Posts

Neues Weiterbildungsangebot zu Programmiersprache R an der TU Dortmund

Anzeige: Neues Weiterbildungsangebot zu Programmiersprache R an der TU Dortmund

In der Tagesseminarreihe Dortmunder R-Kursean der Technischen Universität Dortmund vermitteln erfahrene Experten die praktische Anwendung der Open-Source Statistiksoftware R. Die Teilnehmenden erwerben dadurch Schlüsselkompetenzen im Umgang mit Big Data.

Das Seminar R-Basiskurs für Anfänger findet am 22.02. & 23.02.18 statt. Den Teilnehmern wird der praxisrelevante Part der Programmiersprache näher gebracht, um so die Grundlagen zur ersten Datenanalyse — vom Datensatz zu statistischen Kennzahlen und ersten Datenvisualisierungen — zu schaffen. Anmeldeschluss ist der 01.02.2018.

Das Seminar R-Vertiefungskurs für Fortgeschrittene findet am 06.03. & 07.03.18 statt. Die Veranstaltung ist ideal für Teilnehmende mit ersten Vorkenntnissen, die ihre Analysen effizient mit R durchführen möchten. Anmeldeschluss ist der 13.02.2018.

Weitere inhaltliche Informationen zu den R-Kursen finden Sie unter:
http://dortmunder-r-kurse.de/

My Desk for Data Science

In my last post I anounced a blog parade about what a data scientist’s workplace might look like.

Here are some photos of my desk and my answers to the questions:

How many monitors do you use (or wish to have)?

I am mostly working at my desk in my office with a tower PC and three monitors.
I definitely need at least three monitors to work productively as a data scientist. Who does not know this: On the left monitor the data model is displayed, on the right monitor the data mapping and in the middle I do my work: programming the analysis scripts.

What hardware do you use? Apple? Dell? Lenovo? Others?

I am note an Apple guy. When I need to work mobile, I like to use ThinkPad notebooks. The ThinkPads are (in my experience) very robust and are therefore particularly good for mobile work. Besides, those notebooks look conservative and so I’m not sad if there comes a scratch on the notebook. However, I do not solve particularly challenging analysis tasks on a notebook, because I need my monitors for that.

Which OS do you use (or prefer)? MacOS, Linux, Windows? Virtual Machines?

As a data scientist, I have to be able to communicate well with my clients and they usually use Microsoft Windows as their operating system. I also use Windows as my main operating system. Of course, all our servers run on Linux Debian, but most of my tasks are done directly on Windows.
For some notebooks, I have set up a dual boot, because sometimes I need to start native Linux, for all other cases I work with virtual machines (Linux Ubuntu or Linux Mint).

What are your favorite databases, programming languages and tools?

I prefer the Microsoft SQL Server (T-SQL), C# and Python (pandas, numpy, scikit-learn). This is my world. But my customers are kings, therefore I am working with Postgre SQL, MongoDB, Neo4J, Tableau, Qlik Sense, Celonis and a lot more. I like to get used to new tools and technologies again and again. This is one of the benefits of being a data scientist.

Which data dou you analyze on your local hardware? Which in server clusters or clouds?

There have been few cases yet, where I analyzed really big data. In cases of analyzing big data we use horizontally scalable systems like Hadoop and Spark. But we also have customers analyzing middle-sized data (more than 10 TB but less than 100 TB) on one big server which is vertically scalable. Most of my customers just want to gather data to answer questions on not so big amounts of data. Everything less than 10TB we can do on a highend workstation.

If you use clouds, do you prefer Azure, AWS, Google oder others?

Microsoft Azure! I am used to tools provided by Microsoft and I think Azure is a well preconfigured cloud solution.

Where do you make your notes/memos/sketches. On paper or digital?

My calender is managed digital, because I just need to know everywhere what appointments I have. But my I prefer to wirte down my thoughts on paper and that´s why I have several paper-notebooks.

Now it is your turn: Join our Blog Parade!

So what does your workplace look like? Show your desk on your blog until 31/12/2017 and we will show a short introduction of your post here on the Data Science Blog!

 

Show your Data Science Workplace!

The job of a data scientist is often a mystery to outsiders. Of course, you do not really need much more than a medium-sized notebook to use data science methods for finding value in data. Nevertheless, data science workplaces can look so different and, let’s say, interesting. And that’s why I want to launch a blog parade – which I want to start with this article – where you as a Data Scientist or Data Engineer can show your workplace and explain what tools a data scientist in your opinion really needs.

I am very curious how many monitors you prefer, whether you use Apple, Dell, HP or Lenovo, MacOS, Linux or Windows, etc., etc. And of course, do you like a clean or messy desk?

What is a Blog Parade?

A blog parade is a call to blog owners to report on a specific topic. Everyone who participates in the blog parade, write on their blog a contribution to the topic. The organizer of the blog parade collects all the articles and will recap those articles in a short form together, of course with links to the articles.

How can I participate?

Write an article on your blog! Mention this blog parade here, show and explain your workplace (your desk with your technical equipment) in an article. If you’re missing your own blog, articles can also be posted directly to LinkedIn (LinkedIn has its own blogging feature that every LinkedIn member can use). Alternative – as a last resort – it would also be possible to send me your article with a photo about your workplace directly to: redaktion@data-science-blog.com.
Please make me aware of an article, via e-mail or with a comment (below) on this article.

Who can participate?

Any data scientist or anyone close to Data Science: Everyone concerned with topics such as data analytics, data engineering or data security. Please do not over-define data science here, but keep it in a nutshell, so that all professionals who manage and analyze data can join in with a clear conscience.

And yes, I will participate too. I will propably be the first who write an article about my workplace (I just need a new photo of my desk).

When does the article have to be finished?

By 31/12/2017, the article must have been published on your blog (or LinkedIn or wherever) and the release has to be reported to me.
But beware: Anyone who has previously written an article will also be linked earlier. After all, reporting on your article will take place immediately after I hear about it.
If you publish an artcile tomorrow, it will be shown the day after tomorrow here on the Data Science Blog.

What is in it for me to join?

Nothing! Except perhaps the fun factor of sharing your idea of ​​a nice desk for a data expert with others, so as to share creativity or a certain belief in what a data scientist needs.
Well and for bloggers: There is a great backlink from this data science blog for you 🙂

What should I write? What are the minimum requirements of content?

The article does not have to (but may be) particularly long. Anyway, here on this data science blog only a shortened version of your article will appear (with a link, of course).

Minimum requirments:

  • Show a photo (at least one!) of your workplace desk!
  • And tell us something about:
    • How many monitors do you use (or wish to have)?
    • What hardware do you use? Apple? Dell? Lenovo? Others?
    • Which OS do you use (or prefer)? MacOS, Linux, Windows? Virtual Machines?
    • What are your favorite databases, programming languages and tools? (e.g. Python, R, SAS, Postgre, Neo4J,…)
    • Which data dou you analyze on your local hardware? Which in server clusters or clouds?
    • If you use clouds, do you prefer Azure, AWS, Google oder others?
    • Where do you make your notes/memos/sketches. On paper or digital?

Not allowed:
Of course, please do not provide any information, which could endanger your company`s IT security.

Absolutly allowed:
Bringing some joke into the matter 🙂 We are happy to vote in the comments on the best or funniest desk for election, there may be also a winner later!


The resulting Blog Posts: https://data-science-blog.com/data-science-insights/show-your-desk/


 

Data Science vs Data Engineering

The job of the Data Scientist is actually a fairly new trend, and yet other job titles are coming to us. “Is this really necessary?”, Some will ask. But the answer is clear: yes!

There are situations, every Data Scientist know: a recruiter calls, speaks about a great new challenge for a Data Scientist as you obviously claim on your LinkedIn profile, but in the discussion of the vacancy it quickly becomes clear that you have almost none of the required skills. This mismatch is mainly due to the fact that under the job of the Data Scientist all possible activity profiles, method and tool knowledge are summarized, which a single person can hardly learn in his life. Many open jobs, which are to be called under the name Data Science, describe rather the professional image of the Data Engineer.


Read this article in German:
“Data Science vs Data Engineering – Wo liegen die Unterschiede?“


What is a Data Engineer?

Data engineering is primarily about collecting or generating data, storing, historicalizing, processing, adapting and submitting data to subsequent instances. A Data Engineer, often also named as Big Data Engineer or Big Data Architect, models scalable database and data flow architectures, develops and improves the IT infrastructure on the hardware and software side, deals with topics such as IT Security , Data Security and Data Protection. A Data Engineer is, as required, a partial administrator of the IT systems and also a software developer, since he or she extends the software landscape with his own components. In addition to the tasks in the field of ETL / Data Warehousing, he also carries out analyzes, for example, to investigate data quality or user access. A Data Engineer mainly works with databases and data warehousing tools.

A Data Engineer is talented as an educated engineer or computer scientist and rather far away from the actual core business of the company. The Data Engineer’s career stages are usually something like:

  1. (Big) Data Architect
  2. BI Architect
  3. Senior Data Engineer
  4. Data Engineer

What makes a Data Scientist?

Although there may be many intersections with the Data Engineer’s field of activity, the Data Scientist can be distinguished by using his working time as much as possible to analyze the available data in an exploratory and targeted manner, to visualize the analysis results and to convert them into a red thread (storytelling). Unlike the Data Engineer, a data scientist rarely sees into a data center, because he picks up data via interfaces provided by the Data Engineer or provides by other resources.

A Data Scientist deals with mathematical models, works mainly with statistical procedures, and applies them to the data to generate knowledge. Common methods of Data Mining, Machine Learning and Predictive Modeling should be known to a Data Scientist. Data Scientists basically work close to the department and need appropriate expertise. Data Scientists use proprietary tools (e.g. Tools by IBM, SAS or Qlik) and program their own analyzes, for example, in Scala, Java, Python, Julia, or R. Using such programming languages and data science libraries (e.g. Mahout, MLlib, Scikit-Learn or TensorFlow) is often considered as advanced data science.

Data Scientists can have diverse academic backgrounds, some are computer scientists or engineers for electrical engineering, others are physicists or mathematicians, not a few have economical backgrounds. Common career levels could be:

  1. Chief Data Scientist
  2. Senior Data Scientist
  3. Data Scientist
  4. Data Analyst oder Junior Data Scientist

Data Scientist vs Data Analyst

I am often asked what the difference between a Data Scientist and a Data Analyst would be, or whether there would be a distinction criterion at all:

In my experience, the term Data Scientist stands for the new challenges for the classical concept of Data Analysts. A Data Analyst performs data analysis like a Data Scientist. More complex topics such as predictive analytics, machine learning or artificial intelligence are topics for a Data Scientist. In other words, a Data Scientist is a Data Analyst++ (one step above the Data Analyst).

And how about being a Business Analyst?

Business Analysts can (but need not) be Data Analysts. In any case, they have a very strong relationship with the core business of the company. Business Analytics is about analyzing business models and business successes. The analysis of business success is usually carried out by IT, and many business analysts are starting a career as Data Analyst now. Dashboards, KPIs and SQL are the tools of a good business analyst, but there might be a lot business analysts, who are just analysing business models by reading the newspaper…

Data Science Knowledge Stack – Abstraction of the Data Science Skillset

What must a Data Scientist be able to do? Which skills does as Data Scientist need to have? This question has often been asked and frequently answered by several Data Science Experts. In fact, it is now quite clear what kind of problems a Data Scientist should be able to solve and which skills are necessary for that. I would like to try to bring this consensus into a visual graph: a layer model, similar to the OSI layer model (which any data scientist should know too, by the way).
I’m giving introductory seminars in Data Science for merchants and engineers and in those seminars I always start explaining what we need to work out together in theory and practice-oriented exercises. Against this background, I came up with the idea for this layer model. Because with my seminars the problem already starts: I am giving seminars for Data Science for Business Analytics with Python. So not for medical analyzes and not with R or Julia. So I do not give a general knowledge of Data Science, but a very specific direction.

A Data Scientist must deal with problems at different levels in any Data Science project, for example, the data access does not work as planned or the data has a different structure than expected. A Data Scientist can spend hours debating its own source code or learning the ropes of new DataScience packages for its chosen programming language. Also, the right algorithms for data evaluation must be selected, properly parameterized and tested, sometimes it turns out that the selected methods were not the optimal ones. Ultimately, we are not doing Data Science all day for fun, but for generating value for a department and a data scientist is also faced with special challenges at this level, at least a basic knowledge of the expertise of that department is a must have.


Read this article in German:
“Data Science Knowledge Stack – Was ein Data Scientist können muss“


Data Science Knowledge Stack

With the Data Science Knowledge Stack, I would like to provide a structured insight into the tasks and challenges a Data Scientist has to face. The layers of the stack also represent a bidirectional flow from top to bottom and from bottom to top, because Data Science as a discipline is also bidirectional: we try to answer questions with data, or we look at the potentials in the data to answer previously unsolicited questions.

The DataScience Knowledge Stack consists of six layers:

Database Technology Knowledge

A Data Scientist works with data which is rarely directly structured in a CSV file, but usually in one or more databases that are subject to their own rules. In particular, business data, for example from the ERP or CRM system, are available in relational databases, often from Microsoft, Oracle, SAP or an open source alternative. A good Data Scientist is not only familiar with Structured Query Language (SQL), but is also aware of the importance of relational linked data models, so he also knows the principle of data table normalization.

Other types of databases, so-called NoSQL databases (Not only SQL) are based on file formats, column or graph orientation, such as MongoDB, Cassandra or GraphDB. Some of these databases use their own programming languages ​​(for example JavaScript at MongoDB or the graph-oriented database Neo4J has its own language called Cypher). Some of these databases provide alternative access via SQL (such as Hive for Hadoop).

A data scientist has to cope with different database systems and has to master at least SQL – the quasi-standard for data processing.

Data Access & Transformation Knowledge

If data are given in a database, Data Scientists can perform simple (and not so simple) analyzes directly on the database. But how do we get the data into our special analysis tools? To do this, a Data Scientist must know how to export data from the database. For one-time actions, an export can be a CSV file, but which separators and text qualifiers should be used? Possibly, the export is too large, so the file must be split.
If there is a direct and synchronous data connection between the analysis tool and the database, interfaces like REST, ODBC or JDBC come into play. Sometimes a socket connection must also be established and the principle of a client-server architecture should be known. Synchronous and asynchronous encryption methods should also be familiar to a Data Scientist, as confidential data are often used, and a minimum level of security is most important for business applications.

Many datasets are not structured in a database but are so-called unstructured or semi-structured data from documents or from Internet sources. And again we have interfaces, a frequent entry point for Data Scientists is, for example, the Twitter API. Sometimes we want to stream data in near real-time, let it be machine data or social media messages. This can be quite demanding, so the data streaming is almost a discipline with which a Data Scientist can come into contact quickly.

Programming Language Knowledge

Programming languages ​​are tools for Data Scientists to process data and automate processing. Data Scientists are usually no real software developers and they do not have to worry about software security or economy. However, a certain basic knowledge about software architectures often helps because some Data Science programs can be going to be integrated into an IT landscape of the company. The understanding of object-oriented programming and the good knowledge of the syntax of the selected programming languages ​​are essential, especially since not every programming language is the most useful for all projects.

At the level of the programming language, there is already a lot of snares in the programming language that are based on the programming language itself, as each has its own faults and details determine whether an analysis is done correctly or incorrectly: for example, whether data objects are copied or linked as reference, or how NULL/NaN values ​​are treated.

Data Science Tool & Library Knowledge

Once a data scientist has loaded the data into his favorite tool, for example, one of IBM, SAS or an open source alternative such as Octave, the core work just began. However, these tools are not self-explanatory and therefore there is a wide range of certification options for various Data Science tools. Many (if not most) Data Scientists work mostly directly with a programming language, but this alone is not enough to effectively perform statistical data analysis or machine learning: We use Data Science libraries (packages) that provide data structures and methods as a groundwork and thus extend the programming language to a real Data Science toolset. Such a library, for example Scikit-Learn for Python, is a collection of methods implemented in the programming language. The use of such libraries, however, is intended to be learned and therefore requires familiarization and practical experience for reliable application.

When it comes to Big Data Analytics, the analysis of particularly large data, we enter the field of Distributed Computing. Tools (frameworks) such as Apache Hadoop, Apache Spark or Apache Flink allows us to process and analyze data in parallel on multiple servers. These tools also provide their own libraries for machine learning, such as Mahout, MLlib and FlinkML.

Data Science Method Knowledge

A Data Scientist is not simply an operator of tools, he uses the tools to apply his analysis methods to data he has selected for to reach the project targets. These analysis methods are, for example, descriptive statistics, estimation methods or hypothesis tests. Somewhat more mathematical are methods of machine learning for data mining, such as clustering or dimensional reduction, or more toward automated decision making through classification or regression.

Machine learning methods generally do not work immediately, they have to be improved using optimization methods like the gradient method. A Data Scientist must be able to detect under- and overfitting, and he must prove that the prediction results for the planned deployment are accurate enough.

Special applications require special knowledge, which applies, for example, to the fields of image recognition (Visual Computing) or the processing of human language (Natural Language Processiong). At this point, we open the door to deep learning.

Expertise

Data Science is not an end in itself, but a discipline that would like to answer questions from other expertise fields with data. For this reason, Data Science is very diverse. Business economists need data scientists to analyze financial transactions, for example, to identify fraud scenarios or to better understand customer needs, or to optimize supply chains. Natural scientists such as geologists, biologists or experimental physicists also use Data Science to make their observations with the aim of gaining knowledge. Engineers want to better understand the situation and relationships between machinery or vehicles, and medical professionals are interested in better diagnostics and medication for their patients.

In order to support a specific department with his / her knowledge of data, tools and analysis methods, every data scientist needs a minimum of the appropriate skills. Anyone who wants to make analyzes for buyers, engineers, natural scientists, physicians, lawyers or other interested parties must also be able to understand the people’s profession.

Engere Data Science Definition

While the Data Science pioneers have long established and highly specialized teams, smaller companies are still looking for the Data Science Allrounder, which can take over the full range of tasks from the access to the database to the implementation of the analytical application. However, companies with specialized data experts have long since distinguished Data Scientists, Data Engineers and Business Analysts. Therefore, the definition of Data Science and the delineation of the abilities that a data scientist should have, varies between a broader and a more narrow demarcation.


A closer look at the more narrow definition shows, that a Data Engineer takes over the data allocation, the Data Scientist loads it into his tools and runs the data analysis together with the colleagues from the department. According to this, a Data Scientist would need no knowledge of databases or APIs, neither an expertise would be necessary …

In my experience, DataScience is not that narrow, the task spectrum covers more than just the core area. This misunderstanding comes from Data Science courses and – for me – I should point to the overall picture of Data Science again and again. In courses and seminars, which want to teach Data Science as a discipline, the focus will of course be on the core area: programming, tools and methods from mathematics & statistics.

Data Science Knowledge Stack – Was ein Data Scientist können muss

Was muss ein Data Scientist können? Diese Frage wurde bereits häufig gestellt und auch häufig beantwortet. In der Tat ist man sich mittlerweile recht einig darüber, welche Aufgaben ein Data Scientist für Aufgaben übernehmen kann und welche Fähigkeiten dafür notwendig sind. Ich möchte versuchen, diesen Konsens in eine Grafik zu bringen: Ein Schichten-Modell, ähnlich des OSI-Layer-Modells (welches übrigens auch jeder Data Scientist kennen sollte).
Ich gebe Einführungs-Seminare in Data Science für Kaufleute und Ingenieure und bei der Erläuterung, was wir in den Seminaren gemeinsam theoretisch und mit praxisnahen Übungen erarbeiten müssen, bin ich auf die Idee für dieses Schichten-Modell gekommen. Denn bei meinen Seminaren fängt es mit der Problemstellung bereits an, ich gebe nämlich Seminare für Data Science für Business Analytics mit Python. Also nicht beispielsweise für medizinische Analysen und auch nicht mit R oder Julia. Ich vermittle also nicht irgendein Data Science, sondern eine ganz bestimmte Richtung.

Ein Data Scientist muss bei jedem Data Science Vorhaben Probleme auf unterschiedlichsten Ebenen bewältigen, beispielsweise klappt der Datenzugriff nicht wie geplant oder die Daten haben eine andere Struktur als erwartet. Ein Data Scientist kann Stunden damit verbringen, seinen eigenen Quellcode zu debuggen oder sich in neue Data Science Pakete für seine ausgewählte Programmiersprache einzuarbeiten. Auch müssen die richtigen Algorithmen zur Datenauswertung ausgewählt, richtig parametrisiert und getestet werden, manchmal stellt sich dabei heraus, dass die ausgewählten Methoden nicht die optimalen waren. Letztendlich soll ein Mehrwert für den Fachbereich generiert werden und auch auf dieser Ebene wird ein Data Scientist vor besondere Herausforderungen gestellt.


english-flagRead this article in English:
“Data Science Knowledge Stack – Abstraction of the Data Scientist Skillset”


Data Science Knowledge Stack

Mit dem Data Science Knowledge Stack möchte ich einen strukturierten Einblick in die Aufgaben und Herausforderungen eines Data Scientists geben. Die Schichten des Stapels stellen zudem einen bidirektionalen Fluss dar, der von oben nach unten und von unten nach oben verläuft, denn Data Science als Disziplin ist ebenfalls bidirektional: Wir versuchen gestellte Fragen mit Daten zu beantworten oder wir schauen, welche Potenziale in den Daten liegen, um bisher nicht gestellte Fragen zu beantworten.

Der Data Science Knowledge Stack besteht aus sechs Schichten:

Database Technology Knowledge

Ein Data Scientist arbeitet im Schwerpunkt mit Daten und die liegen selten direkt in einer CSV-Datei strukturiert vor, sondern in der Regel in einer oder in mehreren Datenbanken, die ihren eigenen Regeln unterliegen. Insbesondere Geschäftsdaten, beispielsweise aus dem ERP- oder CRM-System, liegen in relationalen Datenbanken vor, oftmals von Microsoft, Oracle, SAP oder eine Open-Source-Alternative. Ein guter Data Scientist beherrscht nicht nur die Structured Query Language (SQL), sondern ist sich auch der Bedeutung relationaler Beziehungen bewusst, kennt also auch das Prinzip der Normalisierung.

Andere Arten von Datenbanken, sogenannte NoSQL-Datenbanken (Not only SQL)  beruhen auf Dateiformaten, einer Spalten- oder einer Graphenorientiertheit, wie beispielsweise MongoDB, Cassandra oder GraphDB. Einige dieser Datenbanken verwenden zum Datenzugriff eigene Programmiersprachen (z. B. JavaScript bei MongoDB oder die graphenorientierte Datenbank Neo4J hat eine eigene Sprache namens Cypher). Manche dieser Datenbanken bieten einen alternativen Zugriff über SQL (z. B. Hive für Hadoop).

Ein Data Scientist muss mit unterschiedlichen Datenbanksystemen zurechtkommen und mindestens SQL – den Quasi-Standard für Datenverarbeitung – sehr gut beherrschen.

Data Access & Transformation Knowledge

Liegen Daten in einer Datenbank vor, können Data Scientists einfache (und auch nicht so einfache) Analysen bereits direkt auf der Datenbank ausführen. Doch wie bekommen wir die Daten in unsere speziellen Analyse-Tools? Hierfür muss ein Data Scientist wissen, wie Daten aus der Datenbank exportiert werden können. Für einmalige Aktionen kann ein Export als CSV-Datei reichen, doch welche Trennzeichen und Textqualifier können verwendet werden? Eventuell ist der Export zu groß, so dass die Datei gesplittet werden muss.
Soll eine direkte und synchrone Datenanbindung zwischen dem Analyse-Tool und der Datenbank bestehen, kommen Schnittstellen wie REST, ODBC oder JDBC ins Spiel. Manchmal muss auch eine Socket-Verbindung hergestellt werden und das Prinzip einer Client-Server-Architektur sollte bekannt sein. Auch mit synchronen und asynchronen Verschlüsselungsverfahren sollte ein Data Scientist vertraut sein, denn nicht selten wird mit vertraulichen Daten gearbeitet und ein Mindeststandard an Sicherheit ist zumindest bei geschäftlichen Anwendungen stets einzuhalten.

Viele Daten liegen nicht strukturiert in einer Datenbank vor, sondern sind sogenannte unstrukturierte oder semi-strukturierte Daten aus Dokumenten oder aus Internetquellen. Auch hier haben wir es mit Schnittstellen zutun, ein häufiger Einstieg für Data Scientists stellt beispielsweise die Twitter-API dar. Manchmal wollen wir Daten in nahezu Echtzeit streamen, beispielsweise Maschinendaten. Dies kann recht anspruchsvoll sein, so das Data Streaming beinahe eine eigene Disziplin darstellt, mit der ein Data Scientist schnell in Berührung kommen kann.

Programming Language Knowledge

Programmiersprachen sind für Data Scientists Werkzeuge, um Daten zu verarbeiten und die Verarbeitung zu automatisieren. Data Scientists sind in der Regel keine richtigen Software-Entwickler, sie müssen sich nicht um Software-Sicherheit oder -Ergonomie kümmern. Ein gewisses Basiswissen über Software-Architekturen hilft jedoch oftmals, denn immerhin sollen manche Data Science Programme in eine IT-Landschaft integriert werden. Unverzichtbar ist hingegen das Verständnis für objektorientierte Programmierung und die gute Kenntnis der Syntax der ausgewählten Programmiersprachen, zumal nicht jede Programmiersprache für alle Vorhaben die sinnvollste ist.

Auf dem Level der Programmiersprache gibt es beim Arbeitsalltag eines Data Scientists bereits viele Fallstricke, die in der Programmiersprache selbst begründet sind, denn jede hat ihre eigenen Tücken und Details entscheiden darüber, ob eine Analyse richtig oder falsch abläuft: Beispielsweise ob Datenobjekte als Kopie oder als Referenz übergeben oder wie NULL-Werte behandelt werden.

Data Science Tool & Library Knowledge

Hat ein Data Scientist seine Daten erstmal in sein favorisiertes Tool geladen, beispielsweise in eines von IBM, SAS oder in eine Open-Source-Alternative wie Octave, fängt seine Kernarbeit gerade erst an. Diese Tools sind allerdings eher nicht selbsterklärend und auch deshalb gibt es ein vielfältiges Zertifizierungsangebot für diverse Data Science Tools. Viele (wenn nicht die meisten) Data Scientists arbeiten überwiegend direkt mit einer Programmiersprache, doch reicht diese alleine nicht aus, um effektiv statistische Datenanalysen oder Machine Learning zu betreiben: Wir verwenden Data Science Bibliotheken, also Pakete (Packages), die uns Datenstrukturen und Methoden als Vorgabe bereitstellen und die Programmiersprache somit erweitern, damit allerdings oftmals auch neue Tücken erzeugen. Eine solche Bibliothek, beispielsweise Scikit-Learn für Python, ist eine in der Programmiersprache umgesetzte Methodensammlung und somit ein Data Science Tool. Die Verwendung derartiger Bibliotheken will jedoch gelernt sein und erfordert für die zuverlässige Anwendung daher Einarbeitung und Praxiserfahrung.

Geht es um Big Data Analytics, also die Analyse von besonders großen Daten, betreten wir das Feld von Distributed Computing (Verteiltes Rechnen). Tools (bzw. Frameworks) wie Apache Hadoop, Apache Spark oder Apache Flink ermöglichen es, Daten zeitlich parallel auf mehren Servern zu verarbeiten und auszuwerten. Auch stellen diese Tools wiederum eigene Bibliotheken bereit, für Machine Learning z. B. Mahout, MLlib und FlinkML.

Data Science Method Knowledge

Ein Data Scientist ist nicht einfach nur ein Bediener von Tools, sondern er nutzt die Tools, um seine Analyse-Methoden auf Daten anzuwenden, die er für die festgelegten Ziele ausgewählt hat. Diese Analyse-Methoden sind beispielweise Auswertungen der beschreibenden Statistik, Schätzverfahren oder Hypothesen-Tests. Etwas mathematischer sind Verfahren des maschinellen Lernens zum Data Mining, beispielsweise Clusterung oder Dimensionsreduktion oder mehr in Richtung automatisierter Entscheidungsfindung durch Klassifikation oder Regression.

Maschinelle Lernverfahren funktionieren in der Regel nicht auf Anhieb, sie müssen unter Einsatz von Optimierungsverfahren, wie der Gradientenmethode, verbessert werden. Ein Data Scientist muss Unter- und Überanpassung erkennen können und er muss beweisen, dass die Vorhersageergebnisse für den geplanten Einsatz akkurat genug sind.

Spezielle Anwendungen bedingen spezielles Wissen, was beispielsweise für die Themengebiete der Bilderkennung (Visual Computing) oder der Verarbeitung von menschlicher Sprache (Natural Language Processiong) zutrifft. Spätestens an dieser Stelle öffnen wir die Tür zum Deep Learning.

Fachexpertise

Data Science ist kein Selbstzweck, sondern eine Disziplin, die Fragen aus anderen Fachgebieten mit Daten beantworten möchte. Aus diesem Grund ist Data Science so vielfältig. Betriebswirtschaftler brauchen Data Scientists, um Finanztransaktionen zu analysieren, beispielsweise um Betrugsszenarien zu erkennen oder um die Kundenbedürfnisse besser zu verstehen oder aber, um Lieferketten zu optimieren. Naturwissenschaftler wie Geologen, Biologen oder Experimental-Physiker nutzen ebenfalls Data Science, um ihre Beobachtungen mit dem Ziel der Erkenntnisgewinnung zu machen. Ingenieure möchten die Situation und Zusammenhänge von Maschinenanlagen oder Fahrzeugen besser verstehen und Mediziner interessieren sich für die bessere Diagnostik und Medikation bei ihren Patienten.

Damit ein Data Scientist einen bestimmten Fachbereich mit seinem Wissen über Daten, Tools und Analyse-Methoden ergebnisorientiert unterstützen kann, benötigt er selbst ein Mindestmaß an der entsprechenden Fachexpertise. Wer Analysen für Kaufleute, Ingenieure, Naturwissenschaftler, Mediziner, Juristen oder andere Interessenten machen möchte, muss eben jene Leute auch fachlich verstehen können.

Engere Data Science Definition

Während die Data Science Pioniere längst hochgradig spezialisierte Teams aufgebaut haben, suchen beispielsweise kleinere Unternehmen eher den Data Science Allrounder, der vom Zugriff auf die Datenbank bis hin zur Implementierung der analytischen Anwendung das volle Aufgabenspektrum unter Abstrichen beim Spezialwissen übernehmen kann. Unternehmen mit spezialisierten Daten-Experten unterscheiden jedoch längst in Data Scientists, Data Engineers und Business Analysts. Die Definition für Data Science und die Abgrenzung der Fähigkeiten, die ein Data Scientist haben sollte, schwankt daher zwischen der breiteren und einer engeren Abgrenzung.

Die engere Betrachtung sieht vor, dass ein Data Engineer die Datenbereitstellung übernimmt, der Data Scientist diese in seine Tools lädt und gemeinsam mit den Kollegen aus dem Fachbereich die Datenanalyse betreibt. Demnach bräuchte ein Data Scientist kein Wissen über Datenbanken oder APIs und auch die Fachexpertise wäre nicht notwendig…

In der beruflichen Praxis sieht Data Science meiner Erfahrung nach so nicht aus, das Aufgabenspektrum umfasst mehr als nur den Kernbereich. Dieser Irrtum entsteht in Data Science Kursen und auch in Seminaren – würde ich nicht oft genug auf das Gesamtbild hinweisen. In Kursen und Seminaren, die Data Science als Disziplin vermitteln wollen, wird sich selbstverständlich auf den Kernbereich fokussiert: Programmierung, Tools und Methoden aus der Mathematik & Statistik.

Höhere Mathematik als Grundvoraussetzung für Data Scientists

Data Scientist ist der „sexiest Job“ auf der Welt. Data Science ist die neu erfundene Wissenschaft, die viele unserer Probleme lösen und uns die Zukunft angenehmer gestalten wird. Aber was genau ist Data Science? Was ist ein Datascientist und was macht er? Welche Ausbildung benötigt man, um ein Data Scientist zu sein? Muss er tiefe Kenntnisse der höheren Mathematik besitzen oder reicht das reine Methodenwissen aus? Diese Fragestellungen möchte ich in diesem Beitrag diskutieren.

Was versteht man also unter dem Begriff „Data Science“?

Dieses Wissensgebiet beschäftigt sich mit der Extraktion von Wissen aus Daten. Der Begriff selbst existiert bereits seit über 50 Jahren. Peter Naur verwendete ihn 1960 als Ersatz für den Begriff „Informatik“. 1997 schlug C.F. Jeff Wu in einem Vortrag anlässlich seiner Ernennung zum H. C. Carver Professor of Statistics vor, den Begriff „Statistiker“ in den Begriff „Datenwissenschafter“ umzubenennen. Ich persönlich hege aber Zweifel, dass Datenwissenschafter nur Statistiker sind.

Betrachtet man die Lehrpläne der Studiengänge für Data Science, so bestehen diese aus folgenden Fächern:

  • Mathematische Grundlagen (auch Teile der höheren Mathematik)
  • Stochastik
  • Statistik
  • Grundlegendes Wissen aus der Informatik (besonders auf dem Gebiet der Datenbanken und Big Data Technologien)
  • Signalverarbeitung

Sicherlich ist die obige Aufzählung gar nicht vollständig, da ich meine, dass auch Methoden der mathematischen Optimierung in diese Lehrpläne aufgenommen werden müssen.

Data Science beschäftigt sich also mit der Extraktion von Wissen aus Daten und leitet Empfehlungen daraus ab. Unmittelbar daraus ergibt sich daher auch die Aufgabenbeschreibung für den Data Scientist.

Der Aufgabenbereich eines Data Scientist.

Aus der Beschreibung des Tätigkeitsbereiches von Data Science ergibt sich nun unmittelbar die Aufgabenbeschreibung für den Data Scientist. Er muss aus Daten Wissen extrahieren und Handlungsempfehlungen ableiten. Daraus erkennt man sofort, dass seine Aufgabenstellung umfassender als die eines Statistikers ist. Ungeachtet einer Diskussion, ob der Aufgabenbereich von einer einzigen Person überhaupt zu bewerkstelligen ist, unterteilt er sich also in folgende Teilbereiche.

  • Datenextraktion, -zusammenführung und – aggregation
  • Datenanalyse
  • Hypothesenfindung (zusammen mit den entsprechenden Fachbereichen)
  • Hypothesentests
  • Erstellung von Prognosemodellen
  • Mathematischen Optimierungsrechnungen

Er unterstützt damit sehr viele Fachbereiche eines Unternehmens, benötigt aber auch bei der Durchführung seiner Aufgabengebiete Unterstützung von den Fachbereichen. Zudem bedürfen die letzten drei Punkte der obigen Liste auch ein tiefes Verständnis der angewendeten Algorithmen aus mathematischer Sicht. Es reicht sicherlich nicht aus, zu wissen, welche Methode für die Erzielung einer korrekten Beantwortung einer Fragestellung zu verwenden ist, vielmehr muss er auch wissen, ob die Voraussetzungen zur Anwendung der spezifischen Methode gegeben ist. So z.B. verwenden sehr viele Methoden und Verfahren der Statistik die – in der Praxis nicht immer gegebene – Voraussetzung, dass Daten normalverteilt sind. Da die erzielten Ergebnisse meist numerischer Natur sind bzw. auf numerischen Input basieren, sollte auch zudem Kenntnisse der numerischen Mathematik aufweisen. Zusammenfassend gesagt, ist also ein tiefes Wissen der Algorithmen notwendig, diese basieren auf Mathematik und deshalb lässt sich die Mathematik auch nicht aus dem Anforderungsprofil eines Data Scientist wegdiskutieren.

Warum diese Diskussion?

Ich erlebe immer wieder, dass mit den Argumentationen aufgefahren wird, es wäre nicht notwendig, dass ein Data Scientist eine fundierte Ausbildung auf dem Gebiet Mathematik (im Sinne von „höherer“ Mathematik) benötigt. Sogar bei einer Veranstaltung der Firma IBM musste ich hören, dass Online-Course – wie z. B. Coursera – ausreichen würden, der Rest, also das fehlende Wissen, würde dann durch ausreichend Praxis und Schulungen dieser Firma ohnehin vermittelt bzw. erarbeitet werden. Dass dem nicht so sein kann, ist augenscheinlich, wenn man sich das Vorlesungsverzeichnis z. B. des Studiums Technische Mathematik ansieht. Wann hat man schon die notwendige Zeit, sich mit den Themen Algebra, Analysis, Topologie, Funktionentheorie, Wahrscheinlichkeitsrechnung, Statistik, usw. intensiver auseinanderzusetzen, das Verständnis dieser Teildisziplinen durch das Studium und Lösen von mathematischen Problemen aufzubauen, wenn nicht während eines entsprechenden Studiums? Ich bin der Meinung, dass das im Selbststudium ohne Anleitung und Kontrolle und die dazugehörigen fachlichen Diskussionen mit den Lehrenden und Studienkollegen kaum möglich ist.

Resümee

Aus den oben angeführten Gründen heraus, plädiere ich für eine fundierte Basisausbildung, die dem Studium eines Mathematikers schon sehr nahekommt. Reines oberflächliches Anschneiden der Themen, wird nicht zum gewünschten Erfolg bzw. zur notwendigen Qualität führen. Den Allrounder wird es ohnehin nicht geben, d.h. die Spezialisierungen werden auch – so wie bei Mathematikern – bei den Data Scientists erhalten bleiben. Über eine rege Diskussion zu diesem Thema würde ich mich natürlich sehr freuen.

What makes a good Data Scientist? Answered by leading Data Officers!

What makes a good Data Scientist? A question I got asked recently a lot by data science newbies as well as long-established CIOs and my answer ist probably not what you think:
In my opinion is a good Data Scientist somebody with, at least, a good knowledge of computer programming, statistics and the ability of understanding the customer´s business. Above all stands a strong interest in finding value in distributed data sources.

Debatable? Maybe. That’s why I forwarded this question to five other leading Data Scientists and Chief Data Officers in Germany, let’s have a look on their answers to this question and create your own idea of what a good Data Scientist might be:


Dr. Andreas Braun – Head of Global Data & Analytics @ Allianz SE

A data scientist connects thorough analytical and methodological understanding  with a technical hands-on/ engineering mentality.
Data scientists bridge between analytics, tech, and business. “New methods”, such as machine learning, AI, deep learning etc. are crucial and are continuously challenged and improved. (14 February 2017)


Dr. Helmut Linde – Head of Data Science @ SAP SE

The ideal data scientist is a thought leader who creates value from analytics, starting from a vision for improved business processes and an algorithmic concept, down to the technical realization in productive software. (09 February 2017)


Klaas Bollhoefer – Chief Data Scientist @ The unbelievable Machine Company

For me a data scientist thinks ahead, thinks about and thinks in-between. He/she is a motivated, open-minded, enthusiastic and unconventional problem solver and tinkerer. Being a team player and a lone wolf are two sides of the same coin and he/she definitely hates unicorns and nerd shirts. (27 March 2017)

 


Wolfgang Hauner – Chief Data Officer @ Munich Re

A data scientist is, from their very nature, interested in data and its underlying relationship and has the cognitive, methodical and technical skills to find these relationships, even in unstructured data. The essential prerequisites to achieve this are curiosity, a logical mind-set and a passion for learning, as well as an affinity for team interaction in the work place. (08 February 2017)

 


Dr. Florian Neukart – Principal Data Scientist @ Volkswagen Group of America

In my opinion, the most important trait seems to be driven by an irresistible urge to understand fundamental relations and things, whereby I summarize both an atom and a complex machine among “things”. People with this trait are usually persistent, can solve a new problem even with little practical experience, and strive for the necessary training or appropriate quantitative knowledge autodidactically. (08 February 2017)

Background idea:
That I am writing about atoms and complex machines has to do with the fact that I have been able to analyze the most varied data through my second job at the university, and that I am given a chance to making significant contributions to both machine learning and physics, is primarily rooted in curiosity. Mathematics, physics, neuroscience, computer science, etc. are the fundamentals that someone will acquire if she wants to understand. In the beginning, there is only curiosity… I hope this is not too out of the way, but I’ve done a lot of job interviews and worked with lots of smart people, and it has turned out that quantitative knowledge alone is not enough. If someone is not burning for understanding, she may be able to program a Convolutional Network from the ground but will not come up with new ideas.

 


Interview – Data Science in der Automobilbranche

Interview mit Herrn Dr. Florian Neukart, Principal Data Scientist der
Volkswagen Group of America

Herr Dr. Florian Neukart ist Principal Data Scientist der Volkswagen Group of America. Herr Neukart arbeitete nach seiner Promotion in der Informatik an der University of Brasov als Consultant für Business Analytics bei SAP und wechselte 2013 als Data Scientist zu Audi. 2015 übernahm er für mehr als ein Jahr die Funktion als Chief Technology Officer des Volkswagen Data Labs, bis er September 2016 zu Volkswagen in die USA wechselte. Darüber hinaus ist er bereits seit 2010 in der Forschung und Lehre für Quantum Computing, maschinelles Lernen und künstliche Intelligenz tätig und zudem Autor des Buches „Reverse Engineering the Mind – Consciously Acting Machines and Accelerated Evolution“.

Data Science Blog: Herr Dr. Neukart, Sie sind einer der führenden Data Scientists in der Automobilbranche. Schlägt Ihr Herz mehr für die automobile Praxis oder für die Forschung?

Das kann ich so klar nicht trennen – ich habe das Glück, seit Jahren in beiden Welten tätig sein zu können, und was für mich dabei den besonderen Reiz ausmacht, ist die Möglichkeit, neuste Forschung in die Praxis zu überführen, also anhand von realen Problemstellungen zu verifizieren, ob eine Theorie praxistauglich ist oder nicht. Umgekehrt gilt das genauso – es kommt vor, dass ich mich mit Fragestellungen konfrontiert sehe, für welche die erforderliche analytische Mathematik noch nicht entwickelt wurde, was wieder zu neuer Forschung und innovativen Ideen anregt. Schon mein ganzes Leben bin ich getrieben von Neugierde und will verstehen, wie Dinge funktionieren, unabängig davon, ob es sich um die Gruppendynamik und Selbstorganisation von Herzzellen, quantenphysikalisches Verhalten von subatomaren Teilchen, autonom agierende Fahrzeuge, Fluktuationsprognosen in Märkten oder die Auswertung und Interpretation von Sprache handelt. Dabei ist es zwar primär die Mathematik, die mir hilft, Zusammenhänge zu verstehen und zu interpretieren, aber erst die Technologien und Plattformen, die über die letzten Jahre entwickelt wurden, um etwa rechenintensive Mathematik zu parallelisieren, Daten im Hauptspeicher zu halten und effizient abzufragen, machen unsere Arbeit erst möglich und richtig interessant.

Data Science Blog: Welche Rolle spielt Data Science derzeit für die Automobilbranche? Sicherlich dreht sich gerade alles um das autonome Fahrzeug?

Natürlich sind selbstfahrende Fahrzeuge und Mobilität ein grosses Thema bei OEMs. Aber Data Science ist viel umfassender. Data Science hat bereits Einzug in die technische Entwicklung, Einkauf, Marketing, Logistik, Produktion, Sales, After Sales und Retail gehalten. Speziell der Connected Customer wird immer bedeutender, da sich die internationale Wettbewerbsfähigkeit in naher Zukunft auch über die neuen technischen und Serviceangebote definieren wird, die mit Hilfe von Data Science und maschinellem Lernen möglich werden. Bezogen auf selbstfahrende Fahrzeuge beginnen wir, das gesamte Ökosystem, bestehend aus Infrastruktur und unterschiedlichen Verkehrsteilnehmern, als Multi-Agentensystem zu betrachten. Vehicle to Vehicle und Vehicle to X-Kommunikation gewinnen an Bedeutung, und speziell die Einführung von sozialen Komponenten wird entscheidende Vorteile bringen. Beispielhaft gesprochen, können Ziele der Flotte sein, die Sicherheit für die Passagiere und andere Verkehrsteilnehmer (Passanten, Radfahrer, Motorräder, Fiaker :-)) zu maximieren und gleichzeitig den Verkehrsfluss zu optimieren. Es macht wenig Sinn, eine Ampel an einer Kreuzung auf Rot zu schalten, wenn die Kreuzung gefahrlos durchquert werden kann. Davon abgesehen werden in naher Zukunft alle Fahrzeuge mit ähnlichen Sensoren ausgestattet sein, etwa Kameras, LiDAR, Radar, Ultraschall und Mikrofonen zur akustischen Umfeldwahrnehmung. Ein weiteres Szenario versetzt die Stadtverwaltung in die Lage zu erkennen,  wo der Verkehrsfluss stockt und was getan werden muss, um diesen zu optimieren. Das „was getan werden muss“ ist extrem interessant – etwa könnte man die Strassen digital werden lassen, also Asphaltstraßen durch Glas ersetzen und durch OLEDs ergänzen. Damit sind dann dynamische Veränderungen der Verkehrsführung möglich. Materialtechnisch ist das machbar, denn die Oberflächenstruktur von Glas kann so entwickelt werden, dass dieses auch im Regen rutschfest ist. Glas kann zudem so flexibel und gleichzeitig stabil designet werden, dass auch darüberfahrende LKWs es nicht zum Brechen bringen. Die Abwärme der Displays kann zur Beheizung genutzt werden – es gibt somit auch im Winter keine Eisfahrbahnen mehr. Die Stadt kann sich selbst als Agent in die Multi-Agentenumgebung einbringen und zur Erreichung der definierten Ziele beitragen.

Data Science Blog: Was sind gerade heiße Themen im Automotive-Sektor? Und demgegenüber gestellt, welche Themen spielen in der KI-Forschung gerade eine größere Rolle?

Data Science hat in jedem Bereich Einzug gehalten. Jedes Thema ist auf seine Art „heiss“, egal ob es sich „nur“ um eine Marktprognose, die vorhin erwähnten Multi-Agentensysteme, kollaborative Arbeitsumgebungen, in denen Menschen und Roboter in der Produktion zusammenarbeiten, oder etwa persönliche Assistenten handelt. Nehmen wir eine Marktprognose als Beispiel. Hier sind für den menschlichen Entscheider nicht nur die internen Verkaufszahlen und alle Indikatoren, die etwa die Weltbank liefert, interessant, sondern auch die Gesellschaftsentwicklung und die politischen Strukturen.

In der KI-Forschung ist das für mich interessanteste Thema die generelle KI, also die Schaffung einer künstlichen Intelligenz, die domänenunabhängig komplexe Probleme selbstständig lösen kann. Vieles, was uns einfach scheint, hat sich aber als sehr komplex für KI-Systeme herausgestellt. Der Weg zur generellen KI und künstlichem Bewusstsein führt für mich über das Verständnis von Dingen, wobei ich hier sowohl ein Atom als auch eine komplexe Lebensform als „Ding“ zusammenfasse. Ein Teil, der uns (und Software) hilft, Dinge in deren Kontext und Umgebung einzubetten und zu beschreiben, ist die Sprache – etwa ist ein Reifen Teil eines Fahrzeugs und eine Schraube Teil eines Reifens. Das und die Kombinationen mit anderen Säulen der KI, wie etwa Computer Vision, Logik und Entscheidungsfindung, Maschine Learning und Multi-Agentensystemen (Multi-Agenten-Lernen), bringt uns der generellen und bewussten KI Schritt für Schritt näher, wobei ich mir hier nicht anmaße, eine Definition für Bewusstsein zu geben.

Data Science Blog: Welche Tools verwenden Sie bzw. Ihr Team bei Ihrer Arbeit? Setzen Sie dabei auch auf Open Source?

Wir sind „technolgieagnostisch“, wir versuchen also, für jeden Anwendungsfall die beste Technologie zu finden und einzusetzen. Das ist mal ein Tool oder eine Plattform von einem grossen Softwarehersteller, mal eine Lösung von einem Startup, wobei wir die meisten unserer Projekte doch in R oder Python umsetzen. Wir packen auch unsere Eigenentwicklungen in Libraries, die wir momentan aber noch ausschliesslich intern nutzen.


Data Science Blog: Was macht für Sie einen guten Data Scientist aus? Nach wem suchen Sie, wenn Sie einen Data Scientist einstellen?

Die wichtigste Eigenschaft scheint mir ein Drang nach dem Verständnis von Zusammenhängen und Dingen zu sein – eine starke Neugier – wobei ich unter „Dingen“ je nach Kontext Atome genauso wie komplexe Maschinen einordne.

Dass ich über Atome und komplexe Maschinen schreibe, hat damit zu tun, weil ich auch durch meinen zweiten Job an der Uni vielfältigste Daten analyiseren durfte. Und dass ich Beiträge zu Maschinenlernen und Physik verfasse, liegt tatsächlich in erster Linie an meiner Neugierde. Die Mathematik, Physik, Neurowissenschaft, Informatik … sind Grundlagen, die sich jemand aneignen wird, wenn sie/er verstehen will.

Data Science Blog: Wie sieht Ihrer Erfahrung nach der Arbeitsalltag als Data Scientist nach dem morgendlichen Café bis zum Feierabend aus?

Idealerweise startet der Tag nicht mit Emails :-). Wenn ich aus meiner Erfahrung sprechen darf, dann lässt einen die Data Science auch nach der Arbeit nicht los und die Grenzen von Beruf und Hobby überlagern sich irgendwann. Schon während dem morgendlichen Café tauschen wir uns über die jeweiligen Projekte aus – jeder sollte soviel wie möglich über alle Projekte wissen, um nicht lediglich Nischenwissen aufzubauen. Scrum hat sich auch in Bezug auf Data Science bewährt – je nachdem, wie viele Data Scientists an einem Thema arbeiten und wie viele Tasks anfallen, machen tägliche Stand-Ups Sinn – speziell wenn ein Projekt viele Subkomponenten hat, die als grosses Ganzes funktionieren müssen, hat so jeder Beteiligte immer vollste Transparenz. Die meiste Zeit fliesst natürlich in die Entwicklung der jeweiligen Prototypen / Produkte, aber etwa ein Drittel sollte reserviert sein für das Durcharbeiten von Papers mit aktuellsten Forschungsergebnissen und dem Einarbeiten in neue Technologien. Ich habe mal gesagt bekommen „Data Scientists sprechen nicht viel“, was für die Zeit während der Entwicklungsarbeit (und meiner Erfahrung nach auf die meisten Informatiker) auch zutrifft, da wir zumeist den Zustand eines komplexen Systems im Kopf behalten müssen – tatsächlich aber sprechen wir sehr gerne und viel über mögliche Arten, Probleme zu verstehen und zu lösen. Für meine Kollegen und mich ist Data Science kein bloßer Job, wir beschäftigen uns auch nach dem Feierabend noch mit relevanter Lektuere oder privaten Side-Projects – wie gesagt, wir haben das Glück, Job und Hobby zu vereinen.

Data Science Blog: Für alle Studenten, die demnächst ihren Bachelor, beispielsweise in Informatik, Mathematik oder Wirtschaftslehre, abgeschlossen haben, was würden sie diesen jungen Damen und Herren raten, wie sie einen guten Einstieg ins Data Science bewältigen können?

Natürlich ist ein solider methodischer Hintergrund, darunter Statistik, Mathematik und Informatik mit Fokus auf Machine Learning erforderlich, und auch das technische Wissen, die Theorie in Produkte zu überführen, also in Programmiersprachen und relevante Libraries, Datenbanken, Streaming und IoT. Das sind Kernkompetenzen, aber wie gesagt, am Anfang steht die Neugierde. Ich rate jedoch jedem, sich einem Problem nicht ausschließlich über die Theorie zu nähern, sondern erst zu versuchen, das Problem zu verstehen und das theoretische Wissen hands-on aufzubauen. Niemand weiss alles, und die Recherche rund um ein Problem ist ein wichtiger Lernprozess, aus dem man unglaublich viel mitnehmen kann. Data Science ist immer hands-on, und Neugierde führt zum Ziel.

Was macht einen guten Data Scientist aus? Kurzinterviews mit 6 führenden Experten!

Was macht eigentlichen einen guten Data Scientist aus?

Diese Frage wurde mir von Studenten und Absolventen, aber auch von alteingesessenen CIOs bereits häufiger gestellt. Gerade Deutsche Unternehmen sind hinsichtlich der Möglichkeiten mit Data Science noch nicht so recht aufgeklärt und auch erst seit wenigen Jahren bieten Hochschulen entsprechende Schwerpunkte oder sogar ganze Studiengänge an. Zumindest für Wirtschaftsunternehmen ist Data Science eine neue Disziplin und somit ist es auch nicht verwunderlich, dass für das Berufsbild des Data Scientists noch ganz unterschiedliche Auffassungen vorherrschen – Und ganz ehrlich: Die Recruiter mit ihren wirren Anforderungsprofilen machen es nicht besser!

Dieses Mal möchte ich selbst jedoch einen Schritt zurücktreten und keine konkrete Antwort auf die Frage geben, was denn einen guten Data Scientist ausmacht. Ich habe diese Frage einfach mal an Experten weitergeleitet, die ich zu den führenden Data Science Experten in Deutschland zähle. Und hier sind ihre Antworten: Read more