Posts

Artikelserie: BI Tools im Vergleich – Einführung und Motivation

„Mit welchem BI-Tool arbeitest du am liebsten?“ Mit dieser Frage werde ich dieser Tage oft konfrontiert. Meine klassische Antwort und eine typische Beraterantwort: „Es kommt darauf an.“ Nach einem Jahr als Berater sitzt diese Antwort sicher, aber gerade in diesem Fall auch begründet. Auf den Analytics und Business Intelligence Markt drängen jedes Jahr etliche neue Dashboard-Anbieter und die etablierten erweitern Services und Technik in rasantem Tempo. Zudem sind die Anforderungen an ein BI-Tool höchst unterschiedlich und von vielen Faktoren abhängig. Meine Perspektive, also die Anwenderperspektive eines Entwicklers, ist ein Faktor und auch der Kern dieser Artikelserie. Um die Masse an Tools auf eine machbare Anzahl runter zu brechen werde ich die bekanntesten Tools im Vergleich ausprobieren und hier vorstellen. Die Aufgabe ist also schnell erklärt: Ein Dashboard mit den gleichen Funktionen und Aussagen in unterschiedlichen Tools erstellen. Im Folgenden werde ich auch ein paar Worte zur Bewertungsgrundlage und zur Datengrundlage verlieren.

Erstmal kurz zu mir: Wie bereits erwähnt arbeite ich seit einem Jahr als Berater, genauer als Data Analyst in einem BI-Consulting Unternehmen namens DATANOMIQ. Bereits davor habe ich mich auf der anderen Seite der Macht, quasi als Kunde eines Beraters, viel mit Dashboards beschäftigt. Aber erst in dem vergangenen Jahr wurde mir die Fülle an BI Tools bewusst und der Lerneffekt war riesig. Die folgende Grafik zeigt alle Tools welche ich in der Artikelserie vorstellen möchte.

Gartner’s Magic Quadrant for Analytics and Business Intelligence Platform führt jedes Jahr eine Portfolioanalyse über die visionärsten und bedeutendsten BI-Tools durch, unter der genannten befindet sich nur eines, welches nicht in dieser Übersicht geführt wird, ich jedoch als potenziellen Newcomer für die kommenden Jahre erwarte. Trotz mittlerweile einigen Jahren Erfahrung gibt es noch reichlich Potential nach oben und viel Neues zu entdecken, gerade in einem so direkten Vergleich. Also seht mich ruhig als fortgeschrittenen BI-Analyst, der für sich herausfinden will, welche Tools aus Anwendersicht am besten geeignet sind und vielleicht kann ich dem ein oder anderen auch ein paar nützliche Tipps mit auf den Weg geben.

Was ist eigentlich eine „Analytical and Business Intelligence Platform“?

Für alle, die komplett neu im Thema sind, möchte ich erklären, was eine Analytical and Business Intelligence Platform in diesem Kontext ist und warum wir es nachfolgend auch einfach als BI-Tool bezeichnen können. Es sind Softwarelösungen zur Generierung von Erkenntnissen mittels Visualisierung und Informationsintegration von Daten. Sie sollten einfach handhabbar sein, weil der Nutzer für die Erstellung von Dashboards keine speziellen IT-Kenntnisse mitbringen muss und das Userinterface der jeweiligen Software einen mehr oder minder gut befähigt die meisten Features zu nutzen. Die meisten und zumindest die oben genannten lassen sich aber auch um komplexere Anwendungen und Programmiersprachen erweitern. Zudem bestimmt natürlich auch der Use Case den Schwierigkeitsgrad der Umsetzung.

Cloudbasierte BI Tools sind mittlerweile der Standard und folgen dem allgemeinen Trend. Die klassische Desktop-Version wird aber ebenfalls von den meisten angeboten. Von den oben genannten haben lediglich Data Studio und Looker keine Desktop- Version. Für den einfachen User macht das keinen großen Unterschied, welche Version man nutzt. Aber für das Unternehmen in Gesamtheit ist es ein wesentlicher Entscheidungsfaktor für die Wahl der Software und auch auf den Workflow des Developers bzw. BI-Analyst kann sich das auswirken.

Unternehmensperspektive: Strategie & Struktur

Die Unternehmensstrategie setzt einen wesentlichen Rahmen zur Entwicklung einer Datenstrategie worunter auch ein anständiges Konzept zur Data Governance gehört.

Ein wesentlicher Punkt der Datenstrategie ist die Verteilung der BI- und Datenkompetenz im Unternehmen. An der Entwicklung der Dashboards arbeiten in der Regel zwei Parteien, der Developer, der im Unternehmen meistens die Bezeichnung BI- oder Data Analyst hat, und der Stakeholder, also einzelner User oder die User ganzer Fachabteilungen.

Prognose: Laut Gartner wird die Anzahl der Daten- und Analyse-Experten in den Fachabteilungen, also die Entwickler und Benutzer von BI Tools, drei Mal so schnell wachsen verglichen mit dem bereits starken Wachstum an IT-Fachkräften.

Nicht selten gibt es für ein Dashboard mehrere Stakeholder verschiedener Abteilungen. Je nach Organisation und Softwarelösung mit unterschiedlich weitreichenden Verantwortlichkeiten, was die Entwicklung eines Dashboards an geht.

Die obige Grafik zeigt die wesentlichen Prozessschritte von der Konzeption bis zum fertigen Dashboard und drei oft gelebte Konzepte zur Verteilung der Aufgaben zwischen dem User und dem Developer. Natürlich handelt es sich fast immer um einen iterativen Prozess und am Ende stellen sich auch positive Nebenerkenntnisse heraus. Verschiedene Tools unterstützen durch Ihre Konfiguration und Features verschiedene Ansätze zur Aufgabenverteilung, auch wenn mit jedem Tool fast jedes System gelebt werden kann, provozieren einige Tools mit ihrem logischen Aufbau und dem Lizenzmodell zu einer bestimmten Organisationsform. Looker zum Beispiel verkauft mit der Software das Konzept, dem User eine größere Möglichkeit zu geben, das Dashboard in Eigenregie zu bauen und gleichzeitig die Datenhoheit an den richtigen Stellen zu gewährleisten (mittlerer Balken in der Grafik). Somit wird dem User eine höhere Verantwortung übertragen und weit mehr Kompetenzen müssen vermittelt werden, da der Aufbau von Visualisierung ebenfalls Fehlerpotential in sich birgt. Ein Full‑Service hingegen unterstützt das Konzept fast aller Tools durch Zuweisen von Berechtigungen. Teilweise werden aber gewisse kostenintensive Features nicht genutzt oder auf Cloud-Lizenzen verzichtet, so dass jeder Mitarbeiter unabhängig auf einer eigenen Desktop-Version arbeitet, am Ende dann leider die Single Source of Truth nicht mehr gegeben ist. Denn das führt eigentlich gezwungenermaßen dazu, dass die User sich aus x beliebigen Datentöpfen bedienen, ungeschultes Personal falsche Berechnungen anstellt und am Ende die unterschiedlichen Abteilungen sich mit schlichtweg falschen KPIs überbieten. Das spricht meistens für ein Unternehmen ohne vollumfängliches Konzept für Data Governance bzw. einer fehlenden Datenstrategie.

Zu dem Thema könnte man einen Roman schreiben und um euch diesen zu ersparen, möchte ich kurz die wichtigsten Fragestellungen aus Unternehmensperspektive aufzählen, ohne Anspruch auf Vollständigkeit:

  • Wann wird ein Return on Invest (ROI) realisiert werden?
  • Wie hoch ist mein Budget für BI-Lösungen?
  • Sollen die Mitarbeiter mit BI-Kompetenz zentral oder dezentral organisiert sein?
  • Wie ist meine Infrastruktur aufgebaut? Cloudbasiert oder on Premise?
  • Soll der Stakeholder/User Zeit-Ressourcen für den Aufbau von Dashboards erhalten?
  • Über welche Skills verfügen die Mitarbeiter bereits?
  • Welche Autorisierung in Bezug auf die Datensichtbarkeit und -manipulation haben die jeweiligen Mitarbeiter der Fachabteilungen?
  • Bedarf an Dashboards: Wie häufig werden diese benötigt und wie oft werden bestehende Dashboards angepasst?
  • Kann die Data Exploration durch den Stakeholder/User einen signifikanten Mehrwert liefern?
  • Werden Dashboards in der Regel für mehrere Stakeholder gebaut?

Die Entscheidung für die Wahl eines Dashboards ist nicht nur davon abhängig, wie sich die Grafiken von links nach rechts schieben lassen, sondern es handelt sich auch um eine wichtige strategische Frage aus Unternehmersicht.

Ein Leitsatz hierbei sollte lauten:
Die Strategie des Unternehmens bestimmt die Anforderungen an das Tool und nicht andersrum!

Perspektive eines Entwicklers:      Bewertungsgrundlage der Tools

So jetzt Mal Butter bei die Fische und ab zum Kern des Artikels. Jeder der Artikel wird aus den folgenden Elementen bestehen:

  • Das Tool:
    • Daten laden
    • Daten transformieren
    • Daten visualisieren
    • Zukunftsfähigkeit am Beispiel von Pythonintegration
    • Handhabbarkeit
  • Umweltfaktoren:
    • Community
    • Dokumentation
    • Features anderer Entwickler(-firmen) zur Erweiterung
    • Lizenzmodell
      • Cloud (SaaS) ODER on premise Lizenzen?
      • Preis (pro Lizenz, Unternehmenslizenz etc.)
      • Freie Version

 

Im Rahmen dieser Artikelserie erscheinen im Laufe der kommenden Monate folgende Artikel zu den Reviews der BI-Tools:

  1. Power BI von Microsoft
  2. Tableau
  3. MicroStrategy (erscheint demnächst)
  4. Looker (erscheint demnächst)
  5. Qlik Sense (erscheint demnächst)

Über einen vorausgehend veröffentlichten Artikel wird die Datengrundlage erläutert, die für alle Reviews gemeinsam verwendet wird: Vorstellung der Datengrundlage

Wie Wirtschaftsprüfer mit auditbee die Nadel im Heuhaufen finden – Teil 2/2

Dies ist Teil 2/2 des Artikels, lesen Sie hier Wie Wirtschaftsprüfer mit auditbee die Nadel im Heuhaufen finden – Teil 1/2.

Auditbee – Datenanalyse mit Qlik Sense in der Wirtschaftsprüfung

Wir sind es mittlerweile gewohnt, vieles einfach per Knopfdruck mit unserer App zu erledigen. Warum sollte etwas anderes für die Datenanalyse gelten?

Das Ziel von auditbee ist, die Datenanalyse durchgängig in die Prüfung zu integrieren. Jeder Prüfer hat mit dem auditbee Dashboard die Möglichkeit, Daten schnell und einfach selbst zu analysieren. Nicht nur für Journal Entry Tests, sondern auch zur Prüfungsplanung, Verständnisgewinnung, Risikobeurteilung und Dokumentation.

Hierzu werden die aus der Finanzbuchhaltung extrahierten GDPdU-Daten vom auditbee Team als Service verarbeitet und dem Prüfer als abgestimmtes Modell zu Verfügung gestellt.

auditbee basiert auf der Business Intelligence Software Qlik Sense, eine in vielen Unternehmen weltweit eingesetzte Reporting Lösung. Mit Qlik Sense werden die Daten über grafische Objekte dargestellt, damit Sie für den Anwender leicht zu erfassen sind.

Mit auditbee auf Basis von Qlik Sense entsteht aus den Daten des Geschäftsjahres, dem Vorjahr und dem Folgejahr ein Modell mit verschiedenen Analysen zur Beurteilung von Geschäftsentwicklungen, für analytische Prüfungshandlungen und Journal Entry Tests. Darüber hinaus werden die Going Concern Annahme (Fortführungsprognose), Performance- und Risikoindikatoren automatisiert anhand von Erwartungswerten oder eines Risiko-Scores beurteilt.

In auditbee sind eine Vielzahl an Dashboards mit unterschiedlichen Themen eingerichtet. Jedes enthält vordefinierte Journal Entry Tests, um prüferische Fragen zu ergründen. Zudem ermöglichen die verschiedenen grafischen Objekte Ad-hoc Analysen – Zeitreihenentwicklung, Kennzahlen, Rangfolgen, etc. – um Auffälligkeiten auf den Grund zu gehen.

Abb1: Bilanzanalyse und Bestimmung der Wesentlichkeit

Abb1: Bilanzanalyse und Bestimmung der Wesentlichkeit

Abb2: Analyse des Buchungsverhaltens nach Nutzer, Erfassungsdatum und Posten

Abb2: Analyse des Buchungsverhaltens nach Nutzer, Erfassungsdatum und Posten

Abb3: Analyse des Zahlungsverhaltens nach Kunde und Zahlungsbedingung

Abb3: Analyse des Zahlungsverhaltens nach Kunde und Zahlungsbedingung

Der Audit Workflow führt den Prüfer durch die verschiedenen Prüfungsgebiete – von der Bilanzanalyse, über die Beurteilung von Performance- und Risikoindikatoren bis hin zu einer Vielzahl an themenbezogener Journal Entry Tests.

Abb4: Teilausschnitt des Audit Workflows in auditbee

Abb4: Teilausschnitt des Audit Workflows in auditbee

Prüfung mit auditbee – Beispiel: Beurteilung der zeitnahen Erfassung von Umsatzerlösen

Die Prüfung erfolgt immer nach einem ähnlichen Schema. Der Prüfer hat eine Frage, mit der er ein Fehlerrisiko einschätzen und Prüfungsaussagen treffen möchte. Mit der Frage, welche Umsatzbuchungen nicht zeitnah erfasst wurden, wird z.B. der periodengerechte Ausweis überprüft. Ein Kontoblatt kann diese Frage in der Regel nicht beantworten, weil das Erfassungsdatum nicht vorhanden ist. In auditbee sind jedoch alle extrahierten Felder aus der Finanzbuchhaltung miteinander als Modell verbunden. Deswegen können auch alle Datensätze daraufhin überprüft werden, wie groß die Zeitspanne zwischen dem Buchungs- und dem Erfassungsdatum ist. Das Erfassungsdatum ist das mit Eingabe im System protokolierte Datum. Das Buchungsdatum ist dagegen frei wählbar, sollte aber auf den Tag der Lieferung-/Leistungserbringung datiert sein.

Leistungen sind innerhalb weniger Tage abzurechnen und in der Buchhaltung zu erfassen (§ 239 Abs. 2 HGB). Wenn die Zeitspanne z.B. mehr als 30 Tage beträgt, gelten diese Buchungen als auffällig. Es besteht ein Risiko, dass entweder organisatorische Mängel bestehen (Freigaben bzw. Abrechnungen dauern zu lange) oder Umsätze abgesprochen und damit Fehlerhaft sein können. Buchungen am Jahresende tragen ein höheres Risiko. Rechnungen können z.B. nur deshalb gestellt worden sein, weil der Einkaufsverantwortliche des Kunden noch Budget hatte und dieses ausschöpfen wollte. Anders herum hat möglicherweise das Unternehmen vorzeitig Leistungen zum Jahresende abgerechnet, obwohl diese noch nicht vollständig erbracht sind. In beiden Fällen besteht das Risiko der Periodenverschiebung von Umsätzen.

Abb5: Übersicht Umsatzerlöse im Geschäftsjahr

Abb5: Übersicht Umsatzerlöse im Geschäftsjahr

Über die vordefinierte Journal Entry Test Abfrage – zeitnah BUDAT – werden dem Prüfer per Knopfdruck alle Buchungszeilen angezeigt, die das Merkmal – Erfassung zu Buchung > 30 Tage – aufweisen.

Abb6: JET-Abfrage – Alle Buchungen mit einer Zeitspanne > 30 Tagen

Von den Belegen wählt der Prüfer alle Buchungen per Dezember aus, um die richtige Periodenabgrenzung zu überprüfen.

Abb7: Dezemberbuchungen innerhalb der JET Analyse

Abb7: Dezemberbuchungen innerhalb der JET Analyse

Innerhalb der Umsatzbuchungen sind für den Prüfer solche Buchungen relevant, die an bestimmte Kunden gestellt wurden (wegen des Risikos auf dolose Handlungen).

Abb8: Filterung auffälliger Kunden

Abb8: Filterung auffälliger Kunden

Als letzten Filter wählt der Prüfer alle Beträge oberhalb der Nichtaufgriffsgrenze aus

"Abb9:

Abb9: Schichtungen nach Beträgen > 25k

Aus den verbleibenden Belegen wählt der Prüfer eine Stichprobe bewusst aus, um anhand von Nachweisen (Rechnungen, Lieferscheine, etc.) zu überprüfen, ob die Buchungen berechtigt, richtig und periodengerecht erfolgt sind. Hierzu kann er die Belegliste aus auditbee in Excel exportieren, um Sie dem Buchhalter als Belegauswahl zuzusenden. Außerdem dokumentiert der Prüfer seine Ergebnisse in der Qlik Sense Story.

Abb10: Strukturierte bewusste Belegauswahl – 4 von 13 Belege nach

Abb10: Strukturierte bewusste Belegauswahl – 4 von 13 Belege nach

Zusammenfassung und Ausblick

Datenanalysen ermöglichen dem Prüfer sehr tiefe Einblicke in die Geschäftsentwicklung des Mandanten. So kann er nicht nur sein Verständnis vom Unternehmen stetig weiterentwickeln, die Datenanalyse hilft ihm auch, Massendaten angemessen zu überprüfen.

Damit der Prüfer mit der Datenanalyse die Nadel im Heuhaufen finden, relevante Entwicklungen erkennen und Zusammenhänge besser verstehen kann, muss sie jedoch in die Prüfung integriert sein. Das bedeutet, dass sie nicht nur für Journal Entry Tests durch Spezialisten, genutzt wird, sondern jedes einzelne Teammitglied selbst anhand der Daten Auffälligkeiten leicht erkennen und überprüfen kann. Außerdem wird die Analyse zur Risikobeurteilung verwendet. Dadurch können unkritische Bereiche von weitergehenden Prüfungshandlungen ausgenommen werden. Durch die Fokussierung und das Filtern auffälliger Datensätze kann schließlich der Umfang von Einzelbelegprüfungen deutlich verringert werden.

auditbee übernimmt als Service die Datenaufbereitung und stellt dem Prüfer ein fertig abgestimmtes Dashboard-Modell zur Verfügung, dass der Prüfer mit der BI Software Qlik Sense nutzen kann. Damit baut die Kanzlei Risiken ab, weil Sie weniger von Spezialisten abhängig ist. Zum anderen enthält das auditbee Modell jede Menge menschlichen Sachverstand und Logik in Form von Journal Entry Test Abfragen, Kennzahlen bis hin zu dynamischen Beurteilungen. Dadurch spart sich der Prüfer die Zeit, die entsprechenden Fragen und Analysen selbst mit Excel oder einem anderen Softwarelösungen zu modellieren.

Wirtschaftsprüfung ist Teamarbeitet. Jeder bringt seine individuellen Stärken und Fachwissen ein. Deshalb braucht das Team immer auch jemanden, dessen Stärke in der Analyse liegt, um schnell und effizient Auffälligkeiten zu erkennen und diese durch richtige Fragen und Nachweise angemessen zu würdigen. Jedoch ist der Spezialist Dank auditbee nicht mehr alleine. Das ganze Team hat nun Zugriff auf alle GDPdU Daten aus der Finanzbuchhaltung und auch die Dokumentation erfolgt innerhalb einer Lösung – und das ist auditbee!

Wie Wirtschaftsprüfer mit auditbee die Nadel im Heuhaufen finden – Teil 1/2

ERP, CRM, FiBu – täglich durchlaufen unzählige Geschäftsprozesse die IT-Systeme von Unternehmen. Es entstehen Ströme aus Massendaten, die am Ende in der Finanzbuchhaltung münden und dort automatisch auf Konten erfasst werden.

Mit auditbee können Wirtschaftsprüfer diese Datenströme wirtschaftlich und einfach analysieren. auditbee integriert die Datenanalyse in den gesamten Prüfungsverlauf und macht Schluss mit ausgedruckten Kontenblättern, komplizierten Datenabfragen sowie dem Zufall bei der Fehlersuche.

Wirtschaftsprüfer und die Nadel im Heuhaufen

Die Finanzdaten von Unternehmen sind wichtig für viele Adressaten – Gesellschafter, Banken, Kunden, etc. Deswegen ist es die gesetzliche Aufgabe des Wirtschaftsprüfers, wesentliche Fehler in der Buchhaltung und dem Jahresabschluss aufzudecken. Dazu überprüft er einzelne Sachverhalte mit hohem Fehlerrisiko und Prozesse, bei denen systematische Fehler in Summe von Bedeutung für den Abschluss sein können (IDW PS 261 n.F.).

Die Prüfung gleicht jedoch der Suche nach der Nadel im Heuhaufen!

Fehler sind menschlich und können passieren. Das Problem ist, dass sie im gesamten Datenhaufen gut verborgen sein können – und je größer dieser ist, desto schwieriger wird die Suche. Neben Irrtümern können Fehler auch durch absichtliche Falschdarstellungen und bewusste Täuschungen entstehen. Um solche dolosen Handlungen festzustellen, hat der Prüfer häufig tief im Datenhaufen zu graben, weil sie gut versteckt sind. Deswegen sind auch nach international anerkannten Prüfungsgrundsätzen die Journalbuchungen zu analysieren (ISA 240.32).

Die Suche nach dem Fehler

Noch vor einigen Jahren bestand die Prüfung hauptsächlich darin, eine Vielzahl an bewusst ausgewählten Belegen als Stichprobe in Papier einzusehen und mit den Angaben in der Buchhaltung abzustimmen – analog mit Stift und Textmarker auf ausgedruckten Kontenblättern. Dafür mussten Unmengen Belege kopiert und Kontenblätter ausgedruckt werden. Das hat nicht nur Papier verschwendet, sondern auch sehr viel der begrenzten Zeit gekostet. Zu allen Übels mussten die so entstandenen Prüfungsakten noch Kistenweise zum Mandanten hin- und wieder zurück transportiert werden. Es gab keine digitale Alternative.

Heute haben viele Unternehmen ihre Belege digitalisiert und setzen Dokumentenmanagement-systeme ein. Eine enorme Arbeitserleichterung für den Prüfer, der jetzt alle Belege digital einsehen kann. Weil der Datenhaufen jedoch gleichzeitig immer weiter wächst, entstehen neue Herausforderungen. Die Datenmenge als Grundgesamtheit wirkt sich beispielsweise auf den Umfang einer Stichprobe aus. Um Massendaten aus automatisierten Geschäftsprozessen wirtschaftlich überprüfen zu können, sind daher Datenanalysen unerlässlich.

Mit dem BMF-Schreiben „Grundsätze zum Datenzugriff und zur Prüfbarkeit digitaler Unterlagen – GDPdU“ wurde im Jahr 2001 der Grundstein für die Datenanalyse in der Prüfung gelegt. Der Nachfolger „Grundsätze zur ordnungsmäßigen Führung und Aufbewahrung von Büchern, Aufzeichnungen und Unterlagen in elektronischer Form sowie zum Datenzugriff – GoBD“ wurde 2014 veröffentlicht. Mit den BMF-Schreiben hat eine gewisse Normierung der steuerlich relevanten Daten (GDPdU/GoBD-Daten) durch die Finanzverwaltung stattgefunden. Diese lassen sich aus jeder Buchhaltungssoftware extrahieren und umfassen sämtliche Journalbuchungen.

Mit Datenanalysen kann der Prüfer nicht nur das Unternehmen und dessen Entwicklung besser verstehen. Dank der GDPdU/GoBD-Daten können Fehler mit auditbee viel leichter gefunden werden, weil sich der Prüfer jeden Halm im Datenhaufen ganz genau ansehen, Auffälligkeiten erkennen und hinterfragen kann. Mit der Analyse und Risikobeurteilung wird zudem die Belegprüfung deutlich reduziert, weil sich der Prüfer bei der Auswahl auf auffällige und risikobehaftete Daten beschränken kann.

Integration der Datenanalyse in die Prüfung – Spezialisten oder Self-Service

Das Tagesgeschäft des Wirtschaftsprüfers ist sehr vielfältig – Prüfung, Unternehmensbewertung, Steuerberatung. Deshalb erfolgt die Datenanalyse regelmäßig durch Spezialisten. Das sind IT-affine Mitarbeiter innerhalb der Kanzlei, die sich im Rahmen von Projekten selbständig weitergebildet oder eine Qualifikation als CISA bzw. IT Auditor haben.

Der Spezialist überprüft die Journalbuchungen (Journal Entry Tests) mit Excel oder einer Analysesoftware für Prüfer (DATEV Datenanalyse, IDEA, ACL). Oft ist er aber nicht mehr an der weiteren Prüfung beteiligt. Stattdessen führt der Prüfer mit seinen Assistenten als Team vor Ort die Hauptprüfung durch. Dabei werden häufig Konten erneut für die Belegauswahl in Excel gezogen. Das führt nicht nur zu Medienbrüchen, sondern erhöht auch die Wahrscheinlichkeit für Doppelarbeit, Fehler und Missverständnisse.

Neben alten Gewohnheiten und Zeitdruck ist die Analysesoftware oft selbst ein Grund, weshalb die Datenanalyse in der Praxis selten in die Prüfung integriert ist. Schließlich erfordern die Softwarelösungen einiges an IT-Kenntnis in der Einrichtung und Bedienung. Zudem ist die Interpretation von überwiegend in Tabellen dargestellten Daten schwierig und umständlich.

Mit auditbee als vorbereitete Dashboard Lösung auf Basis von Qlik Sense kann jeder im Team seine Daten selbst analysieren. Damit wird die Datenanalyse in die Prüfung integriert und kann ihr volles Potential entfalten.

auditbee als Self-Service BI-Lösung lässt sich so einfach bedienen, dass das Prüfungsteam nicht mehr von einzelnen Spezialisten abhängig ist. Damit aber nicht jeder bei 0 anfängt, werden die Daten bereits vom auditbee Team als Service in die BI-Software Qlik Sense geladen und abgestimmt. Zudem sind bereits verschiedene Dashboards zur Analyse eingerichtet. Der einzelne Anwender kann sich mit auditbee Daten und Kennzahlen ansehen, ohne eine einzige Formel eingeben zu müssen. Die Navigation und das dynamische Filtern der Daten im gesamten Dashboard erfolgt mit der Maus und das nahezu in Echtzeit. Anstatt von Abfragen mit langen Ladezeiten und Duplizierung der Daten können diese sofort im gesamten auditbee Modell nach unterschiedlichen Dimensionen (mehrdimensional) analysiert werden.

Mit auditbee zur strukturierten Belegauswahl

Bei der traditionellen bewussten Auswahl sucht sich der Prüfer Belege nach eigenem Ermessen anhand der Informationen auf dem Kontoblatt aus. Das sind regelmäßig Betrag, Buchungsdatum oder Buchungstext. Diese Methode ist relativ einseitig, eindimensional und vorhersehbar, weil vom Prüfer eher größere Beträge oder auffällige Texte ausgewählt werden. Dadurch kann es sein, dass absichtliche Falschdarstellungen und Irrtümer bei betragsmäßig kleineren Belegen nicht in die Stichprobe einbezogen werden und somit ungeprüft bleiben.

Zufalls- sowie statistische Auswahlverfahren (u.a. Monetary Unit Sampling) können wegen der Schwächen der traditionellen Methode eine Alternative sein. Doch auch sie haben einen relevanten Nachteil. Der Umfang der Stichprobe ist oftmals sehr hoch, um ein hinreichendes Signifikanzniveau (Alpha 0,05) zu erreichen. Ein Grund für den Prüfer, sich möglicherweise doch für die bewusste Auswahl zu entscheiden, um die Zeit für Belegabstimmungen zu verkürzen.

Durch die Verbindung sämtlicher FiBu-Daten und der Darstellung weiterer Dimensionen – Referenz, Beleg Art, Erfassungsdatum, Debitor, etc. – ermöglicht auditbee dem Prüfer eine dritte Methode. Bei der strukturierten Belegauswahl fokussiert sich der Prüfer auf Auffälligkeiten und wählt seine Stichprobe aus einer deutlich kleineren Zahl an Belegen bewusst oder per Zufall aus.

Der Prüfer analysiert nicht alles auf einmal, sondern betrachtet nur solche Daten, die aus Sicht des Themas und der zu prüfenden Frage relevant sind. Beispiel: Es werden nur die Daten im Umsatzbereich betrachtet, die das Merkmal „nicht zeitnah erfasst“ aufweisen. Ausgehend von der Frage kategorisiert der Prüfer die Daten nach der Höhe des Fehlerrisikos (Risikobeurteilung nach IDW PS 261 n.F.). Beispielsweise können automatisierte Buchungen ein geringes Fehlerrisiko aufweisen, Sachbuchungen oder Buchungen bestimmter Mitarbeiter dagegen ein höheres. Nur noch Belege mit höherem Risiko sowie andere Auffälligkeiten ergründet der Prüfer weiter im Detail. Hierzu filtert er die Daten anhand der auffälligen Dimensionen (Erfasser, Debitor, Monat, etc.). Am Ende bleiben nur noch wenige auffällige Datensätze übrig, aus der der Prüfer seine Stichprobe auswählt.

Bezogen auf die Nadel im Heuhaufen zeigen die 3 Methoden folgendes Bild.

Methode 1: Der Prüfer trägt nur die großen Strohalme von der Oberfläche ab, um zu sehen, ob darunter die Nadel verborgen ist (traditionelle Belegauswahl anhand des Kontoblattes).

Methode 2: Der Prüfer greift an verschiedenen Stellen in den Heuhaufen hinein, um per Zufall die Nadel zu finden (statistische Zufallsauswahlverfahren).

Methode 3: Der Prüfer sieht sich den Heuhaufen erst genau an, ob irgendwelche Stellen durchgewühlt aussehen (Auffälligkeiten), hier trägt er den Teil ab (Filtern der auffälligen Daten) und durchsucht systematisch den kleinen Haufen (strukturierte Auswahl).

Dies ist Teil 2/2 des Artikels, lesen Sie hier den zweiten Artikel Wie Wirtschaftsprüfer mit auditbee die Nadel im Heuhaufen finden – Teil 2/2.

Process Paradise by the Dashboard Light

The right questions drive business success. Questions like, “How can I make sure my product is the best of its kind?” “How can I get the edge over my competitors?” and “How can I keep growing my organization?” Modern businesses take their questions further, focusing on the details of how they actually function. At this level, the questions become, “How can I make my business as efficient as possible?” “How can I improve the way my company does business?” and even, “Why aren’t my company’s processes working as they should?”


Read this article in German:

Mit Dashboards zur Prozessoptimierung


To discover the answers to these questions (and many others!), more and more businesses are turning to process mining. Process mining helps organizations unlock hidden value by automatically collecting information on process models from across the different IT systems operating within a business. This allows for continuous monitoring of an organization’s end-to-end process landscape, meaning managers and staff gain specific operational insights into potential risks—as well as ongoing improvement opportunities.

However, process mining is not a silver bullet that turns data into insights at the push of a button. Process mining software is simply a tool that produces information, which then must be analyzed and acted upon by real people. For this to happen, the information produced must be available to decision-makers in an understandable format.

For most process mining tools, the emphasis remains on the sophistication of analysis capabilities, with the resulting data needing to be interpreted by a select group of experts or specialists within an organization. This necessarily creates a delay between the data being produced, the analysis completed, and actions taken in response.

Process mining software that supports a more collaborative approach by reducing the need for specific expertise can help bridge this gap. Only if hypotheses, analysis, and discoveries are shared, discussed, and agreed upon with a wide range of people can really meaningful insights be generated.

Of course, process mining software is currently capable of generating standardized reports and readouts, but in a business environment where the pace of change is constantly increasing, this may not be sufficient for very much longer. For truly effective process mining, the secret to success will be anticipating challenges and opportunities, then dealing with them as they arise in real time.

Dashboards of the future

To think about how process mining could improve, let’s consider an analog example. Technology evolves to make things easier—think of the difference between keeping track of expenditure using a written ledger vs. an electronic spreadsheet. Now imagine the spreadsheet could tell you exactly when you needed to read it, and where to start, as well as alerting you to errors and omissions before you were even aware you’d made them.

Advances in process mining make this sort of enhanced assistance possible for businesses seeking to improve the way they work. With the right process mining software, companies can build tailored operational cockpits that unite real-time operational data with process management. This allows for the usual continuous monitoring of individual processes and outcomes, but it also offers even clearer insights into an organization’s overall process health.

Combining process mining with an organization’s existing process models in the right way turns these models from static representations of the way a particular process operates, into dynamic dashboards that inform, guide and warn managers and staff about problems in real time. And remember, dynamic doesn’t have to mean distracting—the right process mining software cuts into your processes to reveal an all-new analytical layer of process transparency, making things easier to understand, not harder.

As a result, business transformation initiatives and other improvement plans and can be adapted and restructured on the go, while decision-makers can create automated messages to immediately be advised of problems and guided to where the issues are occurring, allowing corrective action to be completed faster than ever. This rapid evaluation and response across any process inefficiencies will help organizations save time and money by improving wasted cycle times, locating bottlenecks, and uncovering non-compliance across their entire process landscape.

Dynamic dashboards with Signavio

To see for yourself how the most modern and advanced process mining software can help you reveal actionable insights into the way your business works, give Signavio Process Intelligence a try. With Signavio’s Live Insights, all your process information can be visualized in one place, represented through a traffic light system. Simply decide which processes and which activities within them you want to monitor or understand, place the indicators, choose the thresholds, and let Signavio Process Intelligence connect your process models to the data.

Banish multiple tabs and confusing layouts, amaze your colleagues and managers with fact-based insights to support your business transformation, and reduce the time it takes to deliver value from your process management initiatives. To find out more about Signavio Process Intelligence, or sign up for a free 30-day trial, visit www.signavio.com/try.

Process mining is a powerful analysis tool, giving you the visibility, quantifiable numbers, and information you need to improve your business processes. Would you like to read more? With this guide to managing successful process mining initiatives, you will learn that how to get started, how to get the right people on board, and the right project approach.

Mit Dashboards zur Prozessoptimierung

Geschäftlicher Erfolg ergibt sich oft aus den richtigen Fragen – zum Beispiel: „Wie kann ich sicherstellen, dass mein Produkt das beste ist?“, „Wie hebe ich mich von meinen Mitbewerbern ab?“ und „Wie baue ich mein Unternehmen weiter aus?“ Moderne Unternehmen gehen über derartige Fragen hinaus und stellen vielmehr die Funktionsweise ihrer Organisation in den Fokus. Fragen auf dieser Ebene lauten dann: „Wie kann ich meine Geschäftsprozesse so effizient wie möglich gestalten?“, „Wie kann ich Zusammenarbeit meiner Mitarbeiter verbessern?“ oder auch „Warum funktionieren die Prozesse meines Unternehmens nicht so, wie sie sollten?“


Read this article in English: 
“Process Paradise by the Dashboard Light”


Um die Antworten auf diese (und viele andere!) Fragen zu erhalten, setzen immer mehr Unternehmen auf Process Mining. Process Mining hilft Unternehmen dabei, den versteckten Mehrwert in ihren Prozessen aufzudecken, indem Informationen zu Prozessmodellen aus den verschiedenen IT-Systemen eines Unternehmens automatisch erfasst werden. Auf diese Weise kann die End-to-End-Prozesslandschaft eines Unternehmens kontinuierlich überwacht werden. Manager und Mitarbeiter profitieren so von operativen Erkenntnissen und können potenzielle Risiken ebenso erkennen wie Möglichkeiten zur Verbesserung.

Process Mining ist jedoch keine „Wunderwaffe“, die Daten auf Knopfdruck in Erkenntnisse umwandelt. Eine Process-Mining-Software ist vielmehr als Werkzeug zu betrachten, das Informationen erzeugt, die anschließend analysiert und in Maßnahmen umgesetzt werden. Hierfür müssen die generierten Informationen den Entscheidungsträgern jedoch auch in einem verständlichen Format zur Verfügung stehen.

Bei den meisten Process-Mining-Tools steht nach wie vor die Verbesserung der Analysefunktionen im Fokus und die generierten Daten müssen von Experten oder Spezialisten innerhalb einer Organisation bewertet werden. Dies führt zwangsläufig dazu, dass es zwischen den einzelnen Schritten zu Verzögerungen kommt und die Abläufe bis zur Ergreifung von Maßnahmen ins Stocken geraten.

Process-Mining-Software, die einen kooperativeren Ansatz verfolgt und dadurch das erforderliche spezifische Fachwissen verringert, kann diese Lücke schließen. Denn nur wenn Informationen, Hypothesen und Analysen mit einer Vielzahl von Personen geteilt und erörtert werden, können am Ende aussagekräftige Erkenntnisse gewonnen werden.

Aktuelle Process-Mining-Software kann natürlich standardisierte Berichte und Informationen generieren. In einem sich immer schneller ändernden Geschäftsumfeld reicht dies jedoch möglicherweise nicht mehr aus. Das Erfolgsgeheimnis eines wirklich effektiven Process Minings besteht darin, Herausforderungen und geschäftliche Möglichkeiten vorherzusehen und dann in Echtzeit auf sie zu reagieren.

Dashboards der Zukunft

Nehmen wir ein analoges Beispiel, um aufzuzeigen, wie sich das Process Mining verbessern lässt. Der technologische Fortschritt soll die Dinge einfacher machen: Denken Sie beispielsweise an den Unterschied zwischen der handschriftlichen Erfassung von Ausgaben und einem Tabellenkalkulator. Stellen Sie sich nun vor, die Tabelle könnte Ihnen genau sagen, wann Sie sie lesen und wo Sie beginnen müssen, und würde Sie auf Fehler und Auslassungen aufmerksam machen, bevor Sie überhaupt bemerkt haben, dass sie Ihnen passiert sind.

Fortschrittliche Process-Mining-Tools bieten Unternehmen, die ihre Arbeitsweise optimieren möchten, genau diese Art der Unterstützung. Denn mit der richtigen Process-Mining-Software können individuelle operative Cockpits erstellt werden, die geschäftliche Daten in Echtzeit mit dem Prozessmanagement verbinden. Der Vorteil: Es werden nicht nur einzelne Prozesse und Ergebnisse kontinuierlich überwacht, sondern auch klare Einblicke in den Gesamtzustand eines Unternehmens geboten.

Durch die richtige Kombination von Process Mining mit den vorhandenen Prozessmodellen eines Unternehmens werden statisch dargestellte Funktionsweisen eines bestimmten Prozesses in dynamische Dashboards umgewandelt. Manager und Mitarbeiter erhalten so Warnungen über potenzielle Probleme und Schwachstellen in Ihren Prozessen. Und denken Sie daran, dynamisch heißt nicht zwingend störend: Die richtige Process-Mining-Software setzt an der richtigen Stelle in Ihren Prozessen an und bietet ein völlig neues Maß an Prozesstransparenz und damit an Prozessverständnis.

Infolgedessen können Transformationsinitiativen und andere Verbesserungspläne jederzeit angepasst und umstrukturiert werden und Entscheidungsträger mittels automatisierter Nachrichten sofort über Probleme informiert werden, sodass sich Korrekturmaßnahmen schneller als je zuvor umsetzen lassen. Der Vorteil: Unternehmen sparen Zeit und Geld, da Zykluszeiten verkürzt, Engpässe lokalisiert und nicht konforme Prozesse in der Prozesslandschaft der Organisation aufgedeckt werden.

Dynamische Dashboards von Signavio

 Testen Sie Signavio Process Intelligence und erleben Sie selbst, wie die modernste und fortschrittlichste Process-Mining-Software Ihnen dabei hilft, umsetzbare Einblicke in die Funktionsweise Ihres Unternehmens zu erhalten. Mit Signavios Live Insights profitieren Sie von einer zentralen Ansicht Ihrer Prozesse und Informationen, die in Form eines Ampelsystems dargestellt werden. Entscheiden Sie einfach, welche Prozesse und Aktivitäten Sie innerhalb eines Prozesses überwachen möchten, platzieren Sie Indikatoren und wählen Sie Grenzwerte aus. Alles Weitere übernimmt Signavio Process Intelligence, das Ihre Prozessmodelle mit den Daten verbindet.

Lassen Sie veraltete Arbeitsweisen hinter sich. Setzen Sie stattdessen auf faktenbasierte Erkenntnisse, um Ihre Geschäftstransformation zu unterstützen und Ihre Prozessmanagementinitiativen schneller zum Erfolg zu führen. Erfahren Sie mehr über Signavio Process Intelligence oder registrieren Sie sich für eine kostenlose 30-Tage-Testversion über www.signavio.com/try.

Erfahren Sie in unserem kostenlosen Whitepaper mehr über erfolgreiches Process Mining mit Signavio Process Intelligence.

Treffen Sie bessere Entscheidungen

Entscheidungen prägen unseren Alltag, dies beginnt schon bei der Frage, was man anziehen oder essen soll. Andere hingegen mögen auf den ersten Blick unbedeutend erscheinen, können das Leben aber gravierend verändern, wie beispielsweise die Entscheidung, ob die Überquerung einer Straße sicher ist. Je größer die relative Macht eines Entscheidungsträgers ist, desto größer ist natürlich auch die Auswirkung seiner Entscheidungen.


Read this article in English: 
“How to Make Better Decisions”


Auch der Unternehmensalltag ist geprägt durch Entscheidungen. Tatsächlich kann man ein Unternehmen als die Summe großer und kleiner Entscheidungen betrachten: Welche neuen Märkte erschlossen werden sollen, über die nächste große Werbekampagne bis hin zur Wandfarbe für das neue Büro. Im Idealfall wäre jede einzelne Entscheidung innerhalb einer Organisation Teil einer konsistenten, kohärenten Unternehmensstrategie.

Leider ist eine derartige Konsistenz für viele Unternehmen schwer umsetzbar. Den Überblick darüber zu behalten, was in der gestrigen Sitzung beschlossen wurde, geschweige denn vor Wochen, Monaten oder gar Jahren, kann schwierig sein. Die Erkennung, Kategorisierung und Standardisierung der Entscheidungsfindung kann daher eine Möglichkeit sein, diese Herausforderung zu meistern.

Strategische, taktische und operative Entscheidungen

Grundsätzlich gibt es in einem Unternehmen drei Entscheidungsebenen: Strategische Entscheidungen haben einen großen Einfluss auf das gesamte Unternehmen, wie bspw. Fusionen und Übernahmen oder die Aufgabe eines leistungsschwachen Geschäftsbereichs. Taktische Entscheidungen werden zu bestimmten Themen getroffen, z. B. wo und wie eine Marketingkampagne durchgeführt werden soll.

Und schließlich gibt es noch die operativen Entscheidungen, auf die jeder Mitarbeiter täglich in jedem Unternehmen trifft: Beispielsweise wie viele Treuepunkte ein Kunde erhält, bei welchem ​​Lieferanten Materialien und Dienstleistungen gekauft werden oder ob ein Kunde einen Kredit erhält. Millionen dieser Entscheidungen werden jeden Tag getroffen.

Der kumulative Effekt dieser operativen Entscheidungen hat einen enormen Einfluss auf die geschäftliche Leistung eines Unternehmens. Nicht unbedingt in dem Maße wie sich strategische oder taktische Entscheidungen auswirken, aber sie nehmen Einfluss darauf, wie reibungslos und effektiv die Dinge innerhalb des Unternehmens tatsächlich erledigt werden.

Risiken einer schlechten Entscheidungsfindung

Auf operativer Ebene können sich selbst kleine Entscheidungen erheblich auf das gesamte Unternehmen auswirken – vor allem dann, wenn sich diese Entscheidungen wiederholen. In vielen Fällen bedeutet dies:

  • Compliance-Verstöße: Mitarbeiter und Systeme wissen nicht, was das Management erwartet, oder welches das richtige Verfahren ist. Mit der Zeit kann dies dazu führen, dass Richtlinien generell nicht eingehalten werden.
  • Weniger Agilität: Unkontrolliert oder unstrukturiert getroffene Entscheidungen lassen sich nur schwer ändern, um schnell auf neue interne oder externe Umstände reagieren zu können.
  • Reduzierte Genauigkeit: Ohne einen klaren Entscheidungsrahmen können sich unklar und unpräzise ausgerichtete Prozesse und Praktiken weiterverbreiten.
  • Mangelnde Transparenz: Mitarbeiter und Management können möglicherweise die Faktoren nicht erkennen und verstehen, die jedoch für eine effektive Entscheidungsfindung zu berücksichtigen sind.
  • Zunehmende Nichteinhaltung gesetzlicher Vorschriften: Viele Entscheidungen betreffen Themen wie Steuern, Finanzen und Umwelt, sodass falsch getroffene Entscheidungen zu potenziellen Verstößen gegen Gesetze und Vorschriften und damit letztlich zu Straf- und Rechtskosten führen können.

Diese Risiken können sich wiederholen, wenn Entscheidungen nicht prozessbasiert, sondern aus dem Bauch heraus getroffen werden oder wenn Entscheidungsträger erst Anwendungsfälle, Berichte und Prozesse durchsuchen müssen.

Treffen Sie bessere Entscheidungen

Die richtige Entscheidung zur richtigen Zeit zu treffen, ist für den Geschäftserfolg entscheidend; doch nur wenige Unternehmen verwalten ihre Entscheidungen als separate Instanzen. Die meisten Unternehmen nutzen KPIs oder Ähnliches, um die Auswirkungen ihrer Entscheidungen zu messen, statt die eigentlichen Entscheidungsprozesse im Vorfeld zu definieren.

Hier kommt Business Decision Management (BDM) ins Spiel, mit dem Entscheidungen identifiziert, katalogisiert und modelliert werden können – insbesondere die bereits genannten operativen Entscheidungen. BDM kann zudem ihre Auswirkungen auf die Leistung quantifizieren und Metriken und Schlüsselindikatoren für die Entscheidungen erstellen.

Mit einem effektiven BDM-Ansatz und der Decision Model and Notation (DMN) können Unternehmen Modelle zur Entscheidungsfindung erstellen. DMN bietet ein klares, benutzerfreundliches Notationssystem, das Geschäftsentscheidungen einschließlich der zugrunde liegenden Richtlinien und Daten beschreibt.

Bessere Entscheidungen mit Signavio

Die Signavio Business Transformation Suite unterstützt nicht nur den DMN-Standard, sondern auch den Aufbau einer umfassenden Umgebung zur kollaborativen Ermittlung, Verwaltung und Verbesserung Ihrer Entscheidungen.

Mit dem Signavio Process Manager können Sie Entscheidungen über mehrere Geschäftsbereiche hinweg standardisieren, replizieren und wiederverwenden und diese Entscheidungen mit Ihren Geschäftsprozessen verknüpfen. Der Signavio Process Manager ermöglicht es Ihren Mitarbeitern, stets die beste Entscheidung für ihre Arbeit zu treffen – egal, wie komplex die Aufgaben sind.

Profitieren Sie von den vielen Vorteilen wie verbesserte Leistung und geringere Risiken und trennen Sie die Entscheidungsfindung von unklaren Prozessen und unsicheren Technologien. Registrieren Sie sich noch heute für eine kostenlose 30-Tage-Testversion und lernen Sie die Signavio Business Transformation Suite und ihre Vorteile kennen. Mehr zum Thema lesen Sie in unserem kostenlosen Whitepaper.

How to Ensure Data Quality in an Organization?

Introduction to Data Quality

Today, the world is filled with data. It is everywhere. And, the value of any organization can be measured by the quality of its data. So, what actually is the quality of data or data quality, and why is it important? Well, data quality refers to the capability of a set of data to serve an intended purpose. 

Data quality is important to any organization because it provides timely and accurate information to manage accountability and services. It also helps to ensure and prioritize the best use of resources. Thus, high-quality data will lead to appropriate insights and valuable information for any organization. We can evaluate the quality of data in certain aspects. They include accuracy, relevancy, completeness, and uniqueness. 

Data Quality Problems

As the organizations are collecting vast amounts of data, managing its quality becomes more important every single day. In the year 2016, the costs of problems caused due to poor data quality were estimated by IBM, and it turned out to be $3.1 trillion across the U.S economy. Also, a Forrester report has stated that almost 30 percent of analysts spend 40 percent of their time validating and vetting their data prior to its utilization for strategic decision-making. These statistics indicate that the scale of the problems with data quality is vast.

So, why do these data quality problems occur? The main reasons include manual entry of data, software updates, integration of data sources, skills shortages, and insufficient testing time. Wrong decisions can be taken due to poor data management processes and poor quality of data. Because of this, many organizations lose their clients and customers. So, ensuring data quality must be given utmost importance in an organization. 

How to Ensure Data Quality?

Data quality management helps by combining data, technology, and organizational culture to deliver useful and accurate results. Good management of data quality builds a foundation for all the initiatives of a business. Now, let’s see how we can improve the data quality in an organization.

The first aspect of improving the quality of data is monitoring and cleansing data. This verifies data against standard statistical measures, validates data against matching descriptions, and uncovers relationships. This also checks the uniqueness of data and analyzes the data for its reusability. 

The second one is managing metadata centrally. Multiple people gather and clean data very often and they may work in different countries or offices. Therefore, you require clear policies on how data is gathered and managed as people in different parts of a company may misinterpret certain data terms and concepts. Centralized management of metadata is the solution to this problem as it reduces inconsistent interpretations and helps in establishing corporate standards.  

The next one is to ensure all the requirements are available and offer documentation for data processors and data providers. You have to format the specifications and offer a data dictionary and also provide training for the providers of data and all other new staff. Make sure you offer immediate help for all the data providers.

Very often, data is gathered from different sources and may include distinct spelling options. Hence, segmentation, scoring, smart lists, and many others are impacted by this. So, for entering a data point, a singular approach is essential, and data normalization provides this approach. The goal of this approach is to eliminate redundancy in data. Its advantages include easier object-to-data mapping and increased consistency.

The last aspect is to verify whether the data is consistent with the data rules and business goals, and this has to be done at regular intervals. You have to communicate the current status and data quality metrics to every stakeholder regularly to ensure the maintenance of data quality discipline across the organization.

Conclusion

Data quality is a continuous process but not a one-time project which needs the entire company to be data-focused and data-driven. It is much more than reliability and accuracy. High level of data quality can be achieved when the decision-makers have confidence in data and rely upon it. Follow the above-mentioned steps to ensure a high level of data quality in your organization. 

The Power of Analyzing Processes

Are you thinking BIG enough? Over the past few years, the quality of discussion regarding a ‘process’ and its interfaces between different departments has developed radically. Organizations increasingly reject guesswork, individual assessments, or blame-shifting and instead focus on objective facts: the display of throughput times, process variants, and their optimization.

But while data can hold valuable insights into business, users, customer bases, and markets, companies are sometimes unsure how best to analyze and harness their data. In fact, the problem isn’t usually a lack of data; it’s a breakdown in leveraging useful data. Being unsure how to interpret, explore, and analyze processes can paralyze any go-live, leading to a failure in the efficient interaction of processes and business operations. Without robust data analysis, your business could be losing money, talent, and even clients.

After all, analyzing processes is about letting data tell its true story for improved understanding.

The “as-is” processes

Analyzing the as-is current state helps organizations document, track, and optimize processes for better performance, greater efficiency, and improved outcomes. By contextualizing data, we gain the ability to navigate and organize processes to negate bottlenecks, set business preferences, and plan an optimized route through process mining initiatives. This focus can help across an entire organization, or on one or more specific processes or trends within a department or team.

There are several vital goals/motivations for implementing current state analysis, including:

  • Saving money and improving ROI;
  • Improving existing processes or creating new processes;
  • Increasing customer satisfaction and journeys;
  • Improving business coordination and organizational responsiveness;
  • Complying with new regulatory standards;
  • Adapting methods following a merger or acquisition.

The “to-be” processes

Simply put, if as-is maps where your processes are, to-be maps where you want them to… be. To-be process mapping documents what you want the process to look like, and by using the as-is diagram, you can work with stakeholders to identify developments and improvements of the current process, then outline those changes on your to-be roadmap.

This analysis can help you make optimal decisions for your business and innovative OpEx imperatives. For instance, at leading data companies like Google and Amazon, data is used in such a way that the analysis results make the decisions! Just think of the power Recommendation Engines, PageRank, and Demand Forecasting Systems have over the content we see. To achieve this, advanced techniques of machine learning and statistical modeling are applied, resulting in mechanically improved results from the data. Interestingly, because these techniques reference large-scale data sets and reflect analysis and results in real-time, they are applied to areas that extend beyond human decision-making.

Also, by analyzing and continuously monitoring qualitative and quantitative data, we gain insights across potential risks and ongoing improvement opportunities, too. The powerful combination of process discovery, process analysis, and conformance checking supports a collaborative approach to process improvement, giving you game-changing insights into your business. For example:

  • Which incidents would I like to detect and act upon proactively?
  • Where would task prioritization help improve overall performance?
  • Where do I know that increased transparency would help the company?
  • How can I utilize processes in place of gut feeling/experience?

Further, as the economic environment continues to change rapidly, and modern organizations keep adopting process-based approaches to ensure they are achieving their business goals, process analysis naturally becomes the perfect template for any company.

With this, process mining technology can help modern businesses manage process challenges beyond the boundaries of implementation. We can evaluate the proof of concept (PoC) for any proposed improvements, and extract relevant information from a homogenous data set. Of course, process modeling and business process management (BPM) are available to solve the potentially tricky integration phase.

Process mining and analysis initiatives

Process mining and discovery initiatives can also provide critical insights throughout the automation and any Robotic Process Automation (RPA) journey, from defining the strategy to continuous improvement and innovation. Data-based process mining can even extend process analysis across teams and individuals, decreasing incident resolution times, and subsequently improving working habits via the discovery and validation of automation opportunities.

A further example of where process mining and strategic process analysis/alignment is already paying dividends is IT incident management. Here, “incident” is an unplanned interruption to an IT service, which may be complete unavailability or merely a reduction in quality. The goal of the incident management process is to restore regular service operation as quickly as possible and to minimize the impact on business operations. Incident management is a critical process in Information Technology Library (ITIL).

Process mining can also further drive improvement in as-is incident management processes as well as exceptional and unwanted process steps, by increasing visibility and transparency across IT processes. Process mining will swiftly analyze the different working habits across teams and individuals, decreasing incident resolution times, and subsequently improving customer impact cases.

Positive and practical experiences with process mining across industries have also led to the further dynamic development of tools, use cases, and the end-user community. Even with very experienced process owners, the visualization of processes can skyrocket improvement via new ideas and discussion.

However, the potential performance gains are more extensive, with the benefits of using process mining for incident management, also including:

  • Finding out how escalation rules are working and how the escalation is done;
  • Calculating incident management KPIs, including SLA (%);
  • Discovering root causes for process problems;
  • Understanding the effect of the opening interface (email, web form, phone, etc.);
  • Calculating the cost of the incident process;
  • Aligning the incident management system with your incident management process.

Robotic Process Automation (RPA)

Robotic process automation (RPA) provides a virtual workforce to automatize manual, repetitive, and error-prone tasks. However, successful process automation requires specific knowledge about the intended (and potential) benefits, effective training of the robots, and continuous monitoring of their performance and processes.

With this, process mining supports organizations throughout the lifecycle of RPA initiatives by monitoring and benchmarking robots to ensure sustainable benefits. These insights are especially valuable for process miners and managers with a particular interest in process automation. By unlocking the experiences with process mining, a company better understands what is needed today, for tomorrow’s process initiatives.

To further upgrade the impact of robot-led automation, there is also a need for a solid understanding of legacy systems, and an overview of automation opportunities. Process mining tools provide key insights throughout the entire RPA journey, from defining the strategy to continuous improvement and innovation.

Benefits of process mining and analysis within the RPA lifecycle include:

  1. Overviews of processes within the company, based on specific criteria;
  2. Identification of processes suitable for RPA implementation during the preparation phase;
  3. Mining the optimal process flow/process path;
  4. Understanding the extent to which RPA can be implemented in legacy processes and systems;
  5. Monitoring and analysis of RPA performance during the transition/handover of customization;
  6. Monitoring and continuous improvement of RPA in the post-implementation phase.

The process of better business understanding

Every organization is different and brings with it a variety of process-related questions. Yet some patterns are usually repeated. For example, customers who introduce data supported process analysis as part of business transformation initiatives will typically face challenges in harmonizing processes from fragmented sectors and regional locations. Here it helps enormously to base actions on data and statistics from the respective processes, instead of relying on the instincts and estimations of individuals.

With this, process analysis which is supported by data, enables a fact-based discussion, and builds a bridge between employees, process experts and management. This helps avoid siloed thinking, as well as allowing the transparent design of handovers and process steps which cross departmental boundaries within an organization.

In other words, to unlock future success and transformation, we must be processing… today.

Find out more about process mining with Signavio Process Intelligence, and see how it can help your organization uncover the hidden value of process, generate fresh ideas, and save time and money.

Das Potenzial von Prozessanalysen

Haben Sie das große Ganze im Blick? Die Diskussion rund um einen Prozess und seine Schnittstellen zwischen verschiedenen Abteilungen hat sich in den vergangenen Jahren verändert und eine neue Qualität erhalten. Unternehmen möchten nicht mehr erraten, wie die Abläufe organisiert sind. Stattdessen konzentrieren sie sich auf objektive Fakten wie Durchlaufzeiten, Prozessvarianten und deren Optimierung.

Daten liefern wertvolle Erkenntnisse über das Unternehmen, Benutzer, Kundenstämme und Märkte. Diese Daten müssen jedoch bestmöglich analysiert und genutzt werden, was oftmals eine Herausforderung darstellt. Tatsächlich ist für gewöhnlich nicht die Menge an Daten das Problem, sondern deren Aufschlüsselung und erfolgreiche Nutzung. Unsicherheiten bei der Bewertung und Analyse von Prozessen können den Go-Live behindern und das Zusammenspiel von Prozessen und Geschäftsabläufen ineffizient machen. Ohne eine zuverlässige Datenanalyse könnte Ihr Unternehmen Kapital, Talente und sogar Kunden verlieren.

So geht es bei der Prozessanalyse letztlich darum, aus Daten Erkenntnisse zu gewinnen, die zu einem besseren Verständnis Ihres Unternehmens und der geschäftlichen Abläufe führen.

Die „Ist“-Prozesse

Die Analyse des Ist-Zustands hilft Unternehmen, Prozesse zu dokumentieren, nachzuverfolgen und zu optimieren, mit dem Ziel, die Leistung und Effizienz zu steigern und bessere Geschäftsergebnisse zu erzielen. Die Kontextualisierung von Daten eröffnet Ihnen die Möglichkeit, Prozesse zu steuern und zu organisieren, Engpässe zu beseitigen, geschäftliche Präferenzen festzulegen und mithilfe von Process-Mining-Initiativen eine optimale Strategie zu planen. Dies kann sowohl auf Unternehmensebene als auch nur auf einen bestimmten Prozess innerhalb einer Abteilung oder eines Teams angewandt werden.

Es gibt mehrere wichtige Ziele und Gründe für die Analyse des Ist-Zustands, wie beispielsweise:

  • Kosteneinsparungen und Verbesserung des ROI
  • Optimierung bestehender Prozesse oder Schaffung neuer Prozesse
  • Steigerung der Kundenzufriedenheit und -erlebnisse
  • Verbesserung der Koordination von Geschäften und der Reaktionsfähigkeit des Unternehmens
  • Einhaltung neuer regulatorischer Standards
  • Anpassung von Methoden nach einer Fusion oder Akquisition

 Die „Soll“-Prozesse

Einfach ausgedrückt: Der Ist-Zustand stellt dar, wie Ihre Prozesse aktuell verlaufen, der Soll-Zustand, wie Ihre Prozesse zukünftig verlaufen sollen. Bei der Planung der Soll-Prozesse wird der zukünftige Prozessverlauf dokumentiert. Mithilfe des Ist-Diagramms können Sie gemeinsam mit Stakeholdern Entwicklungs- und Optimierungsmöglichkeiten des aktuellen Prozesses identifizieren und notwendige Änderungen dann in Ihrer Roadmap der Soll-Prozesse skizzieren.

Solch eine Analyse kann Ihnen dabei helfen, optimale geschäftliche und innovative OpEx-Entscheidungen für Ihr Unternehmen zu treffen. Führende Unternehmen wie Google und Amazon nutzen Daten beispielsweise, um auf der Basis von Analyseergebnissen datengesteuerte Entscheidungen zu treffen. Oder denken Sie an die Vorteile, die Ihnen Recommendation Engines, PageRank- und Demand-Forecasting-Systeme bieten. Grundlage hierfür sind fortschrittliche Techniken des maschinellen Lernens und der statistischen Modellierung, die zu verbesserten Datenergebnissen führen. Interessanterweise werden diese Techniken – da sie sich auf umfangreiche Datensätze beziehen und Analysen und Ergebnisse in Echtzeit widerspiegeln – auf Bereiche angewendet, die über die menschliche Entscheidungsfindung hinausgehen.

Die Analyse und kontinuierliche Überwachung von qualitativen und quantitativen Daten ermöglicht es uns zudem, Erkenntnisse über potenzielle Risiken und Verbesserungspotenziale zu erhalten. Mithilfe der leistungsstarken Kombination aus Process Discovery, Prozessanalyse und Conformance-Check können Sie Prozesse verbessern und gewinnbringende Informationen über das eigene Unternehmen erhalten. Zum Beispiel:

  • Über welche Vorfälle möchte ich sofort informiert werden, um entsprechend proaktiv zu handeln?
  • An welchen Stellen kann eine bessere Priorisierung der Aufgaben dabei helfen, die Performance des Unternehmens zu verbessern?
  • Wie kann mehr Transparenz mein Unternehmen voranbringen?
  • Wie lerne ich, in Prozessen zu denken, anstatt nur auf das Bauchgefühl zu vertrauen?

Das geschäftliche Umfeld verändert sich kontinuierlich. Um Schritt zu halten, müssen moderne Unternehmen prozessbasierte Ansätze verfolgen und dabei ist die Prozessanalyse die perfekte Basis.

Mithilfe der Process-Mining-Technologie können moderne Unternehmen ihre Prozessherausforderungen über die Grenzen der Implementierung hinweg bewältigen. Dabei können wir den Proof of Concept für alle vorgeschlagenen Verbesserungen auswerten und relevante Informationen aus einem homogenen Datensatz gewinnen. Zudem kann mithilfe von Prozessmodellierung und Business Process Management (BPM) die möglicherweise schwierige Integrationsphase überwunden werden.

Initiativen für Process-Mining und Prozessanalyse

Process-Mining- und Process-Discovery-Initiativen liefern wichtige Einblicke in den Automatisierungsstatus und in jede Phase der Robotic Process Automation (RPA) – von der Festlegung der Strategie bis zur kontinuierlichen Optimierung und Innovation. Durch datenbasiertes Process Mining kann die Prozessanalyse sogar auf Teams und einzelne Personen ausgedehnt werden. Indem Automatisierungsmöglichkeiten ermittelt und validiert werden, können IT-Störfälle schneller behoben und die Arbeitsgewohnheiten verbessert werden.

Ein weiterer Bereich, in dem sich die Vorteile von Process Mining und der strategischen Prozessanalyse/-ausrichtung bereits auszahlen, ist das IT-Incident-Management. Als „Incident“ wird ein IT-Störfall bezeichnet. Hierbei kann es sich um den vollständigen Ausfall oder um die eingeschränkte Ausführung eines IT-Services handeln. Ziel des Incident-Managements ist es, den IT-Service so schnell wie möglich wiederherzustellen und die Auswirkungen auf den Geschäftsbetrieb zu minimieren. Daher zählt das IT-Incident- Management zu den kritischen Prozessen der Information Technology Library (ITIL).

Process Mining hat das Potenzial, die Incident-Management-Prozesse im Ist-Zustand zu verbessern. Zudem trägt es zu einer höheren Transparenz über die IT-Prozesse bei und bietet so Informationen über außergewöhnliche und unerwünschte Prozessschritte. Durch die Methode ist es ebenfalls möglich, die unterschiedlichen Arbeitsgewohnheiten von verschiedenen Personen und auch Teams zu erfassen. Die Bearbeitungszeiten von Störfällen lassen sich auf diese Weise reduzieren und die Auswirkungen auf Kundenprozesse besser überblicken.

Positive und praktische Erfahrungen mit branchenübergreifendem Process Mining haben zudem zu einer dynamischen Entwicklung von Tools, Anwendungsfällen und auch der Benutzer-Community geführt. Selbst sehr erfahrene Prozessverantwortliche stellen fest, dass durch die Visualisierung von Prozessen neue Ideen und Anregungen für weitere Verbesserungen entstehen.

Der Einsatz von Process Mining für das Incident-Management bietet jedoch noch weitaus mehr potenzielle Vorteile:

  • Ermittlung der Regeln und Abläufe für Eskalationen,
  • Berechnung von Incident-Management-KPIs einschließlich Service Level Agreements (SLA),
  • Ursachenforschung für auftretende Prozessprobleme,
  • Verständnis über die zugrunde liegende Schnittstelle und deren Auswirkung (E-Mail, Webformular, Telefon usw.),
  • Kostenberechnung für störungsanfällige Prozesse,
  • Verknüpfung der Incident-Management-Systeme mit den entsprechenden Prozessen für auftretende Störungen.

Robotic Process Automation (RPA)

RPA (Robotic Process Automation) ermöglicht die Automatisierung manueller, sich wiederholender und fehleranfälliger Aufgaben. Dies setzt jedoch voraus, dass Prozessverantwortliche genau wissen, wie und mit welchem Ziel sie Software-Roboter einsetzen und ihre Leistung messen.

Daher bietet die Kombination aus RPA und Process Mining Unternehmen viele Vorteile: Über den gesamten RPA-Zyklus hinweg können sie die Leistung und die Vorteile ihrer Software-Roboter messen und sie bestmöglich für ihr Szenario einsetzen. Damit eignet sich Process Mining hervorragend als Vorbereitung für Prozessautomatisierung: Durch Process Mining verstehen wir besser, was wir heute für erfolgreiche Prozessinitiativen von morgen benötigen.

Um die Vorteile der robotergesteuerten Automatisierung vollumfänglich auszuschöpfen, müssen Organisationen nicht nur ihre bestehenden Systeme verstehen, sondern auch Möglichkeiten zur Automatisierung ermitteln. Process-Mining-Tools bieten während des gesamten RPA-Zyklus wertvolle Erkenntnisse über die Prozessdaten: von der Festlegung der Strategie bis hin zu kontinuierlichen Verbesserungen und Innovationen.

Zu den Vorteilen von Process Mining und Prozessanalyse im RPA-Zyklus zählen:

  1. Überblick der Prozesslandschaft in einem Unternehmen, basierend auf spezifischen Kriterien,
  2. Identifikation von Prozessen, die während der Vorbereitungsphase für RPA geeignet sind,
  3. Erarbeitung des optimalen Prozessflusses,
  4. Besseres Verständnis darüber, wie RPA auch in veralteten Prozessen und IT-Systemen eingesetzt werden kann,
  5. Überwachung und Analyse der Leistung von RPA-Initiativen während der Implementierungsphase,
  6. Überwachung und kontinuierliche Verbesserung von RPA nach der Implementierung.

Der Weg zu besseren Erkenntnissen

Jedes Unternehmen ist anders und bringt damit ganz unterschiedliche Fragen in Bezug auf seine Prozesse mit. Einige Muster sind trotzdem erkennbar. Beispielsweise stehen Kunden, die datengestützte Prozessanalysen im Rahmen der Geschäftstransformation einführen, in der Regel vor der Herausforderung, Prozesse aus unterschiedlichen Sparten oder Standorten zu harmonisieren. An dieser Stelle sollten Organisationen sich die Daten und Statistiken der jeweiligen Prozesse vor Augen zu führen, anstatt sich auf das Gefühl oder auf die Einschätzung Einzelner zu verlassen.

Auf diese Weise führt eine datengestützte Prozessanalyse zu faktenbasierten Diskussionen und bildet eine wichtige Brücke zwischen der Fachabteilung, Prozessverantwortlichen und dem Management. So lassen sich vor allem Übergaben und abteilungsübergreifende Schritte transparent gestalten und Silo-Denken vermeiden.

Mit anderen Worten: Die richtigen Prozesse von heute sorgen für eine erfolgreiche Transformation von morgen.

Erfahren Sie mehr über Process Mining mit Signavio Process Intelligence und wie Ihr Unternehmen den versteckten Mehrwert von Prozessen für sich nutzen, neue Ideen generieren sowie Zeit und Kosten sparen kann.

Von BI zu PI: Der nächste Schritt auf dem Weg zu datengetriebenen Entscheidungen

„Alles ist stetig und fortlaufend im Wandel.“ „Das Tempo der Veränderungen nimmt zu.“ „Die Welt wird immer komplexer und Unternehmen müssen Schritt halten.“ Unternehmen jeder Art und Größe haben diese Sätze schon oft gehört – vielleicht zu oft! Und dennoch ist es für den Erfolg eines Unternehmens von entscheidender Bedeutung, sich den Veränderungen anzupassen.


Read this article in English: 
“From BI to PI: The Next Step in the Evolution of Data-Driven Decisions”


Sie müssen die zugrunde liegenden organisatorischen Bausteine verstehen, um sicherzustellen, dass die von Ihnen getroffenen Entscheidungen sich auch in die richtige Richtung entwickeln. Es geht sozusagen um die DNA Ihres Unternehmens: die Geschäftsprozesse, auf denen Ihre Arbeitsweise basiert, und die alles zu einer harmonischen Einheit miteinander verbinden. Zu verstehen, wie diese Prozesse verlaufen und an welcher Stelle es Verbesserungsmöglichkeiten gibt, kann den Unterschied zwischen Erfolg und Misserfolg ausmachen.

Unternehmen, die ihren Fokus auf Wachstum gesetzt haben, haben dies bereits erkannt. In der Vergangenheit wurde Business Intelligence als die Lösung für diese Herausforderung betrachtet. In jüngerer Zeit sehen sich zukunftsorientierte Unternehmen damit konfrontiert, Lösungen zu überwachen, die mit dem heutigen Tempo der Veränderungen Schritt halten können. Gleichzeitig erkennen diese Unternehmen, dass die zunehmende Komplexität der Geschäftsprozesse dazu führt, dass herkömmliche Methoden nicht mehr ausreichen.

Anpassung an ein sich änderndes Umfeld? Die Herausforderungen von BI

Business Intelligence ist nicht notwendigerweise überholt oder unnötig. In einer schnelllebigen und sich ständig verändernden Welt stehen die BI-Tools und -Lösungen jedoch vor einer Reihe von Herausforderungen. Hierzu können zählen:

  • Hohe Datenlatenz – Die Datenlatenz gibt an, wie lange ein Benutzer benötigt, um Daten beispielsweise über ein Business-Intelligence-Dashboard abzurufen. In vielen Fällen kann dies mehr als 24 Stunden dauern. Ein geschäftskritischer Zeitraum, da Unternehmen Geschäftschancen für sich nutzen möchten, die möglicherweise ein begrenztes Zeitfenster haben.
  • Unvollständige Datensätze – Business Intelligence verfolgt einen breiten Ansatz, sodass Prüfungen möglicherweise zwar umfassend, aber nicht tief greifend sind. Dies erhöht die Wahrscheinlichkeit, dass Daten übersehen werden; insbesondere in Fällen, in denen die Prüfungsparameter durch die Tools selbst nur schwer geändert werden können.
  • Erkennung statt Analyse – Business-Intelligence-Tools sind in erster Linie darauf ausgelegt, Daten zu finden. Der Fokus hierbei liegt vor allem auf Daten, die für ihre Benutzer nützlich sein können. An dieser Stelle endet jedoch häufig die Leistungsfähigkeit der Tools, da sie Benutzern keine einfachen Optionen bieten, die Daten tatsächlich zu analysieren. Die Möglichkeit, umsetzbare Erkenntnisse zu gewinnen, verringert sich somit.
  • Eingeschränkte Skalierbarkeit – Im Allgemeinen bleibt Business Intelligence ein Bereich für Spezialisten und Experten mit dem entsprechenden Know-how, über das Mitarbeiter im operativen Bereich oftmals nicht verfügen. Ohne umfangreiches Verständnis für die geschäftlichen Prozesse und deren Analyse innerhalb des Unternehmens bleibt die optimierte Anwendung eines bestimmten Business-Intelligence-Tools aber eingeschränkt.
  • Nicht nachvollziehbare Metriken – Werden Metriken verwendet, die nicht mit den Geschäftsprozessen verknüpft sind, kann Business Intelligence kaum positive Veränderungen innerhalb eines Unternehmens unterstützen. Für Benutzer ist es schwierig, Ergebnisse richtig auszuwerten und zu verstehen und diese Ergebnisse zweckdienlich zu nutzen.

Process Intelligence: der nächste wegweisende Schritt

Es bedarf einer effektiveren Methode zur Prozessanalyse, um eine effiziente Arbeitsweise und fundierte Entscheidungsfindung sicherzustellen. An dieser Stelle kommt Process Intelligence (PI) ins Spiel. PI bietet die entscheidenden Hintergrundinformationen für die Beantwortung von Fragen, die mit Business-Intelligence-Tools unbeantwortet bleiben.

Process Intelligence ermöglicht die durchgehende Visualisierung von Prozessabläufen mithilfe von Rohdaten. Mit dem richtigen Process-Intelligence-Tool können diese Rohdaten sofort analysiert werden, sodass Prozesse präzise angezeigt werden. Der Endbenutzer kann diese Informationen nach Bedarf einsehen und bearbeiten, ohne eine Vorauswahl für die Analyse treffen zu müssen.

Zum Vergleich: Da Business Intelligence vordefinierte Analysekriterien benötigt, kann BI nur dann wirklich nützlich sein, wenn diese Kriterien auch definiert sind. Unternehmen können verzögerte Analysen vermeiden, indem sie Process Intelligence zur Ermittlung der Hauptursache von Prozessproblemen nutzen, und dann die richtigen Kriterien zur Bestimmung des Analyserahmens auswählen.

Anschließend können Sie Ihre Systemprozesse analysieren und erkennen die Diskrepanzen und Varianten zwischen dem angestrebten Geschäftsprozess und dem tatsächlichen Verlauf Ihrer Prozesse. Und je schneller Sie Echtzeit-Einblicke in Ihre Prozesse gewinnen, desto schneller können Sie in Ihrem Unternehmen positive Veränderungen auf den Weg bringen.

Kurz gesagt: Business Intelligence eignet sich dafür, ein breites Verständnis über die Abläufe in einem Unternehmen zu gewinnen. Für einige Unternehmen kann dies ausreichend sein. Für andere hingegen ist ein Überblick nicht genug.

Sie suchen nach einer Möglichkeit um festzustellen, wie jeder Prozess in Ihrer Organisation tatsächlich funktioniert? Die Antwort hierauf lautet Software. Software, die Prozesserkennung, Prozessanalyse und Konformitätsprüfung miteinander kombiniert.

Mit den richtigen Process-Intelligence-Tools können Sie nicht nur Daten aus den verschiedenen IT-Systemen in Ihrem Unternehmen gewinnen, sondern auch Ihre End-to-End-Prozesse kontinuierlich überwachen. So erhalten Sie Erkenntnisse über mögliche Risiken und Verbesserungspotenziale. PI steht für einen kollaborativen Ansatz zur Prozessverbesserung, der zu einem bahnbrechenden Verständnis über die Abläufe in Ihrem Unternehmen führt, und wie diese optimiert werden können.

Erhöhtes Potenzial mit Signavio Process Intelligence

Mit Signavio Process Intelligence erhalten Sie wegweisende Erkenntnisse über Ihre Prozesse, auf deren Basis Sie bessere Geschäftsentscheidungen treffen können. Erlangen Sie eine vollständige Sicht auf Ihre Abläufe und ein Verständnis dafür, was in Ihrer Organisation tatsächlich geschieht.

Als Teil der Signavio Business Transformation Suite lässt sich Signavio Process Intelligence perfekt mit der Prozessmodellierung und -automatisierung kombinieren. Als eine vollständig cloudbasierte Process-Mining-Lösung erleichtert es die Software, organisationsweit zusammenzuarbeiten und Wissen zu teilen.

Generieren Sie neue Ideen, sparen Sie Aufwand und Kosten ein und optimieren Sie Ihre Prozesse. Erfahren Sie mehr über Signavio Process Intelligence.