data models in databases but uses existing data models to create dashboards or to adjust existing data analysis applications. Good Business Analyst have SQL Skills.

A Data Scientist is a Data Analyst with extended skills in statistics and machine learning. He or she can use very specific tools and analytical methods for finding pattern in unknow or big data (Data Mining) or to predict events based on pattern calculated by using historized data (Predictive Analytics). Data Scientists work mostly with Python or R programming.

Organization Type 1 – Central Approach (Data Lab)

The first type of organization is the data lab approach. This organization form is easy to manage because it’s focused and therefore clear in terms of budgeting. The data delivery is done centrally by experts and their method and technology knowledge. Consequently, the quality expectation of data delivery and data analysis as well as the whole development process is highest here. Also the data governance is simple and the responsibilities clearly adjustable. Not to be underestimated is the aspect of recruiting, because new employees and qualified applicants like to join a central team of experts.

However, this form of organization requires that the company has the right working attitude, especially in the business intelligence department. A centralized business intelligence department acts as a shared service. Accordingly, customer-oriented thinking becomes a prerequisite for the company’s success – and customers here are the other departments that need access to the capacities of those centralized data experts. Communication boundaries must be overcome and ways of simple and effective communication must be found.

Organization Type 2 – Stakeholder Focus Approach

Other companies want to shift more responsibility for data governance, and especially data use and analytics, to those departments where data plays a key role right now. A central business intelligence department manages its own projects, which have a meaning for the entire company. The specialist departments, which have a special need for data analysis, have their own data experts who carry out critical projects for the specialist department. The central Business Intelligence department does not only provide the technical delivery of data, but also through methodical consulting. Although most of the responsibility lies with the Business Intelligence department, some other data-focused departments are at least co-responsible.

The advantage is obvious: There are special data experts who work deeper in the actual departments and feel more connected and responsible to them. The technical-business focus lies on pain points of the company.

However, this form of Ogranization also has decisive disadvantages: The danger of developing isolated solutions that are so special in some specific areas that they will not really work company-wide increases. Typically the company has to deal with asymmetrical growth of data analytics
know-how. Managing data governance is more complex and recruitment is becoming more difficult as the business intelligence department is weakened and smaller, and data professionals for other departments need to have more business focus, which means they are looking for more specialized profiles.

Organization Type 3 – Decentral Approach

Some companies are also taking a more extreme approach in the other direction. The Business Intelligence department now has only Data Engineers building and maintaining the data warehouse or data lake. As a result, the central department only provides data; it is used and analyzed in all other departments, specifically for the respective applications.

The advantage lies in the personal responsibility of the respective departments as „pain points“ of the company are in focus in belief that business departments know their problems and solutions better than any other department does. Highly specialized data experts can understand colleagues of their own department well and there is no no shared service mindset neccessary, except for the data delivery.

Of course, this organizational form has clear disadvantages since many isolated solutions are unavoidable and the development process of each data-driven solution will be inefficient. These insular solutions may work with luck for your own department, but not for the whole company. There is no one single source of truth. The recruiting process is more difficult as it requires more specialized data experts with more business background. We have to expect an asymmetrical growth of data analytics know-how and a difficult data governance.

 

Interview – Künstliche Intelligenz im Unternehmen & der Mangel an IT-Fachkräften

Interview mit Sebastian van der Meer über den Einsatz von künstlicher Intelligenz im Unternehmen und dem Mangel an IT-Fachkräften

Sebastian van der Meer

Sebastian van der Meer ist Managing Partner der lexoro Gruppe, einem Technologie- und Beratungsunternehmen in den Zukunftsmärkten: Data-Science, Machine-Learning, Big-Data, Robotics und DevOps. Das Leistungsspektrum ist vielschichtig. Sie vermitteln Top-Experten an Unternehmen (Perm & IT-Contracting), arbeiten mit eigenen Teams für innovative Unternehmen an spannenden IT-Projekten und entwickeln zugleich eigene Produkte und Start-Ups in Zukunftsmärkten. Dabei immer im Mittelpunkt: Menschen und deren Verbindung mit exzellenter Technologiekompetenz.

Data Science Blog: Herr van der Meer, wenn man Google News mit den richtigen Stichwörtern abruft, scheinen die Themen Künstliche Intelligenz, Data Science und Machine Learning bei vielen Unternehmen bereits angekommen zu sein – Ist das so?

Das ist eine sehr gute Frage! Weltweit, vor allem in der USA und China, sind diese bereits „angekommen“, wenn man es so formulieren kann. Allerdings sind wir in Europa leider weit hinterher. Dazu gibt es ja bereits viele Studien und Umfragen, die dies beweisen. Vereinzelt gibt es große mittelständische- und Konzernunternehmen in Deutschland, die bereits eigene Einheiten und Teams in diesen Bereich und auch neue Geschäftsbereiche dadurch ermöglicht haben. Hier gibt es bereits tolle Beispiele, was mit K.I. erreichbar ist. Vor allem die Branchen Versicherungs- und Finanzdienstleistungen, Pharma/Life Science und Automotive sind den anderen in Deutschland etwas voraus.

Data Science Blog: Wird das Thema Data Science oder Machine Learning früher oder später für jedes Unternehmen relevant sein? Muss jedes Unternehmen sich mit K.I. befassen?

Data Science, Machine Learning, künstliche Intelligenz – das sind mehr als bloße Hype-Begriffe und entfernte Zukunftsmusik! Wir stecken mitten in massiven strukturellen Veränderungen. Die Digitalisierungswelle der vergangenen Jahre war nur der Anfang. Jede Branche ist betroffen. Schnell kann ein Gefühl von Bedrohung und Angst vor dem Unbekannten aufkommen. Tatsächlich liegen aber nie zuvor dagewesene Chancen und Potentiale vor unseren Füßen. Die Herausforderung ist es diese zu erkennen und dann die notwendigen Veränderungen umzusetzen. Daher sind wir der Meinung, dass jedes Unternehmen sich damit befassen muss und soll, wenn es in der Zukunft noch existieren will.

Wir unterstützen Unternehmen dabei ihre individuellen Herausforderungen, Hürden und Möglichkeiten zu identifizieren, die der große Hype „künstliche Intelligenz“ mit sich bringt. Hier geht es darum genau zu definieren, welche KI-Optionen überhaupt für das Unternehmen existieren. Mit Use-Cases zeigen wir, welchen Mehrwert sie dem Unternehmen bieten. Wenn die K.I. Strategie festgelegt ist, unterstützen wir bei der technischen Implementierung und definieren und rekrutieren bei Bedarf die relevanten Mitarbeiter.

Data Science Blog: Die Politik strebt stets nach Vollbeschäftigung. Die K.I. scheint diesem Leitziel entgegen gerichtet zu sein. Glauben Sie hier werden vor allem Ängste geschürt oder sind die Auswirkungen auf den Arbeitsmarkt durch das Vordringen von K.I. wirklich so gravierend?

Zu diesem Thema gibt es bereits viele Meinungen und Studien, die veröffentlicht worden sind. Eine interessante Studie hat vorhergesagt, dass in den nächsten 5 Jahren, weltweit 1.3 Millionen Stellen/Berufe durch K.I. wegfallen werden. Dafür aber in den gleichen Zeitnahmen 1.7 Millionen neue Stellen und Berufe entstehen werden. Hier gehen die Meinungen aber ganz klar auseinander. Die Einen sehen die Chancen, die Möglichkeiten und die Anderen sehen die Angst oder das Ungewisse. Eins steht fest, der Arbeitsmarkt wird sich in den nächsten 5 bis 10 Jahren komplett verändern und anpassen. Viele Berufe werden wegfallen, dafür werden aber viele neue Berufe hinzukommen. Vor einigen Jahren gab es noch keinen „Data Scientist“ Beruf und jetzt ist es einer der best bezahltesten IT Stellen in Unternehmen. Allein das zeigt doch auch, welche Chancen es in der Zukunft geben wird.

Data Science Blog: Wie sieht der Arbeitsmarkt in den Bereichen Data Science, Machine Learning und Künstliche Intelligenz aus?

Der Markt ist sehr intransparent. Jeder definiert einen Data Scientist anders. Zudem wird sich der Beruf und seine Anforderungen aufgrund des technischen Fortschritts stetig verändern. Der heutige Data Scientist wird sicher nicht der gleiche Data Scientist in 5 oder 10 Jahren sein. Die Anforderungen sind enorm hoch und die Konkurrenz, der sogenannte „War of Talents“ ist auch in Deutschland angekommen. Der Anspruch an Veränderungsbereitschaft und technisch stets up to date und versiert zu sein, ist extrem hoch. Das gleiche gilt auch für die anderen K.I. Berufe von heute, wie z.B. den Computer Vision Engineer, der Robotics Spezialist oder den DevOps Engineer.

Data Science Blog: Worauf sollten Unternehmen vor, während und nach der Einstellung von Data Scientists achten?

Das Allerwichtigste ist der Anfang. Es sollte ganz klar definiert sein, warum die Person gesucht wird, was die Aufgaben sind und welche Ergebnisse sich das Unternehmen mit der Einstellung erwartet bzw. erhofft. Oftmals hören wir von Unternehmen, dass sie Spezialisten in dem Bereich Data Science / Machine Learning suchen und große Anforderungen haben, aber diese gar nicht umgesetzt werden können, weil z.B. die Datengrundlage im Unternehmen fehlt. Nur 5% der Data Scientists in unserem Netzwerk sind der Ansicht, dass vorhandene Daten in ihrem Unternehmen bereits optimal verwertet werden. Der Data Scientist sollte schnell ins Unternehmen integriert werde um schnellstmöglich Ergebnisse erzielen zu können. Um die wirklich guten Leute für sich zu gewinnen, muss ein Unternehmen aber auch bereit sein finanziell tiefer in die Tasche zu greifen. Außerdem müssen die Unternehmen den top Experten ein technisch attraktives Umfeld bieten, daher sollte auch die Unternehmen stets up-to-date sein mit der heutigen Technologie.

Data Science Blog: Was macht einen guten Data Scientist eigentlich aus?

Ein guter Data Scientist sollte in folgenden Bereichen sehr gut aufgestellt sein: Präsentations- und Kommunikationsfähigkeiten, Machine Learning Kenntnisse, Programmiersprachen und ein allgemeines Business-Verständnis. Er sollte sich stets weiterentwickeln und von den Trends up to date sein. Auf relevanten Blogs, wie dieser Data Science Blog, aktiv sein und sich auf Messen/Meetups etc bekannt machen.

Außerdem sollte er sich mit uns in Verbindung setzen. Denn ein weiterer, wie wir finden, sehr wichtiger Punkt, ist es sich gut verkaufen zu können. Hierzu haben wir uns in dem letzten Jahr sehr viel Gedanken gemacht und auch Studien durchgeführt. Wir wollen es jedem K.I. -Experten ermöglichen einen eigenen Fingerabdruck zu haben. Bei uns ist dies als der SkillPrint bekannt. Hierfür haben wir eine holistische Darstellung entwickelt, die jeden Kandidaten einen individuellen Fingerabdruck seiner Kompetenzen abbildet. Hierfür durchlaufen die Kandidaten einen Online-Test, der von uns mit top K.I. Experten entwickelt wurde. Dieser bildet folgendes ab: Methoden Expertise, Applied Data Science Erfahrung, Branchen know-how, Technology & Tools und Business knowledge. Und die immer im Detail in 3 Ebenen.

Der darauf entstehende SkillPrint/Fingerprint ist ein Qualitätssigel für den Experten und damit auch für das Unternehmen, das den Experten einstellt.

Interesse an einem Austausch zu verschiedenen Karriereperspektiven im Bereich Data Science/ Machine Learning? Dann registrieren Sie sich direkt auf dem lexoro Talent Check-In und ein lexoro-Berater wird sich bei Ihnen melden.

Data Science Survey by lexoro.ai

Ergebnisse unserer zweiten Data Science Survey

Künstliche Intelligenz, Data Science, Machine Learning – über die Bedeutung dieser Themen für einzelne Unternehmen und Branchen herrscht weiterhin viel Unsicherheit und Unklarheit. Zudem stellt sich die Frage: Welche Fähigkeiten und Kompetenzen braucht ein guter Data Scientist eigentlich?

Es lässt sich kaum bestreiten, dass wir vor einem Paradigmenwechsel stehen, vorangetrieben durch einen technologischen Fortschritt dessen Geschwindigkeit exponentiell zunimmt.
Der Arbeitsmarkt im Speziellen sieht sich auch einem starken Veränderungsprozess unterworfen. Es entstehen neue Jobs, neue Rollen und neue Verantwortungsbereiche. Data Scientist, Machine Learning Expert, RPA Developer – die Trend-Jobs der Stunde. Aber welche Fähigkeiten und Skills verbergen sich eigentlich hinter diesen Jobbeschreibungen? Hier scheint es noch eine große Divergenz zu geben.

Unser zweiter Data Science Leaks-Survey soll hier für mehr Transparenz und Aufklärung sorgen. Die Ergebnisse fließen zudem in die Entwicklung unseres SkillPrint ein, einer individuellen Analyse der Kompetenzen eines jeden Daten-Experten. Eine erste Version davon wird in Kürze fertiggestellt sein.

Link zu den Ergebnissen der zweiten Data Science Survey by lexoro.ai

Viel Spaß beim Lesen unserer Ministudie zum Thema: Data Science… mehr als Python, TensorFlow & Neural Networks

 

Interesse an einem Austausch zu verschiedenen Karriereperspektiven im Bereich Data Science/ Machine Learning? Dann registrieren Sie sich direkt auf dem lexoro Talent Check-In und ein lexoro-Berater wird sich bei Ihnen melden.

Data Science mit dem iPad Pro (und der Cloud)

Seit einiger Zeit versuche ich mein iPad Pro stärker in meinen Arbeitsaltag zu integrieren. Ähnlich wie Joseph (iPad Pro 10.5 as my Main Computer – Part 1, Part 2 und Part 3) sprechen auch für mich seit der Einführung des iPad Pro 9,7″, das nochmal verbesserte Display, die größeren Speicheroptionen, das faltbaren Smart Keyboard (funktioniert über einen seitlichen Konnektor und nicht über eine störanfällige BlueTooth-Verbindung) und der Apple Pencil dafür, dieses Gerät statt eines Notebooks zu nutzen.

Abbildung 1: Mein Homescreen

Neben der besseren Mobilität ist hier vor allen Dingen iOS 11 und das kommende iOS 12 zu nennen, welches mit einem verbesserte Dateisystem (transparente Einbindung von iCloud, DropBox, Google Drive etc.) und die Möglichkeit zwei Apps nebeneinander im Splitscreen auszuführen.

 

Apropos Apps: Diese sind ein weiteres Argument für mich, dieses Setup zu testen ist die unverändert gute bis sehr gute Qualität der verfügbaren iOS-Apps zu nutzen. Vorbei sind zum Glück die Zeiten, in der man keine eigenen Schriftarten (nach-) installieren kann (ich nutze dafür AnyFont), keine Kommendozeilenwerkzeug existieren (ich nutze StaSh), kein SSH-Tunneling (hier nutze ich SSH Tunnel von Yuri Bushev) funktioniert und sich GitHub/GitLab nicht nutzen lässt (hier nutze ich WorkingCopy). Ganze Arbeitsabläufe lassen sich darüber hinaus mit Hilfe von Workflow (und in iOS 12 mit Siri Shortcuts) automatisieren. Zum schreiben nutze ich verschiede Anwendungen, je nach Anwendungsfall. Für einfache (Markdown-) Texte nutze ich iA Writer und Editorial. Ulysses nutze ich nicht, da ich in dem Bereich Abomodelle nicht umbedingt bevorzuge, wenn es sich nicht vermeiden lässt.

Software Entwicklung

Die Entwicklung von Software nativ auf dem iPad Pro funktioniert am besten mit Pythonista. Für alles andere benötigt man entsprechende Server auf denen sich der benötigte Tool-Stack befindet, welchen man benötigt. Hier nutze ich am liebsten Linux-Systeme (CentOS oder Ubuntu) da diese sehr nah an Systemen sind, welche ich für Produktivsysteme nutze.
Mit der Nutzung von Cloud-Infrastrukturen wie sie einem zum Beispiel Amazon Web Service bietet, lassen sich sehr schnell und vor allen Dingen on-demand, Systeme starten. Schnell merkt man, dass sich dieser Vorgang stark automatisieren lässt, möchte man nicht ständig mit Hilfe der AWS Console arbeiten. Mit Pythonista und der StaSh lässt sich zu diesem Zweck sehr einfach die boto2-Bibliothek installieren, welche eine direkte Anbindung des AWS SDKs über Python ermöglicht. Damit wiederum lassen sich alle AWS-Dienste als Infrastructure-as-Code nutzen.
Mit boto3 lassen sich nicht nur EC2-Instanzen starten oder der Inhalt von S3-Buckets bearbeiten. Es können auch die verschiedenen Amazon-Dienste zum Beispiel aus dem Bereich Maschine Learning genutzt werden. Damit lassen sich dann leicht Objekte in Bildern erkennen oder der Inhalt von Texten analysieren.

Mosh und Blink

Möchte man effizient auf EC2-Instanzen arbeiten so lohnt ein Blick auf die UDP-basierte Mosh. Im Gegensatz zu normalen SSH-Verbindungen über TCP/IP, puffert Mosh Verbindungsabbrüche. So lassen sich Verbindungen auch nach mehreren Tagen noch ohne Probleme weiter nutzen. Genau wie SSH benötigt Mosh auch eine entsprechende Server-Komponente auf dem Host und ein Terminal, welches Mosh kann. Die Installation ist jedoch auch nicht schwieriger als bei anderer Software. Auf der Seite des iPads nutzte ich sowohl für SSH als auch Mosh die Termial-App Blink.

Mehrere Terminals

Wenn ich früher meinen Mac genutzt habe, dann hatte ich in der Regel mehr als eine (SSH-) Verbindung zum Zielsystem offen. Grund hierfür war, dass ich gern mehrere Dienste auf einem Server-Systems gleichzeitig im Auge behalten wollte. Ein oder zwei Fenster für die Ansicht von Logdateien mit ‘tail’, ein Fenster für meinen Lieblingseditor ‘vim’ und ein Fenster für die Arbeit auf der Kommandozeile. Seit dem ich das auf dem iPad mache, habe ich den Terminalmultiplexer tmux schätzen gelernt. Dieser ermöglicht, wie der Name sagt, die Verwaltung getrennter Sitzungen innerhalb eines Terminals (mehr dazu unter https://robots.thoughtbot.com/a-tmux-crash-course).

Offline Dokumentation

Abbildung 2: Pythonista und Boto3 – Mit dem iPad die AWS kontrollieren

Seitdem es den Amazon Kindle in Deutschland gibt, nutze ich diesen Dienst. Ich hatte mir 2010 den Kindle2 noch aus den USA schicken lassen und dann irgendwann mein Konto auf den deutschen Kindle-Store migriert. Demnach nutze ich seit gut 9 Jahren die Kindle-Apps für meine Fachbücher. Auf dem iPad habe ich so bequem Zugriff auf über hundert IT- und andere Fachbücher. Papers und Cheat-Sheets speichere ich als PDFs in meinem DropBox- oder GoogleDrive-Account. Damit ich auch offline Zugriff auf die wichtigsten Manuelas habe (Python, git, ElasticSearch, Node.js etc.), nutze ich das freie Dash.

Data Science

Für die Entwicklung von MVPs für den Bereich Data Science ist  Spark, und hier vor allen Dingen PySpark in Kombination mit Jupyter Notebook, mein Werkzeug der Wahl. Auf den ersten Blick eine Unmöglichkeit auf dem iPad. Auf den zweiten aber lösbar. In der Regel arbeite ich eh mit Daten, welche zu groß sind um auf einem normalen Personalcomputer in endlicher Zeit effizient verarbeitet werden zu können. Hier arbeite ich mehr und mehr in der Cloud und hier aktuell verstärkt in der von Amazon.

Mein Workflow funktioniert demnach so:

  1. Erstellung des nötigen Python Skripts für die Ausführung einer bestimmten AWS-Umgebung (EMR, SageMaker etc.) mit boto3 in Pythonista auf dem iPad
  2. Ausführen der Umgebung inkl. Kostenkontrolle (Billing-API)
  3. Aufbau eines SSH-Tunnels mit Hilfe eines SSH Tunnel / alternativ mit Mosh
  4. Nutzung von Blink bzw. SSH Pro für die SSH-Verbindung
  5. Nutzung von Juno um eine entfernte Jupyter Notebook / Jupyter Hub Installation nutzen zu können

PySpark im Jupyter Notebook

Abbildung 3: Mit Juno Jupyter Notebook aus auf dem iPad nutzen

Amazons Elastic Map Reduce Dienst bringt bereits eine Jupyter Notebook Installation inkl. Spark/PySpark mit und ermöglicht einen sicheren Zugang über einen verschlüsselten Tunnel. Einziges Problem bei der Nutzung von EMR: Alle Daten müssen in irgend einem System persistiert werden. Dies gilt nicht nur für die eigentlichen Daten sondern auch für die Notebooks. Günstiger Storage lässt sich über S3 einkaufen und mit Hilfe von s3fs-fuse (https://github.com/s3fs-fuse/s3fs-fuse) in das lokale Dateisystem eines EMR Clusters einhängen. Wie man das innerhalb eines geeigneten Bootstrap-Scripts macht habe ich auf GitHub (https://github.com/rawar/emr-ds-tools) dokumentiert. So lassen sich die eigenen EMR-Experimente auch nach dem herunterfahren des Clusters aufbewahren und weiter entwicklen.

Fokussierung im Großraumbüro

Jeder der ab und zu mal in Großraumbüros, in der Bahn oder Flugzeug arbeitet muß, kennt das Problem: Ab und zu möchte man sein Umfeld so gut es geht ausblenden um sich auf die eigene Arbeit voll und ganz zu konzentrieren. Dabei helfen kleine und große Kopfhörer ob mit oder ohne Noice Cancelation. Mit sind die Kabellosen dabei am liebsten und ich nutze lieber In-Ears als Over-Ears wegen der Wärmeentwicklung. Ich mag einfach keine warme Ohren beim Denken. Nach dem das geklärt ist wäre die nächste Frage: Musik oder Geräusche. Ab und zu kann ich Musik beim Arbeiten ertragen wenn sie

1. ohne Gesang und
2. dezent rhythmisch ist.

Zum Arbeiten höre ich dann gern Tosca, Milch Bar, oder Thievery Corporation. Schreiben kann ich unter Geräuscheinwirkung aber besser. Hier nutze ich Noisly mit ein paar eignen Presets für Wald-, Wind- und Wassergeräusche.

Fazit

Das iPad Pro als Terminal des 21. Jahrhunderts bietet dank hervorragender Apps und der Möglichkeit zumindest Python nativ auszuführen, eine gute Ausgangsbasis für das mobile Arbeiten im Bereich Data Science. Hier muss man sich nur daran gewöhnen, dass man seinen Code nicht lokal ausführen kann, sondern dazu immer eine entsprechende Umgebung auf einem Server benötigt. Hier muß es nicht zwingend ein Server in der Cloud sein. Ein alter Rechner mit Linux und den nötigen Tools im Keller tut es auch. Für welches Modell man sich auch entscheidet, man sollte sehr früh Anfangen das Aufsetzten der entsprechenden Server-Umgebungen zu automatisieren (Infrastructure-as-Code). Auch hier bietet sich Pythonista (in Kombination mit Workflow) an. Was bei der täglichen Arbeit auf dem iPad manchmal stört ist, dass nicht alle Aktionen mit der Tastatur ausgeführt werden können und es hier immer noch zu einem haptischen Bruch kommt, wenn man einige Dingen nur über das Touch-Display macht und einige ausschließlich über die Tastatur. Manchmal würde ich mir auch ein größeres Display wünschen oder die Möglichkeit den Winkel des iPads auf der Tastatur ändern zu können. Diese Nachteile würde ich allerdings nicht gegen die Mobilität (Gewicht + Akkulaufzeit) eintauschen wollen.

Ständig wachsende Datenflut – Muss nun jeder zum Data Scientist werden?

Weltweit rund 163 Zettabyte – so lautet die Schätzung von IDC für die Datenmenge weltweit im Jahr 2025. Angesichts dieser kaum noch vorstellbaren Zahl ist es kein Wunder, wenn Anwender in Unternehmen sich überfordert fühlen. Denn auch hier muss vieles analysiert werden – eigene Daten aus vielen Bereichen laufen zusammen mit Daten Dritter, seien es Dienstleister, Partner oder gekaufter Content. Und all das wird noch ergänzt um Social Content – und soll dann zu sinnvollen Auswertungen zusammengeführt werden. Das ist schon für ausgesprochene Data Scientists keine leichte Aufgabe, von normalen Usern ganz zu schweigen. Doch es gibt eine gute Nachricht dabei: den Umgang mit Daten kann man lernen.

Echtes Datenverständnis – Was ist das?

Unternehmen versuchen heute, möglichst viel Kapital aus den vorhandenen Daten zu ziehen und erlauben ihren Mitarbeitern kontrollierten, aber recht weit gehenden Zugriff. Das hat denn auch etliche Vorteile, denn nur wer Zugang zu Daten hat, kann Prozesse beurteilen und effizienter gestalten. Er kann mehr Informationen zu Einsichten verwandeln, Entwicklungen an den realen Bedarf anpassen und sogar auf neue Ideen kommen. Natürlich muss der Zugriff auf Informationen gesteuert und kontrolliert sein, denn schließlich muss man nicht nur Regelwerken wie Datenschutzgrundverordnung gehorchen, man will auch nicht mit den eigenen Daten dem Wettbewerb weiterhelfen.

Aber davon abgesehen, liegt in der umfassenden Auswertung auch die Gefahr, von scheinbaren Erkenntnissen aufs Glatteis geführt zu werden. Was ist wahr, was ist Fake, was ein Trugschluss? Es braucht einige Routine um den Unsinn in den Daten erkennen zu können – und es braucht zuverlässige Datenquellen. Überlässt man dies den wenigen Spezialisten im Haus, so steigt das Risiko, dass nicht alles geprüft wird oder auf der anderen Seite Wichtiges in der Datenflut untergeht. Also brauchen auch solche Anwender ein gewisses Maß an Datenkompetenz, die nicht unbedingt Power User oder professionelle Analytiker sind. Aber in welchem Umfang? So weit, dass sie fähig sind, Nützliches von Falschem zu unterscheiden und eine zielführende Systematik auf Datenanalyse anzuwenden.

Leider aber weiß das noch nicht jeder, der mit Daten umgeht: Nur 17 Prozent von über 5.000 Berufstätigen in Europa fühlen sich der Aufgabe gewachsen – das sagt die Data-Equality-Studie von Qlik. Und für Deutschland sieht es sogar noch schlechter aus, hier sind es nur 14 Prozent, die glauben, souverän mit Daten umgehen zu können. Das ist auch nicht wirklich ein Wunder, denn gerade einmal 49 Prozent sind (in Europa) der Ansicht, ausreichenden Zugriff auf Daten zu haben – und das, obwohl 85 Prozent glauben, mit höherem Datenzugriff auch einen besseren Job machen zu können.

Mit Wissens-Hubs die ersten Schritte begleiten

Aber wie lernt man denn nun, mit Daten richtig oder wenigstens besser umzugehen? Den Datenwust mit allen Devices zu beherrschen? An der Uni offensichtlich nicht, denn in der Data-Equality-Studie sehen sich nur 10 Prozent der Absolventen kompetent im Umgang mit Daten. Bis der Gedanke der Datenkompetenz Eingang in die Lehrpläne gefunden hat, bleibt Unternehmen nur die Eigenregie  – ein „Learning by Doing“ mit Unterstützung. Wie viel dabei Eigeninitiative ist oder anders herum, wieviel Weiterbildung notwendig ist, scheint von Unternehmen zu Unternehmen unterschiedlich zu sein. Einige Ansätze haben sich jedoch schon bewährt:

  • Informationsveranstaltungen mit darauf aufbauenden internen und externen Schulungen
  • Die Etablierung von internen Wissens-Hubs: Data Scientists und Power-User, die ihr Know-how gezielt weitergeben: ein einzelne Ansprechpartner in Abteilungen, die wiederum ihren Kollegen helfen können. Dieses Schneeball-Prinzip spart viel Zeit.
  • Eine Dokumentation, die gerne auch informell wie ein Wiki oder ein Tutorial aufgebaut sein darf – mit der Möglichkeit zu kommentieren und zu verlinken. Nützlich ist auch ein Ratgeber, wie man Daten hinterfragt oder wie man Datenquellen hinter einer Grafik bewertet.
  • Management-Support und Daten-Incentives, die eine zusätzliche Motivation schaffen können. Dazu gehört auch, Freiräume zu schaffen, in denen sich Mitarbeiter mit Daten befassen können – Zeit, aber auch die Möglichkeit, mit (Test-)Daten zu spielen.

Darüber hinaus aber braucht es eine Grundhaltung, die sich im Unternehmen etablieren muss: Datenkompetenz muss zur Selbstverständlichkeit werden. Wird sie zudem noch spannend gemacht, so werden sich viele Mitarbeiter auch privat mit der Bewertung und Auswertung von Daten beschäftigen. Denn nützliches Know-how hat keine Nutzungsgrenzen – und Begeisterung steckt an.

The 6 most in-demand AI jobs and how to get them

A press release issued in December 2017 by Gartner, Inc explicitly states, 2020 will be a pivotal year in Artificial Intelligence-related employment dynamics. It states AI will become “a positive job motivator”.

However, the Gartner report also sounds some alarm bells. “The number of jobs affected by AI will vary by industry-through 2019, healthcare, the public sector and education will see continuously growing job demand while manufacturing will be hit the hardest. Starting in 2020, AI-related job creation will cross into positive territory, reaching two million net-new jobs in 2025,” the press release adds.

This phenomenon is expected to strike worldwide, as a report carried by a leading Indian financial daily, The Hindu BusinessLine states. “The year 2018 will see a sharp increase in demand for professionals with skills in emerging technologies such as Artificial Intelligence (AI) and machine learning, even as people with capabilities in Big Data and Analytics will continue to be the most sought after by companies across sectors, say sources in the recruitment industry,” this news article says.

Before we proceed, let us understand what exactly does Artificial Intelligence or AI mean.

Understanding Artificial Intelligence

Encyclopedia Britannica explains AI as: “The ability of a digital computer or computer-controlled robot to perform tasks commonly associated with human beings.” Classic examples of AI are computer games that can be played solo on a computer. Of these, one can be a human while the other is the reasoning, analytical and other intellectual property a computer. Chess is one example of such a game. While playing Chess with a computer, AI will analyze your moves. It will predict and reason why you made them and respond accordingly.

Similarly, AI imitates functions of the human brain to a very great extent. Of course, AI can never match the prowess of humans but it can come fairly close.

What this means?

This means that AI technology will advance exponentially. The main objective for developing AI will not aim at reducing dependence on humans that can result in loss of jobs or mass retrenchment of employees. Having a large population of unemployed people is harmful to economy of any country. Secondly, people without money will not be able to utilize most functions that are performed through AI, which will render the technology useless.

The advent and growing popularity of AI can be summarized in words of Bill Gates. According to the founder of Microsoft, AI will have a positive impact on people’s lives. In an interview with Fox Business, he said, people would have more spare time that would eventually lead to happier life. However he cautions, it would be long before AI starts making any significant impact on our daily activities and jobs.

Career in AI

Since AI primarily aims at making human life better, several companies are testing the technology. Global online retailer Amazon is one amongst these. Banks and financial institutions, service providers and several other industries are expected to jump on the AI bandwagon in 2018 and coming years. Hence, this is the right time to aim for a career in AI. Currently, there exists a great demand for AI professionals. Here, we look at the top six employment opportunities in Artificial Intelligence.

Computer Vision Research Engineer

 A Computer Vision Research Engineer’s work includes research and analysis, developing software and tools, and computer vision technologies. The primary role of this job is to ensure customer experience that equals human interaction.

Business Intelligence Engineer

As the job designation implies, the role of a Business Intelligence Engineer is to gather data from multiple functions performed by AI such as marketing and collecting payments. It also involves studying consumer patterns and bridging gaps that AI leaves.

Data Scientist

A posting for Data Scientist on recruitment website Indeed describes Data Scientist in these words: “ A mixture between a statistician, scientist, machine learning expert and engineer: someone who has the passion for building and improving Internet-scale products informed by data. The ideal candidate understands human behavior and knows what to look for in the data.

Research and Development Engineer (AI)

Research & Development Engineers are needed to find ways and means to improve functions performed through Artificial Intelligence. They research voice and text chat conversations conducted by bots or robotic intelligence with real-life persons to ensure there are no glitches. They also develop better solutions to eliminate the gap between human and AI interactions.

Machine Learning Specialist

The job of a Machine Learning Specialist is rather complex. They are required to study patterns such as the large-scale use of data, uploads, common words used in any language and how it can be incorporated into AI functions as well as analyzing and improving existing techniques.

Researchers

Researchers in AI is perhaps the best-paid lot. They are required to research into various aspects of AI in any organization. Their role involves researching usage patterns, AI responses, data analysis, data mining and research, linguistic differences based on demographics and almost every human function that AI is expected to perform.

As with any other field, there are several other designations available in AI. However, these will depend upon your geographic location. The best way to find the demand for any AI job is to look for good recruitment or job posting sites, especially those specific to your region.

In conclusion

Since AI is a technology that is gathering momentum, it will be some years before there is a flood of people who can be hired as fresher or expert in this field. Consequently, the demand for AI professionals is rather high. Median salaries these jobs mentioned above range between US$ 100,000 to US$ 150,000 per year.

However, before leaping into AI, it is advisable to find out what other qualifications are required by employers. As with any job, some companies need AI experts that hold specific engineering degrees combined with additional qualifications in IT and a certificate that states you hold the required AI training. Despite, this is the best time to make a career in the AI sector.