Visual Question Answering with Keras – Part 1

This is Part I of II of the Article Series Visual Question Answering with Keras

Making Computers Intelligent to answer from images

If we look closer in the history of Artificial Intelligence (AI), the Deep Learning has gained more popularity in the recent years and has achieved the human-level performance in the tasks such as Speech Recognition, Image Classification, Object Detection, Machine Translation and so on. However, as humans, not only we but also a five-year child can normally perform these tasks without much inconvenience. But the development of such systems with these capabilities has always considered an ambitious goal for the researchers as well as for developers.

In this series of blog posts, I will cover an introduction to something called VQA (Visual Question Answering), its available datasets, the Neural Network approach for VQA and its implementation in Keras and the applications of this challenging problem in real life. 

Table of Contents:

1 Introduction

2 What is exactly Visual Question Answering?

3 Prerequisites

4 Datasets available for VQA

4.1 DAQUAR Dataset

4.2 CLEVR Dataset

4.3 FigureQA Dataset

4.4 VQA Dataset

5 Real-life applications of VQA

6 Conclusion

 

  1. Introduction:

Let’s say you are given a below picture along with one question. Can you answer it?

I expect confidently you all say it is the Kitchen without much inconvenience which is also the right answer. Even a five-year child who just started to learn things might answer this question correctly.

Alright, but can you write a computer program for such type of task that takes image and question about the image as an input and gives us answer as output?

Before the development of the Deep Neural Network, this problem was considered as one of the difficult, inconceivable and challenging problem for the AI researcher’s community. However, due to the recent advancement of Deep Learning the systems are capable of answering these questions with the promising result if we have a required dataset.

Now I hope you have got at least some intuition of a problem that we are going to discuss in this series of blog posts. Let’s try to formalize the problem in the below section.

  1. What is exactly Visual Question Answering?:

We can define, “Visual Question Answering(VQA) is a system that takes an image and natural language question about the image as an input and generates natural language answer as an output.”

VQA is a research area that requires an understanding of vision(Computer Vision)  as well as text(NLP). The main beauty of VQA is that the reasoning part is performed in the context of the image. So if we have an image with the corresponding question then the system must able to understand the image well in order to generate an appropriate answer. For example, if the question is the number of persons then the system must able to detect faces of the persons. To answer the color of the horse the system need to detect the objects in the image. Many of these common problems such as face detection, object detection, binary object classification(yes or no), etc. have been solved in the field of Computer Vision with good results.

To summarize a good VQA system must be able to address the typical problems of CV as well as NLP.

To get a better feel of VQA you can try online VQA demo by CloudCV. You just go to this link and try uploading the picture you want and ask the related question to the picture, the system will generate the answer to it.

 

  1. Prerequisites:

In the next post, I will walk you through the code for this problem using Keras. So I assume that you are familiar with:

  1. Fundamental concepts of Machine Learning
  2. Multi-Layered Perceptron
  3. Convolutional Neural Network
  4. Recurrent Neural Network (especially LSTM)
  5. Gradient Descent and Backpropagation
  6. Transfer Learning
  7. Hyperparameter Optimization
  8. Python and Keras syntax
  1. Datasets available for VQA:

As you know problems related to the CV or NLP the availability of the dataset is the key to solve the problem. The complex problems like VQA, the dataset must cover all possibilities of questions answers in real-world scenarios. In this section, I will cover some of the datasets available for VQA.

4.1 DAQUAR Dataset:

The DAQUAR dataset is the first dataset for VQA that contains only indoor scenes. It shows the accuracy of 50.2% on the human baseline. It contains images from the NYU_Depth dataset.

Example of DAQUAR dataset

Example of DAQUAR dataset

The main disadvantage of DAQUAR is the size of the dataset is very small to capture all possible indoor scenes.

4.2 CLEVR Dataset:

The CLEVR Dataset from Stanford contains the questions about the object of a different type, colors, shapes, sizes, and material.

It has

  • A training set of 70,000 images and 699,989 questions
  • A validation set of 15,000 images and 149,991 questions
  • A test set of 15,000 images and 14,988 questions

Image Source: https://cs.stanford.edu/people/jcjohns/clevr/?source=post_page

 

4.3 FigureQA Dataset:

FigureQA Dataset contains questions about the bar graphs, line plots, and pie charts. It has 1,327,368 questions for 100,000 images in the training set.

4.4 VQA Dataset:

As comapred to all datasets that we have seen so far VQA dataset is relatively larger. The VQA dataset contains open ended as well as multiple choice questions. VQA v2 dataset contains:

  • 82,783 training images from COCO (common objects in context) dataset
  • 40, 504 validation images and 81,434 validation images
  • 443,757 question-answer pairs for training images
  • 214,354 question-answer pairs for validation images.

As you might expect this dataset is very huge and contains 12.6 GB of training images only. I have used this dataset in the next post but a very small subset of it.

This dataset also contains abstract cartoon images. Each image has 3 questions and each question has 10 multiple choice answers.

  1. Real-life applications of VQA:

There are many applications of VQA. One of the famous applications is to help visually impaired people and blind peoples. In 2016, Microsoft has released the “Seeing AI” app for visually impaired people to describe the surrounding environment around them. You can watch this video for the prototype of the Seeing AI app.

Another application could be on social media or e-commerce sites. VQA can be also used for educational purposes.

  1. Conclusion:

I hope this explanation will give you a good idea of Visual Question Answering. In the next blog post, I will walk you through the code in Keras.

If you like my explanations, do provide some feedback, comments, etc. and stay tuned for the next post.

Attribution Models in Marketing

Attribution Models

A Business and Statistical Case

INTRODUCTION

A desire to understand the causal effect of campaigns on KPIs

Advertising and marketing costs represent a huge and ever more growing part of the budget of companies. Studies have found out this share is as high as 10% and increases with the size of companies (CMO study by American Marketing Association and Duke University, 2017). Measuring precisely the impact of a specific marketing campaign on the sales of a company is a critical step towards an efficient allocation of this budget. Would the return be higher for an euro spent on a Facebook ad, or should we better spend it on a TV spot? How much should I spend on Twitter ads given the volume of sales this channel is responsible for?

Attribution Models have lately received great attention in Marketing departments to answer these issues. The transition from offline to online marketing methods has indeed permitted the collection of multiple individual data throughout the whole customer journey, and  allowed for the development of user-centric attribution models. In short, Attribution Models use the information provided by Tracking technologies such as Google Analytics or Webtrekk to understand customer journeys from the first click on a Facebook ad to the final purchase and adequately ponderate the different marketing campaigns encountered depending on their responsibility in the final conversion.

Issues on Causal Effects

A key question then becomes: how to declare a channel is responsible for a purchase? In other words, how can we isolate the causal effect or incremental value of a campaign ?

          1. A/B-Tests

One method to estimate the pure impact of a campaign is the design of randomized experiments, wherein a control and treated groups are compared.  A/B tests belong to this broad category of randomized methods. Provided the groups are a priori similar in every aspect except for the treatment received, all subsequent differences may be attributed solely to the treatment. This method is typically used in medical studies to assess the effect of a drug to cure a disease.

Main practical issues regarding Randomized Methods are:

  • Assuring that control and treated groups are really similar before treatment. Uually a random assignment (i.e assuring that on a relevant set of observable variables groups are similar) is realized;
  • Potential spillover-effects, i.e the possibility that the treatment has an impact on the non-treated group as well (Stable unit treatment Value Assumption, or SUTVA in Rubin’s framework);
  • The costs of conducting such an experiment, and especially the costs linked to the deliberate assignment of individuals to a group with potentially lower results;
  • The number of such experiments to design if multiple treatments have to be measured;
  • Difficulties taking into account the interaction effects between campaigns or the effect of spending levels. Indeed, usually A/B tests are led by cutting off temporarily one campaign entirely and measuring the subsequent impact on KPI’s compared to the situation where this campaign is maintained;
  • The dynamical reproduction of experiments if we assume that treatment effects may change over time.

In the marketing context, multiple campaigns must be tested in a dynamical way, and treatment effect is likely to be heterogeneous among customers, leading to practical issues in the lauching of A/B tests to approximate the incremental value of all campaigns. However, sites with a lot of traffic and conversions can highly benefit from A/B testing as it provides a scientific and straightforward way to approximate a causal impact. Leading companies such as Uber, Netflix or Airbnb rely on internal tools for A/B testing automation, which allow them to basically test any decision they are about to make.

References:

Books:

Experiment!: Website conversion rate optimization with A/B and multivariate testing, Colin McFarland, ©2013 | New Riders  

A/B testing: the most powerful way to turn clicks into customers. Dan Siroker, Pete Koomen; Wiley, 2013.

Blogs:

https://eng.uber.com/xp

https://medium.com/airbnb-engineering/growing-our-host-community-with-online-marketing-9b2302299324

Study:

https://cmosurvey.org/wp-content/uploads/sites/15/2018/08/The_CMO_Survey-Results_by_Firm_and_Industry_Characteristics-Aug-2018.pdf

        2. Attribution models

Attribution Models do not demand to create an experimental setting. They take into account existing data and derive insights from the variability of customer journeys. One key difficulty is then to differentiate correlation and causality in the links observed between the exposition to campaigns and purchases. Indeed, selection effects may bias results as exposure to campaigns is usually dependant on user-characteristics and thus may not be necessarily independant from the customer’s baseline conversion probabilities. For example, customers purchasing from a discount price comparison website may be intrinsically different from customers buying from FB ad and this a priori difference may alone explain post-exposure differences in purchasing bahaviours. This intrinsic weakness must be remembered when interpreting Attribution Models results.

                          2.1 General Issues

The main issues regarding the implementation of Attribution Models are linked to

  • Causality and fallacious reasonning, as most models do not take into account the aforementionned selection biases.
  • Their difficult evaluation. Indeed, in almost all attribution models (except for those based on classification, where the accuracy of the model can be computed), the additionnal value brought by the use of a given attribution models cannot be evaluated using existing historical data. This additionnal value can only be approximated by analysing how the implementation of the conclusions of the attribution model have impacted a given KPI.
  • Tracking issues, leading to an uncorrect reconstruction of customer journeys
    • Cross-device journeys: cross-device issue arises from the use of different devices throughout the customer journeys, making it difficult to link datapoints. For example, if a customer searches for a product on his computer but later orders it on his mobile, the AM would then mistakenly consider it an order without prior campaign exposure. Though difficult to measure perfectly, the proportion of cross-device orders can approximate 20-30%.
    • Cookies destruction makes it difficult to track the customer his the whole journey. Both regulations and consumers’ rising concerns about data privacy issues mitigate the reliability and use of cookies.1 – From 2002 on, the EU has enacted directives concerning privacy regulation and the extended use of cookies for commercial targeting purposes, which have highly impacted marketing strategies, such as the ‘Privacy and Electronic Communications Directive’ (2002/58/EC). A research was conducted and found out that the adoption of this ‘Privacy Directive’ had led to 64% decrease in advertising methods compared to the rest of the world (Goldfarb et Tucker (2011)). The effect was stronger for generalized sites (Yahoo) than for specialized sites.2 – Users have grown more and more conscious of data privacy issues and have adopted protective measures concerning data privacy, such as automatic destruction of cookies after a session is ended, or simply giving away less personnal information (Goldfarb et Tucker (2012) ) .Valuable user information may be lost, though tracking technologies evolution have permitted to maintain tracking by other means. This issue may be particularly important in countries highly concerned with data privacy issues such as Germany.
    • Offline/Online bridge: an Attribution Model should take into account all campaigns to draw valuable insights. However, the exposure to offline campaigns (TV, newspapers) are difficult to track at the user level. One idea to tackle this issue would be to estimate the proportion of conversions led by offline campaigns through AB testing and deduce this proportion from the credit assigned to the online campaigns accounted for in the Attribution Model.
    • Touch point information available: clicks are easy to follow but irrelevant to take into account the influence of purely visual campaigns such as display ads or video.

                          2.2 Today’s main practices

Two main families of Attribution Models exist:

  • Rule-Based Attribution Models, which have been used for in the last decade but from which companies are gradualy switching.

Attribution depends on the individual journeys that have led to a purchase and is solely based on the rank of the campaign in the journey. Some models focus on a single touch points (First Click, Last Click) while others account for multi-touch journeys (Bathtube, Linear). It can be calculated at the customer level and thus doesn’t require large amounts of data points. We can distinguish two sub-groups of rule-based Attribution Models:

  • One Touch Attribution Models attribute all credit to a single touch point. The First-Click model attributes all credit for a converion to the first touch point of the customer journey; last touch attributes all credit to the last campaign.
  • Multi-touch Rule-Based Attribution Models incorporate information on the whole customer journey are thus an improvement compared to one touch models. To this family belong Linear model where credit is split equally between all channels, Bathtube model where 40% of credit is given to first and last clicks and the remaining 20% is distributed equally between the middle channels, or time-decay models where credit assigned to a click diminishes as the time between the click and the order increases..

The main advantages of rule-based models is their simplicity and cost effectiveness. The main problems are:

– They are a priori known and can thus lead to optimization strategies from competitors
– They do not take into account aggregate intelligence on customer journeys and actual incremental values.
– They tend to bias (depending on the model chosen) channels that are over-represented at the beggining or end of the funnel, according to theoretical assumptions that have no observationnal back-ups.

  • Data-Driven Attribution Models

These models take into account the weaknesses of rule-based models and make a relevant use of available data. Being data-driven, following attribution models cannot be computed using single user level data. On the contrary values are calculated through data aggregation and thus require a certain volume of customer journey information.

References:

https://dspace.mit.edu/handle/1721.1/64920

 

        3. Data-Driven Attribution Models in practice

                          3.1 Issues

Several issues arise in the computation of campaigns individual impact on a given KPI within a data-driven model.

  • Selection biases: Exposure to certain types of advertisement is usually highly correlated to non-observable variables which are in turn correlated to consumption practices. Differences in the behaviour of users exposed to different campaigns may thus only be driven by core differences in conversion probabilities between groups whether than by the campaign effect.
  • Complementarity: it may be that campaigns A and B only have an effect when combined, so that measuring their individual impact would lead to misleading conclusions. The model could then try to assess the effect of combinations of campaigns on top of the effect of individual campaigns. As the number of possible non-ordered combinations of k campaigns is 2k, it becomes clear that inclusing all possible combinations would however be time-consuming.
  • Order-sensitivity: The effect of a campaign A may depend on the place where it appears in the customer journey, meaning the rank of a campaign and not merely its presence could be accounted for in the model.
  • Relative Order-sensitivity: it may be that campaigns A and B only have an effect when one is exposed to campaign A before campaign B. If so, it could be useful to assess the effect of given combinations of campaigns as well. And this for all campaigns, leading to tremendous numbers of possible combinations.
  • All previous phenomenon may be present, increasing even more the potential complexity of a comprehensive Attribution Model. The number of all possible ordered combination of k campaigns is indeed :

 

                          3.2 Main models

                                  A) Logistic Regression and Classification models

If non converting journeys are available, Attribition Model can be shaped as a simple classification issue. Campaign types or campaigns combination and volume of campaign types can be included in the model along with customer or time variables. As we are interested in inference (on campaigns effect) whether than prediction, a parametric model should be used, such as Logistic Regression. Non paramatric models such as Random Forests or Neural Networks can also be used though the interpretation of campaigns value would be more difficult to derive from the model results.

A common pitfall is the usual issue of spurious correlations on one hand and the correct interpretation of coefficients in business terms.

An advantage if the possibility to evaluate the relevance of the model using common model validation methods to evaluate its predictive power (validation set \ AUC \pseudo R squared).

                                  B) Shapley Value

Theory

The Shapley Value is based on a Game Theory framework and is named after its creator, the Nobel Price Laureate Lloyd Shapley. Initially meant to calculate the marginal contribution of players in cooperative games, the model has received much attention in research and industry and has lately been applied to marketing issues. This model is typically used by Google Adords and other ad bidding vendors. Campaigns or marketing channels are in this model seen as compementary players looking forward to increasing a given KPI.
Contrarily to Logistic Regressions, it is a non-parametric model. Contrarily to Markov Chains, all results are built using existing journeys, and not simulated ones.

Channels are considered to enter the game sequentially under a certain joining order. Shapley value try to The Shapley value of channel i is the weighted sum of the marginal values that channel i adds to all possible coalitions that don’t contain channel i.
In other words, the main logic is to analyse the difference of gains when a channel i is added after a coalition Ck of k channels, k<=n. We then sum all the marginal contributions over all possible ordered combination Ck of all campaigns excluding i, with k<=n-1.

Subsets framework

A first an most usual way to compute the Shapley Vaue is to consider that when a channel enters coalition, its additionnal value is the same irrelevant of the order in which previous channels have appeared. In other words, journeys (A>B>C) and (B>A>C) trigger the same gains.
Shapley value is computed as the gains associated to adding a channel i to a subset of channels, weighted by the number of (ordered) sequences that the (unordered) subset represents, summed up on all possible subsets of the total set of campaigns where the channel i is not present.
The Shapley value of the channel ???????? is then:

where |S| is the number of campaigns of a coalition S and the sum extends over all subsets S that do not not contain channel j. ????(????)  is the value of the coalition S and ????(???? ∪ {????????})  the value of the coalition formed by adding ???????? to coalition S. ????(???? ∪ {????????}) − ????(????) is thus the marginal contribution of channel ???????? to the coalition S.

The formula can be rewritten and understood as:

This method is convenient when data on the gains of on all possible permutations of all unordered k subsets of the n campaigns are available. It is also more convenient if the order of campaigns prior to the introduction of a campaign is thought to have no impact.

Ordered sequences

Let us define ????((A>B)) as the value of the sequence A then B. What is we let ????((A>B)) be different from ????((B>A)) ?
This time we would need to sum over all possible permutation of the S campaigns present before  ???????? and the N-(S+1) campaigns after ????????. Doing so we will sum over all possible orderings (i.e all permutations of the n campaigns of the grand coalition containing all campaigns) and we can remove the permutation coefficient s!(p-s+1)!.

This method is convenient when the order of channels prior to and after the introduction of another channel is assumed to have an impact. It is also necessary to possess data for all possible permutations of all k subsets of the n campaigns, and not only on all (unordered) k-subsets of the n campaigns, k<=n. In other words, one must know the gains of A, B, C, A>B, B>A, etc. to compute the Shapley Value.

Differences between the two approaches

We simulate an ordered case where the value for each ordered sequence k for k<=3 is known. We compare it to the usual Shapley value calculated based on known gains of unordered subsets of campaigns. So as to compare relevant values, we have built the gains matrix so that the gains of a subset A, B i.e  ????({B,A}) is the average of the gains of ordered sequences made up with A and B (assuming the number of journeys where A>B equals the number of journeys where B>A, we have ????({B,A})=0.5( ????((A>B)) + ????((B>A)) ). We let the value of the grand coalition be different depending on the order of campaigns-keeping the constraints that it averages to the value used for the unordered case.

Note: mvA refers to the marginal value of A in a given sequence.
With traditionnal unordered coalitions:

With ordered sequences used to compute the marginal values:

 

We can see that the two approaches yield very different results. In the unordered case, the Shapley Value campaign C is the highest, culminating at 20, while A and B have the same Shapley Value mvA=mvB=15. In the ordered case, campaign A has the highest Shapley Value and all campaigns have different Shapley Values.

This example illustrates the inherent differences between the set and sequences approach to Shapley values. Real life data is more likely to resemble the ordered case as conversion probabilities may for any given set of campaigns be influenced by the order through which the campaigns appear.

Advantages

Shapley value has become popular in allocation problems in cooperative games because it is the unique allocation which satisfies different axioms:

  • Efficiency: Shaple Values of all channels add up to the total gains (here, orders) observed.
  • Symmetry: if channels A and B bring the same contribution to any coalition of campaigns, then their Shapley Value i sthe same
  • Null player: if a channel brings no additionnal gains to all coalitions, then its Shapley Value is zero
  • Strong monotony: the Shapley Value of a player increases weakly if all its marginal contributions increase weakly

These properties make the Shapley Value close to what we intuitively define as a fair attribution.

Issues

  • The Shapley Value is based on combinatory mathematics, and the number of possible coalitions and ordered sequences becomes huge when the number of campaigns increases.
  • If unordered, the Shapley Value assumes the contribution of campaign A is the same if followed by campaign B or by C.
  • If ordered, the number of combinations for which data must be available and sufficient is huge.
  • Channels rarely present or present in long journeys will be played down.
  • Generally, gains are supposed to grow with the number of players in the game. However, it is plausible that in the marketing context a journey with a high number of channels will not necessarily bring more orders than a journey with less channels involved.

References:

R package: GameTheoryAllocation

Article:
Zhao & al, 2018 “Shapley Value Methods for Attribution Modeling in Online Advertising “
https://link.springer.com/content/pdf/10.1007/s13278-017-0480-z.pdf
Courses: https://www.lamsade.dauphine.fr/~airiau/Teaching/CoopGames/2011/coopgames-7%5b8up%5d.pdf
Blogs: https://towardsdatascience.com/one-feature-attribution-method-to-supposedly-rule-them-all-shapley-values-f3e04534983d

                                  B) Markov Chains

Markov Chains are used to model random processes, i.e events that occur in a sequential manner and in such a way that the probability to move to a certain state only depends on the past steps. The number of previous steps that are taken into account to model the transition probability is called the memory parameter of the sequence, and for the model to have a solution must be comprised between 0 and 4. A Markov Chain process is thus defined entirely by its Transition Matrix and its initial vector (i.e the starting point of the process).

Markov Chains are applied in many scientific fields. Typically, they are used in weather forecasting, with the sequence of Sunny and Rainy days following a Markov Process of memory parameter 0, so that for each given day the probability that the next day will be rainy or sunny only depends on the weather of the current day. Other applications can be found in sociology to understand the dynamics of social classes intergenerational reproduction. To get more both mathematical and applied illustration, I recommend the reading of this course.

In the marketing context, Markov Chains are an interesting way to model the conversion funnel. To go from the from the Markov Model to the Attribution logic, we calculate the Removal Effect of each channel, i.e the difference in conversions that happen if the channel is removed. Please read below for an introduction to the methodology.

The first step in a Markov Chains Attribution Model is to build the transition matrix that captures the transition probabilities between the campaigns accross existing customer journeys. This Matrix is to be read as a “From state A to state B” table, from the left to the right. A first difficulty is finding the right memory parameter to use. A large memory parameter would allow to take more into account interraction effects within the conversion funnel but would lead to increased computationnal time, a non-readable transition matrix, and be more sensitive to noisy data. Please note that this transition matrix provides useful information on the conversion funnel and on the relationships between campaigns and can be used as such as an analytical tool. I suggest the clear and easily R code which can be found here or here.

Here is an illustration of a Markov Chain with memory Parameter of 0: the probability to go to a certain campaign B in the next step only depend on the campaign we are currently at:

The associated Transition Matrix is then (with null probabilities left as Blank):

The second step is  to compute the actual responsibility of a channel in total conversions. As mentionned above, the main philosophy to do so is to calculate the Removal Effect of each channel, i.e the changes in the number of conversions when a channel is entirely removed. All customer journeys which went through this channel are settled out to be unsuccessful. This calculation is done by applying the transition matrix with and without the removed channels to an initial vector that contains the number of desired simulations.

Building on our current example, we can then settle an initial vector with the desired number of simulations, e.g 10 000:

 

It is possible at this stage to add a constraint on the maximum number of times the matrix is applied to the data, i.e on the maximal number of campaigns a simulated journey is allowed to have.

Advantages

  • The dynamic journey is taken into account, as well as the transition between two states. The funnel is not assumed to be linear.
  • It is possile to build a conversion graph that maps the customer journey provides valuable insights.
  • It is possible to evaluate partly the accuracy of the Attribution Model based on Markov Chains. It is for example possible to see how well the transition matrix help predict the future by analysing the number of correct predictions at any given step over all sequences.

Disadvantages

  • It can be somewhat difficult to set the memory parameter. Complementarity effects between channels are not well taken into account if the memory is low, but a parameter too high will lead to over-sensitivity to noise in the data and be difficult to implement if customer journeys tend to have a number of campaigns below this memory parameter.
  • Long journeys with different channels involved will be overweighted, as they will count many times in the Removal Effect.  For example, if there are n-1 channels in the customer journey, this journey will be considered as failure for the n-1 channel-RE. If the volume effects (i.e the impact of the overall number of channels in a journey, irrelevant from their type° are important then results may be biased.

References:

R package: ChannelAttribution

Git:

https://github.com/MatCyt/Markov-Chain/blob/master/README.md

Course:

https://www.ssc.wisc.edu/~jmontgom/markovchains.pdf

Article:

“Mapping the Customer Journey: A Graph-Based Framework for Online Attribution Modeling”; Anderl, Eva and Becker, Ingo and Wangenheim, Florian V. and Schumann, Jan Hendrik, 2014. Available at SSRN: https://ssrn.com/abstract=2343077 or http://dx.doi.org/10.2139/ssrn.2343077

“Media Exposure through the Funnel: A Model of Multi-Stage Attribution”, Abhishek & al, 2012

“Multichannel Marketing Attribution Using Markov Chains”, Kakalejčík, L., Bucko, J., Resende, P.A.A. and Ferencova, M. Journal of Applied Management and Investments, Vol. 7 No. 1, pp. 49-60.  2018

Blogs:

https://analyzecore.com/2016/08/03/attribution-model-r-part-1

https://analyzecore.com/2016/08/03/attribution-model-r-part-2

                          3.3 To go further: Tackling selection biases with Quasi-Experiments

Exposure to certain types of advertisement is usually highly correlated to non-observable variables. Differences in the behaviour of users exposed to different campaigns may thus only be driven by core differences in converison probabilities between groups whether than by the campaign effect. These potential selection effects may bias the results obtained using historical data.

Quasi-Experiments can help correct this selection effect while still using available observationnal data.  These methods recreate the settings on a randomized setting. The goal is to come as close as possible to the ideal of comparing two populations that are identical in all respects except for the advertising exposure. However, populations might still differ with respect to some unobserved characteristics.

Common quasi-experimental methods used for instance in Public Policy Evaluation are:

  • Discontinuity Regressions
  • Matching Methods, such as Exact Matching,  Propensity-score matching or k-nearest neighbourghs.

References:

Article:

“Towards a digital Attribution Model: Measuring the impact of display advertising on online consumer behaviour”, Anindya Ghose & al, MIS Quarterly Vol. 40 No. 4, pp. 1-XX, 2016

https://pdfs.semanticscholar.org/4fa6/1c53f281fa63a9f0617fbd794d54911a2f84.pdf

        4. First Steps towards a Practical Implementation

Identify key points of interests

  • Identify the nature of touchpoints available: is the data based on clicks? If so, is there a way to complement the data with A/B tests to measure the influence of ads without clicks (display, video) ? For example, what happens to sales when display campaign is removed? Analysing this multiplier effect would give the overall responsibility of display on sales, to be deduced from current attribution values given to click-based channels. More interestingly, what is the impact of the removal of display campaign on the occurences of click-based campaigns ? This would give us an idea of the impact of display ads on the exposure to each other campaigns, which would help correct the attribution values more precisely at the campaign level.
  • Define the KPI to track. From a pure Marketing perspective, looking at purchases may be sufficient, but from a financial perspective looking at profits, though a bit more difficult to compute, may drive more interesting results.
  • Define a customer journey. It may seem obvious, but the notion needs to be clarified at first. Would it be defined by a time limit? If so, which one? Does it end when a conversion is observed? For example, if a customer makes 2 purchases, would the campaigns he’s been exposed to before the first order still be accounted for in the second order? If so, with a time decay?
  • Define the research framework: are we interested only in customer journeys which have led to conversions or in all journeys? Keep in mind that successful customer journeys are a non-representative sample of customer journeys. Models built on the analysis of biased samples may be conservative. Take an extreme example: 80% of customers who see campaign A buy the product, VS 1% for campaign B. However, campaign B exposure is great and 100 Million people see it VS only 1M for campaign A. An Attribution Model based on successful journeys will give higher credit to campaign B which is an auguable conclusion. Taking into account costs per campaign (in the case where costs are calculated by clicks) may of course tackle this issue partly, as campaign A could then exhibit higher returns, but a serious fallacious reasonning is at stake here.

Analyse the typical customer journey    

  • Performing a duration analysis on the data may help you improve the definition of the customer journey to be used by your organization. After which days are converison probabilities null? Should we consider the effect of campaigns disappears after x days without orders? For example, if 99% of orders are placed in the 30 days following a first click, it might be interesting to define the customer journey as a 30 days time frame following the first oder.
  • Look at the distribution of the number of campaigns in a typical journey. If you choose to calculate the effect of campaigns interraction in your Attribution Model, it may indeed help you determine the maximum number of campaigns to be included in a combination. Indeed, you may not need to assess the impact of channel combinations with above than 4 different channels if 95% of orders are placed after less then 4 campaigns.
  • Transition matrixes: what if a campaign A systematically leads to a campaign B? What happens if we remove A or B? These insights would give clues to ask precise questions for a latter AB test, for example to find out if there is complementarity between channels A and B – (implying none should be removed) or mere substitution (implying one can be given up).
  • If conversion rates are available: it can be interesting to perform a survival analysis i.e to analyse the likelihood of conversion based on duration since first click. This could help us excluse potential outliers or individuals who have very low conversion probabilities.

Summary

Attribution is a complex topic which will probably never be definitively solved. Indeed, a main issue is the difficulty, or even impossibility, to evaluate precisely the accuracy of the attribution model that we’ve built. Attribution Models should be seen as a good yet always improvable approximation of the incremental values of campaigns, and be presented with their intrinsinc limits and biases.

Introduction to ROC Curve

The abbreviation ROC stands for Receiver Operating Characteristic. Its main purpose is to illustrate the diagnostic ability of classifier as the discrimination threshold is varied. It was developed during World War II when Radar operators had to decide if the blip on the screen is an enemy target, a friendly ship or just a noise.  For these purposes they measured the ability of a radar receiver operator to make these important distinctions, which was called the Receiver Operating Characteristic.

Later it was found useful in interpreting medical test results and then in Machine learning classification problems. In order to get an introduction to binary classification and terms like ‘precision’ and ‘recall’ one can look into my earlier blog  here.

True positive rate and false positive rate

Let’s imagine a situation where a fire alarm is installed in a kitchen. The alarm is supposed to emit a sound in case fire smoke is detected in the room. Unfortunately, there is a lot of cooking done in the kitchen and the alarm may trigger the sound too often. Thus, instead of serving a purpose the alarm becomes a nuisance due to a large number of false alarms. In statistical terms these types of errors are called type 1 errors, or false positives.

One way to deal with this problem is to simply decrease sensitivity of the device. We do this by increasing the trigger threshold at the alarm setting. But then, not every alarm should have the same threshold setting. Consider the same type of device but kept in a bedroom. With high threshold, the device might miss smoke from a real short-circuit in the wires which poses a real danger of fire. This kind of failure is called Type 2 error or a false negative. Although the two devices are the same, different types of threshold settings are optimal for different circumstances.

To specify this more formally, let us describe the performance of a binary classifier at a particular threshold by the following parameters:

 

These parameters take different values at different thresholds. Hence, they define the performance of the classifier at particular threshold. But we want to examine in overall how good a classifier is. Fortunately, there is a way to do that. We plot the True Positive Rate (TPR) and False Positive rate (FPR) at different thresholds and this plot is called ROC curve.

Let’s try to understand this with an example.

A case with a distinct population distribution

Let’s suppose there is a disease which can be identified with deficiency of some parameter (maybe a certain vitamin). The distribution of population with this disease has a mean vitamin concentration sharply distinct from the mean of a healthy population, as shown below.

This is result of dummy data simulating population of 2000 people,the link to the code is given  in the end of this blog.  As the two populations are distinctly separated (there is no  overlap between the two distributions), we can expect that a classifier would have an easy job distinquishing healthy from sick people. We can run a logistic regression classifier with a threshold of .5 and be 100% succesful in detecting the decease.

The confusion matrix may look something like this.

In this ideal case with a threshold  of  .5 we do not make a single wrong classification. The True positive rate and False positive rate are 1 and 0, respectively. But we can shift the threshold. In that case, we will  get different confusion matrices. First we plot threshold vs. TPR.

We see for most values of threshold the TPR is close to 1 which again proves data is easy to classify and the classifier is returning high probabilities  for the most of positives .

Similarly Let’s plot threshold vs. FPR.

For most of the data points FPR is close to zero. This is also good. Now its time to plot the ROC curve using these results (TPR vs FPR).

Let’s try to interpret  the results,  all the points lie on line x=0 and y=1, it means for all the points FPR is zero or TPR is one, making  the curve a square. which means the classifier does perfectly well.

Case with overlapping  population distribution

The above example was about a perfect classifer. However, life is often not so easy. Now let us consider another more realistic situation in which the parameter distribution of the population is not as distinct as in the previous case. Rather, the mean of the parameter with healthy and not healthy datapoints are close and the distributions overlap, as shown in the next figure.

If we set the threshold to 0.5, the confusion matrix may look like this.

Now, any new choice of threshold location will affect both false positives and false negatives. In fact, there is a trade-off. If we shift the threshold with the goal to reduce false negatives, false positives will increase. If we move the threshold to the other direction and reduce false positive, false negatives will increase.

The plots (TPR vs Threshold) , (FPR vs Threshold) are shown below

If we plot the ROC curve from these results, it looks like this:

From the curve we see the classifier does not perform as well as the earlier one.

What else can be infered from this curve? We first need to understand what the diagonal in this plot represent. The diagonal represents ‘Line of no discrimination’, which we obtain if we randomly guess. This is the ROC curve for the worst possible classifier. Therefore, by comparing the obtained ROC curve with the diagonal, we see how much better our classifer is from random guessing.

The further away ROC curve from the diagonal is (the closest it is to the top left corner) , better the classifier is.

Area Under the curve

The overall performance of the classifier is given by the area under the ROC curve and is usually denoted as AUC. Since TPR and FPR lie within the range of 0 to 1, the AUC also assumes values between 0 and 1. The higher the value of AUC, the better is the overall performance of the classifier.

Let’s see this for the two different distributions which we saw earlier.

As we know the classifier had worked perfectly in the first case with points at (0,1) the area under the curve is 1 which is perfect. In the latter case the classifier was not able to perform as good, the ROC curve is between the diagonal and left hand corner. The AUC as we can see is less than 1.

Some other general characteristics

There are still few points that needs to be discussed on a General ROC curve

  • The ROC curve does not provide information about the actual values of thresholds used for the classifier.
  • Performance of different classifiers can be compared using the AUC of different Classifier. The larger the AUC, the better the classifier.
  • The vertical distance of the ROC curve from the no discrimination line gives a measure of ‘INFORMEDNESS’. This is known as Youden’s J satistic. This statistics can take values between 0 and 1.

Youden’s  J statistic is defined for every point on the ROC curve . The point at which Youden’s  J satistics reaches its maximum for a given ROC curve can be used to guide the selection of the threshold to be used for that classifier.

I hope this post does the job of providing an understanding of ROC curves  and AUC. The  Python program for simulating the example given earlier can be found here .

Please feel free to adjust the mean of the distributions and see the changes in the plot.

Fehler-Rückführung mit der Backpropagation

Dies ist Artikel 4 von 6 der Artikelserie –Einstieg in Deep Learning.

Das Gradienten(abstiegs)verfahren ist der Schlüssel zum Training einzelner Neuronen bzw. deren Gewichtungen zu den Neuronen der vorherigen Schicht. Wer dieses Prinzip verstanden hat, hat bereits die halbe Miete zum Verständnis des Trainings von künstlichen neuronalen Netzen.

Der Gradientenabstieg wird häufig fälschlicherweise mit der Backpropagation gleichgesetzt, jedoch ist das nicht ganz richtig, denn die Backpropagation ist mehr als die Anwendung des Gradientenabstiegs.

Bevor wir die Backpropagation erläutern, nochmal kurz zurück zur Forward-Propagation, die die eigentliche Prädiktion über ein künstliches neuronales Netz darstellt:

Forward-Propagation

Abbildung 1: Ein simples kleines künstliches neuronales Netz mit zwei Schichten (+ Eingabeschicht) und zwei Neuronen pro Schicht.

In einem kleinen künstlichen neuronalen Netz, wie es in der Abbildung 1 dargestellt ist, und das alle Neuronen über die Sigmoid-Funktion aktiviert, wird jedes Neuron eine Nettoeingabe z berechnen…

z = w^{T} \cdot x

… und diese Nettoeingabe in die Sigmoid-Funktion einspeisen…

\phi(z) = sigmoid(z) = \frac{1}{1 + e^{-z}}

… die dann das einzelne Neuron aktiviert. Die Aktivierung erfolgt also in der mittleren Schicht (N-Schicht) wie folgt:

N_{j} = \frac{1}{1 + e^{- \sum (w_{ij} \cdot x_{i}) }}

Die beiden Aktivierungsausgaben N werden dann als Berechnungsgrundlage für die Ausgaben der Ausgabeschicht o verwendet. Auch die Ausgabe-Neuronen berechnen ihre jeweilige Nettoeingabe z und aktivieren über Sigmoid(z).

Ausgabe eines Ausgabeknotens als Funktion der Eingänge und der Verknüpfungsgewichte für ein dreischichtiges neuronales Netz, mit nur zwei Knoten je Schicht, kann also wie folgt zusammen gefasst werden:

O_{k} = \frac{1}{1 + e^{- \sum (w_{jk} \cdot \frac{1}{1 + e^{- \sum (w_{ij} \cdot x_{i}) }}) }}

Abbildung 2: Forward-Propagation. Aktivierung via Sigmoid-Funktion.

Sollte dies die erste Forward-Propagation gewesen sein, wird der Output noch nicht auf den Input abgestimmt sein. Diese Abstimmung erfolgt in Form der Gewichtsanpassung im Training des neuronalen Netzes, über die zuvor erwähnte Gradientenmethode. Die Gradientenmethode ist jedoch von einem Fehler abhängig. Diesen Fehler zu bestimmen und durch das Netz zurück zu führen, das ist die Backpropagation.

Back-Propagation

Um die Gewichte entgegen des Fehlers anpassen zu können, benötigen wir einen möglichst exakten Fehler als Eingabe. Der Fehler berechnet sich an der Ausgabeschicht über eine Fehlerfunktion (Loss Function), beispielsweise über den MSE (Mean Squared Error) oder über die sogenannte Kreuzentropie (Cross Entropy). Lassen wir es in diesem Beispiel einfach bei einem simplen Vergleich zwischen dem realen Wert (Sollwert o_{real}) und der Prädiktion (Ausgabe o) bleiben:

e_{o} = o_{real} - o

Der Fehler e ist also einfach der Unterschied zwischen dem Ziel-Wert und der Prädiktion. Jedes Training ist eine Wiederholung von Prädiktion (Forward) und Gewichtsanpassung (Back). Im ersten Schritt werden üblicherweise die Gewichtungen zufällig gesetzt, jede Gewichtung unterschiedlich nach Zufallszahl. So ist die Wahrscheinlichkeit, gleich zu Beginn die “richtigen” Gewichtungen gefunden zu haben auch bei kleinen neuronalen Netzen verschwindend gering. Der Fehler wird also groß sein und kann über den Gradientenabstieg durch Gewichtsanpassung verkleinert werden.

In diesem Beispiel berechnen wir die Fehler e_{1} und e_{2} und passen danach die Gewichte w_{j,k} (w_{1,1} & w_{2,1} und w_{1,2} & w_{2,2}) der Schicht zwischen dem Hidden-Layer N und dem Output-Layer o an.

Abbildung 3: Anpassung der Gewichtungen basierend auf dem Fehler in der Ausgabe-Schicht.

Die Frage ist nun, wie die Gewichte zwischen dem Input-Layer X und dem Hidden-Layer N anzupassen sind. Es stellt sich die Frage, welchen Einfluss diese auf die Fehler in der Ausgabe-Schicht haben?

Um diese Gewichtungen anpassen zu können, benötigen wir den Fehler-Anteil der beiden Neuronen N_{1} und N_{2}. Dieser Anteil am Fehler der jeweiligen Neuronen ergibt sich direkt aus den Gewichtungen w_{j,k} zum Output-Layer:

e_{N_{1}} = e_{o1} \cdot \frac{w_{1,1}}{w_{1,1} + w_{1,2}} + e_{o2} \cdot \frac{w_{1,2}}{w_{1,1} + w_{1,2}}

e_{N_{2}} = e_{o1} \cdot \frac{w_{2,1}}{w_{2,1} + w_{2,2}} + e_{o2} \cdot \frac{w_{2,2}}{w_{2,1} + w_{2,2}}

Wenn man das nun generalisiert:

    \[ e_{N} = \left(\begin{array}{rr} \frac{w_{1,1}}{w_{1,1} + w_{1,2}} & \frac{w_{1,2}}{w_{1,1} + w_{1,2}} \\ \frac{w_{2,1}}{w_{2,1} + w_{2,2}} & \frac{w_{2,2}}{w_{2,1} + w_{2,2}} \end{array}\right) \cdot \left(\begin{array}{c} e_{1} \\ e_{2} \end{array}\right) \qquad \]

Dabei ist es recht aufwändig, die Gewichtungen stets ins Verhältnis zu setzen. Diese Berechnung können wir verkürzen, indem ganz einfach direkt nur die Gewichtungen ohne Relativierung zur Kalkulation des Fehleranteils benutzt werden. Die Relationen bleiben dabei erhalten!

    \[ e_{N} = \left(\begin{array}{rr} w_{1,1} & w_{1,2} \\ w_{2,1} & w_{2,2} \end{array}\right) \cdot \left(\begin{array}{c} e_{1} \\ e_{2} \end{array}\right) \qquad \]

Oder folglich in Kurzform: e_{N} = w^{T} \cdot e_{o}

Abbildung 4: Vollständige Gewichtsanpassung auf Basis der Fehler in der Ausgabeschicht und der Fehleranteile in der verborgenden Schicht.

Und nun können, basierend auf den Fehleranteilen der verborgenden Schicht N, die Gewichtungen w_{i,j} zwischen der Eingabe-Schicht I und der verborgenden Schicht N angepasst werden, entgegen dieser Fehler e_{N}.

Die Backpropagation besteht demnach aus zwei Schritten:

  1. Fehler-Berechnung durch Abgleich der Soll-Werte mit den Prädiktionen in der Ausgabeschicht und durch Fehler-Rückführung zu den Neuronen der verborgenden Schichten (Hidden-Layer)
  2. Anpassung der Gewichte entgegen des Gradientenanstiegs der Fehlerfunktion (Loss Function)

Buchempfehlungen

Die folgenden zwei Bücher haben mir sehr beim Verständnis und beim Verständlichmachen der Backpropagation in künstlichen neuronalen Netzen geholfen.

Neuronale Netze selbst programmieren: Ein verständlicher Einstieg mit Python Deep Learning. Das umfassende Handbuch: Grundlagen, aktuelle Verfahren und Algorithmen, neue Forschungsansätze (mitp Professional)

Training eines Neurons mit dem Gradientenverfahren

Dies ist Artikel 3 von 6 der Artikelserie –Einstieg in Deep Learning.

Das Training von neuronalen Netzen erfolgt nach der Forward-Propagation über zwei Schritte:

  1. Fehler-Rückführung über aller aktiver Neuronen aller Netz-Schichten, so dass jedes Neuron “seinen” Einfluss auf den Ausgabefehler kennt.
  2. Anpassung der Gewichte entgegen den Gradienten der Fehlerfunktion

Beide Schritte werden in der Regel zusammen als Backpropagation bezeichnet. Machen wir erstmal einen Schritt vor und betrachten wir, wie ein Neuron seine Gewichtsverbindungen zu seinen Vorgängern anpasst.

Gradientenabstiegsverfahren

Der Gradientenabstieg ist ein generalisierbarer Algorithmus zur Optimierung, der in vielen Verfahren des maschinellen Lernens zur Anwendung kommt, jedoch ganz besonders als sogenannte Backpropagation im Deep Learning den Erfolg der künstlichen neuronalen Netze erst möglich machen konnte.

Der Gradientenabstieg lässt sich vom Prinzip her leicht erklären: Angenommen, man stünde im Gebirge im dichten Nebel. Das Tal, und somit der Weg nach Hause, ist vom Nebel verdeckt. Wohin laufen wir? Wir können das Ziel zwar nicht sehen, tasten uns jedoch so heran, dass unser Gehirn den Gradienten (den Unterschied der Höhen beider Füße) berechnet, somit die Steigung des Bodens kennt und sich entgegen dieser Steigung unser Weg fortsetzt.

Konkret funktioniert der Gradientenabstieg so: Wir starten bei einem zufälligen Theta \theta (Random Initialization). Wir berechnen die Ausgabe (Forwardpropogation) und vergleichen sie über eine Verlustfunktion (z. B. über die Funktion Mean Squared Error) mit dem tatsächlich korrekten Wert. Auf Grund der zufälligen Initialisierung haben wir eine nahe zu garantierte Falschheit der Ergebnisse und somit einen Verlust. Für die Verlustfunktion berechnen wir den Gradienten für gegebene Eingabewerte. Voraussetzung dafür ist, dass die Funktion ableitbar ist. Wir bewegen uns entgegen des Gradienten in Richtung Minimum der Verlustfunktion. Ist dieses Minimum (fast) gefunden, spricht man auch davon, dass der Lernalgorithmus konvergiert.

Das Gradientenabstiegsverfahren ist eine Möglichkeit der Gradientenverfahren, denn wollten wir maximieren, würden wir uns entlang des Gradienten bewegen, was in anderen Anwendungen sinnvoll ist.

Ob als “Cost Function” oder als “Loss Function” bezeichnet, in jedem Fall ist es eine “Error Function”, aber auf die Benennung kommen wir später zu sprechen. Jedenfalls versuchen wir die Fehlerrate zu senken! Leider sind diese Funktionen in der Praxis selten so einfach konvex (zwei Berge mit einem Tal dazwischen).

 

Aber Achtung: Denn befinden wir uns nur zwischen zwei Bergen, finden wir das Tal mit Sicherheit über den Gradienten. Befinden wir uns jedoch in einem richtigen Gebirge mit vielen Bergen und Tälern, gilt es, das richtige Tal zu finden. Bei der Optimierung der Gewichtungen von künstlichen neuronalen Netzen wollen wir die besten Gewichtungen finden, die uns zu den geringsten Ausgaben der Verlustfunktion führen. Wir suchen also das globale Minimum unter den vielen (lokalen) Minima.

Programmier-Beispiel in Python

Nachfolgend ein Beispiel des Gradientenverfahrens zur Berechnung einer Regression. Wir importieren numpy und matplotlib.pyplot und erzeugen uns künstliche Datenpunkte:

Nun wollen wir einen Lernalgorithmus über das Gradientenverfahren erstellen. Im Grunde haben wir hier es bereits mit einem linear aktivierten Neuron zutun:

Bei der linearen Regression, die wir durchführen wollen, nehmen wir zwei-dimensionale Daten (wobei wir die Regression prinzipiell auch mit x-Dimensionen durchführen können, dann hätte unser Neuron weitere Eingänge). Wir empfangen einen Bias (w_0) der stets mit einer Eingangskonstante multipliziert und somit als Wert erhalten bleibt. Der Bias ist das Alpha \alpha in einer Schulmathe-tauglichen Formel wie y = \beta \cdot x + \alpha.

Beta \beta ist die Steigung, der Gradient, der Funktion.

Sowohl \alpha als auch \beta sind uns unbekannt, versuchen wir jedoch über die Betrachtung unserer Prädiktion durch Berechnung der Formel \^y = \beta \cdot x + \alpha und den darauffolgenden Abgleich mit dem tatsächlichen y herauszufinden. Anfangs behaupten wir beispielsweise einfach, sowohl \beta als auch \alpha seien 0.00. Folglich wird \^y = \beta \cdot x + \alpha ebenfalls gleich 0.00 sein und die Fehlerfunktion (Loss Function) wird maximal sein. Dies war der erste Durchlauf des Trainings, die sogenannte erste Epoche!

Die Epochen (Durchläufe) und dazugehörige Fehlergrößen. Wenn die Fehler sinken und mit weiteren Epochen nicht mehr wesentlich besser werden, heißt es, das der Lernalogorithmus konvergiert.

Als Fehlerfunktion verwenden wir bei der Regression die MSE-Funktion (Mean Squared Error):

MSE = \sum(\^y_i - y_i)^2

Um diese Funktion wird sich nun alles drehen, denn diese beschreibt den Fehler und gibt uns auch die Auskunft darüber, ob wie stark und in welche Richtung sie ansteigt, so dass wir uns entgegen der Steigung bewegen können. Wer die Regeln der Ableitung im Kopf hat, weiß, dass die Ableitung der Formel leichter wird, wenn wir sie vorher auf halbe Werte runterskalieren. Da die Proportionen dabei erhalten bleiben und uns quadrierte Fehlerwerte unserem menschlichen Verstand sowieso nicht so viel sagen (unser Gehirn denkt nunmal nicht exponential), stört das nicht:

MSE = \frac{\frac{1}{2} \cdot \sum(\^y_i - y_i)^2}{n}

MSE = \frac{\frac{1}{2} \cdot \sum(w^T \cdot x_i - y_i)^2}{n}

Wenn die Mathematik der partiellen Ableitung (Ableitung einer Funktion nach jedem Gradienten) abhanden gekommen ist, bitte nochmal folgende Regeln nachschlagen, um die nachfolgende Ableitung verstehen zu können:

  • Allgemeine partielle Ableitung
  • Kettenregel

Ableitung der MSD-Funktion nach dem einen Gewicht w bzw. partiell nach jedem vorhandenen w_j:

\frac{\partial}{\partial w_j}MSE = \frac{\partial}{\partial w} \frac{1}{2} \cdot \sum(\^y - y_i)^2

\frac{\partial}{\partial w_j}MSE = \frac{\partial}{\partial w} \frac{1}{2} \cdot \sum(w^T \cdot x_i - y_i)^2

\frac{\partial}{\partial w_j}MSE = \frac{2}{n} \cdot \sum(w^T \cdot x_i - y_i) \cdot x_{ij}

Woher wir das x_{ij} am Ende her haben? Das ergibt sie aus der Kettenregel: Die äußere Funktion wurde abgeleitet, so wurde aus \frac{1}{2} \cdot \sum(w^T \cdot x_i - y_i)^2 dann \frac{2}{n} \cdot \sum(w^T \cdot x_i - y_i). Jedoch muss im Sinne eben dieser Kettenregel auch die innere Funktion abgeleitet werden. Da wir nach w_j ableiten, bleibt nur x_ij erhalten.

Damit können wir arbeiten! So kompliziert ist die Formel nun auch wieder nicht: \frac{2}{n} \cdot \sum(w^T \cdot x_i - y_i) \cdot x_{ij}

Mit dieser Formel können wir unsere Gewichte an den Fehler anpassen: (f\nabla ist der Gradient der Funktion!)

w_j = w_j - \nabla MSE(w_j)

Initialisieren der Gewichtungen

Die Gewichtungen \alpha und \beta müssen anfänglich mit Werten initialisiert werden. In der Regression bietet es sich an, die Gewichte anfänglich mit 0.00 zu initialisieren.

Bei vielen neuronalen Netzen, mit nicht-linearen Aktivierungsfunktionen, ist das jedoch eher ungünstig und zufällige Werte sind initial besser. Gut erprobt sind normal-verteilte Zufallswerte.

Lernrate

Nur eine Kleinigkeit haben wir bisher vergessen: Wir brauchen einen Faktor, mit dem wir anpassen. Hier wäre der Faktor 1. Das ist in der Regel viel zu groß. Dieser Faktor wird geläufig als Lernrate (Learning Rate) \eta (eta) bezeichnet:

w_j = w_j - \eta \cdot \nabla MSE(w_j)

Die Lernrate \eta ist ein Knackpunkt und der erste Parameter des Lernalgorithmus, den es anzupassen gilt, wenn das Training nicht konvergiert.

Die Lernrate \eta darf nicht zu groß klein gewählt werden, da das Training sonst zu viele Epochen benötigt. Ungeduldige erhöhen die Lernrate möglicherweise aber so sehr, dass der Lernalgorithmus im Minimum der Fehlerfunktion vorbeiläuft und diesen stets überspringt. Hier würde der Algorithmus also sozusagen konvergieren, weil nicht mehr besser werden, aber das resultierende Modell wäre weit vom Optimum entfernt.

Beginnen wir mit der Implementierung als Python-Klasse:

Die Klasse sollte so funktionieren, bevor wir sie verwenden, sollten wir die Input-Werte standardisieren:

Bei diesem Beispiel mit künstlich erzeugten Werten ist das Standardisieren bzw. das Fehlen des Standardisierens zwar nicht kritisch, aber man sollte es sich zur Gewohnheit machen. Testweise es einfach mal weglassen 🙂

Kommen wir nun zum Einsatz der Klasse, die die Regression via Gradientenabstieg absolvieren soll:

Was tut diese Instanz der Klasse LinearRegressionGD nun eigentlich?

Bildlich gesprochen, legt sie eine Gerade auf den Boden des Koordinatensystems, denn die Gewichtungen werden mit 0.00 initialisiert, y ist also gleich 0.00, egal welche Werte in x enthalten sind. Der Fehler ist dann aber sehr groß (sollte maximal sein, im Vergleich zu zukünftigen Epochen). Die Gewichte werden also angepasst, die Gerade somit besser in die Punktwolke platziert. Mit jeder Epoche wird die Gerade erneut in die Punktwolke gelegt, der Gesamtfehler (über alle x, da wir es hier mit dem Batch-Verfahren zutun haben) berechnet, die Werte angepasst… bis die vorgegebene Zahl an Epochen abgelaufen ist.

Schauen wir uns das Ergebnis des Trainings an:

Die Linie sieht passend aus, oder? Da wir hier nicht zu sehr in die Theorie der Regressionsanalyse abdriften möchten, lassen wir das testen und prüfen der Akkuratesse mal aus, hier möchte ich auf meinen Artikel Regressionsanalyse in Python mit Scikit-Learn verweisen.

Prüfen sollten wir hingegen mal, wie schnell der Lernalgorithmus mit der vorgegebenen Lernrate eta konvergiert:

Hier die Verlaufskurve der Cost Function:

Die Kurve zeigt uns, dass spätestens nach 40 Epochen kaum noch Verbesserung (im Sinne der Gesamtfehler-Minimierung) erreicht wird.

Wichtige Hinweise

Natürlich war das nun nur ein erster kleiner Einstieg und wer es verstanden hat, hat viel gewonnen. Denn erst dann kann man sich vorstellen, wie ein einzelnen Neuron eines künstlichen neuronalen Netzes grundsätzlich trainiert werden kann.

Folgendes sollte noch beachtet werden:

  • Lernrate \eta:
    Die Lernrate ist ein wichtiger Parameter. Wer das Programmier-Beispiel bei sich zum Laufen gebracht hat, einfach mal die Lernrate auf Werte zwischen 10.00 und 0.00000001 setzen, schauen was passiert 🙂
  • Globale Minima vs lokale Minima:
    Diese lineare zwei-dimensionale Regression ist ziemlich einfach. Neuronale Netze sind hingegen komplexer und haben nicht einfach nur eine simple konvexe Fehlerfunktion. Hier gibt es mehrere Hügel und Täler in der Fehlerfunktion und die Gefahr ist groß, in einem lokalen, nicht aber in einem globalen Minimum zu landen.
  • Stochastisches Gradientenverfahren:
    Wir haben hier das sogenannte Batch-Verfahren verwendet. Dieses ist grundsätzlich besser als die stochastische Methode. Denn beim Batch verwenden wir den gesamten Stapel an x-Werten für die Fehlerbestimmung. Allerdings ist dies bei großen Daten zu rechen- und speicherintensiv. Dann werden kleinere Unter-Stapel (Sub-Batches) zufällig aus den x-Werten ausgewählt, der Fehler daraus bestimmt (was nicht ganz so akkurat ist, wie als würden wir den Fehler über alle x berechnen) und der Gradient bestimmt. Dies ist schon Rechen- und Speicherkapazität, erfordert aber meistens mehr Epochen.

Buchempfehlung

Die folgenden zwei Bücher haben mir bei der Erstellung dieses Beispiels geholfen und kann ich als hilfreiche und deutlich weiterführende Lektüre empfehlen:

 

Machine Learning mit Python und Scikit-Learn und TensorFlow: Das umfassende Praxis-Handbuch für Data Science, Predictive Analytics und Deep Learning (mitp Professional) Hands-On Machine Learning with Scikit-Learn and TensorFlow: Concepts, Tools, and Techniques for Building Intelligent Systems

 

The Inside Out of ML Based Prescriptive Analytics

With the constantly growing number of data, more and more companies are shifting towards analytic solutions. Analytic solutions help in extracting the meaning from the huge amount of data available. Thus, improving decision making.

Decision making is an important aspect of businesses, and technologies like Machine Learning are enhancing it further. The growing use of Machine Learning has changed the way of prescriptive analytics. In order to optimize the efforts, companies need to be more accurate with the historical and present data. This is because the historical and present data are the essentials of analytics. This article helps describe the inside out of Machine Learning-based prescriptive analytics.

Phases of business analytics

Descriptive analytics, predictive analytics, and prescriptive analytics are the three phases of business analytics. Descriptive analytics, being the first one, deals with past performance. Historical data is mined to understand past performance. This serves as a way to look for the reasons behind past success and failure. It is a kind of post-mortem analysis and most management reporting like sales, marketing, operations, and finance etc. make use of this.

The second one is a predictive analysis which answers the question of what is likely to happen. The historical data is now combined with rules, algorithms etc. to determine the possible future outcome or likelihood of a situation occurring.

The final phase, well known to everyone, is prescriptive analytics. It can continually take in new data and re-predict and re-prescribe. This improves the accuracy of the prediction and prescribes better decision options.  Professional services or technology or their combination can be chosen to perform all the three analytics.

More about prescriptive analytics

The analysis of business activities goes through many phases. Prescriptive analytics is one such. It is known to be the third phase of business analytics and comes after descriptive and predictive analytics. It entails the application of mathematical and computational sciences. It makes use of the results obtained from descriptive and predictive analysis to suggest decision options. It goes beyond predicting future outcomes and suggests actions to benefit from the predictions. It shows the implications of each decision option. It anticipates on what will happen when it will happen as well as why it will happen.

ML-based prescriptive analytics

Being just before the prescriptive analytics, predictive analytics is often confused with it. What actually happens is predictive analysis leads to prescriptive analysis. Thus, a Machine Learning based prescriptive analytics goes through an ML-based predictive analysis first. Therefore, it becomes necessary to consider the ML-based predictive analysis first.

ML-based predictive analytics:

A lot of things prevent businesses from achieving predictive analysis capabilities.  Machine Learning can be a great help in boosting Predictive analytics. Use of Machine Learning and Artificial Intelligence algorithms helps businesses in optimizing and uncovering the new statistical patterns. These statistical patterns form the backbone of predictive analysis. E-commerce, marketing, customer service, medical diagnosis etc. are some of the prospective use cases for Machine Learning based predictive analytics.

In E-commerce, machine learning can help in predicting the usual choices of the customer. Thus, presenting him/her according to his/her likes and dislikes. It can also help in predicting fraudulent transaction. Similarly, B2B marketing also makes good use of Machine learning based predictive analytics. Customer services and medical diagnosis also benefit from predictive analytics. Thus, a prediction and a prescription based on machine learning can boost various business functions.

Organizations and software development companies are making more and more use of machine learning based predictive analytics. The advancements like neural networks and deep learning algorithms are able to uncover hidden information. This all requires a well-researched approach. Big data and progressive IT systems also act as important factors in this.

Dem Wettbewerb voraus mit Künstlicher Intelligenz

Was KI schon heute kann und was bis 2020 auf deutsche Unternehmen zukommt

Künstliche Intelligenz ist für die Menschheit wichtiger als die Erfindung von Elektrizität oder die Beherrschung des Feuers – davon sind der Google-CEO Sundar Pichai und viele weitere Experten überzeugt. Doch was steckt wirklich dahinter? Welche Anwendungsfälle funktionieren schon heute? Und was kommt bis 2020 auf deutsche Unternehmen zu?

Big Data war das Buzzword der vergangenen Jahre und war – trotz mittlerweile etablierter Tools wie SAP Hana, Hadoop und weitere – betriebswirtschaftlich zum Scheitern verurteilt. Denn Big Data ist ein passiver Begriff und löst keinesfalls alltägliche Probleme in den Unternehmen.

Dabei wird völlig verkannt, dass Big Data die Vorstufe für den eigentlichen Problemlöser ist, der gemeinhin als Künstliche Intelligenz (KI) bezeichnet wird. KI ist ein Buzzword, dessen langfristiger Erfolg und Aktivismus selbst von skeptischen Experten nicht infrage gestellt wird. Daten-Ingenieure sprechen im Kontext von KI hier aktuell bevorzugt von Deep Learning; wissenschaftlich betrachtet ein Teilgebiet der KI.

Was KI schon heute kann

Deep Learning Algorithmen laufen bereits heute in Nischen-Anwendungen produktiv, beispielsweise im Bereich der Chatbots oder bei der Suche nach Informationen. Sie übernehmen ferner das Rating für die Kreditwürdigkeit und sperren Finanzkonten, wenn sie erlernte Betrugsmuster erkennen. Im Handel findet Deep Learning bereits die optimalen Einkaufsparameter sowie den besten Verkaufspreis.

Getrieben wird Deep Learning insbesondere durch prestigeträchtige Vorhaben wie das autonome Fahren, dabei werden die vielfältigen Anwendungen im Geschäftsbereich oft vergessen.

Die Grenzen von Deep Learning

Und Big Data ist das Futter für Deep Learning. Daraus resultiert auch die Grenze des Möglichen, denn für strategische Entscheidungen eignet sich KI bestenfalls für das Vorbereitung einer Datengrundlage, aus denen menschliche Entscheider eine Strategie entwickeln. KI wird zumindest in dieser Dekade nur auf operativer Ebene Entscheidungen treffen können, insbesondere in der Disposition, Instandhaltung, Logistik und im Handel auch im Vertrieb – anfänglich jeweils vor allem als Assistenzsystem für die Menschen.

Genau wie das autonome Fahren mit Assistenzsystemen beginnt, wird auch im Unternehmen immer mehr die KI das Steuer übernehmen.

Was sich hinsichtlich KI bis 2020 tun wird

Derzeit stehen wir erst am Anfang der Möglichkeiten, die Künstliche Intelligenz uns bietet. Das Markt-Wachstum für KI-Systeme und auch die Anwendungen erfolgt exponentiell. Entsprechend wird sich auch die Arbeitsweise für KI-Entwickler ändern müssen. Mit etablierten Deep Learning Frameworks, die mehrheitlich aus dem Silicon Valley stammen, zeichnet sich der Trend ab, der für die Zukunft noch weiter professionalisiert werden wird: KI-Frameworks werden Enterprise-fähig und Distributionen dieser Plattformen werden es ermöglichen, dass KI-Anwendungen als universelle Kernintelligenz für das operative Geschäft für fast alle Unternehmen binnen weniger Monate implementierbar sein werden.

Wir können bis 2020 also mit einer Alexa oder Cortana für das Unternehmen rechnen, die Unternehmensprozesse optimiert, Risiken berichtet und alle alltäglichen Fragen des Geschäftsführers beantwortet – in menschlich-verbal formulierten Sätzen.

Der Einsatz von Künstlicher Intelligenz zur Auswertung von Geschäfts- oder Maschinendaten ist auch das Leit-Thema der zweitägigen Data Leader Days 2018 in Berlin. Am 14. November 2018 sprechen renommierte Data Leader über Anwendungsfälle, Erfolge und Chancen mit Geschäfts- und Finanzdaten. Der 15. November 2018 konzentriert sich auf Automotive- und Maschinendaten mit hochrangigen Anwendern aus der produzierenden Industrie und der Automobilzuliefererindustrie. Seien Sie dabei und nutzen Sie die Chance, sich mit führenden KI-Anwendern auszutauschen.

Deep Learning and Human Intelligence – Part 2 of 2

Data dependency is one of the biggest problem of Deep Learning Architectures. This difficulty lies not so much in the algorithm of Deep Learning as in the invisible structure of the data itself.

This is part 2 of 2 of the Article Series: Deep Learning and Human Intelligence.

We saw that the process of discovering numbers was accompanied with many aspects of what are today basic ideas of Machine Learning. But let us go back, a little before that time, when humankind did not fully discovered the concept of numbers. How would a person, at such a time, perceive quantity and the count of things? Some structures are easily recognizable as patterns of objects, that is numbers, like one sun, 2 trees, 3 children, 4 clouds and so on. Sets of objects are much simpler to count if all the objects of the set are present. In such a case it is sufficient to keep a one-to-one relationship between two different set, without the need for numbers, to make a judgement of crucial importance. One could consider the case of two enemies that go to war and wish to know which has a larger army. It is enough to associate a small stone to every enemy soldier and do the same with his one soldier to be able to decide, depending if stones are left or not, if his army is larger or not, without ever needing to know the exact number soldier of any of the armies.

But also does things can be counted which are not directly visible, and do not allow a direct association with direct observable objects that can be seen, like stones. Would a person, at that time, be able to observe easily the 4-th day since today, 5 weeks from now, when even the concept of week is already composite? Counting in this case is only possible if numbers are already developed through direct observation, and we use something similar with stones in our mind, i.e. a cognitive association, a number. Only then, one can think of the concept of measuring at equidistant moments in time at all. This is the reason why such measurements where still cutting edge in the time of Galileo Galilei as we seen before. It is easily to assume that even in the time when humans started to count, such indirect concepts of numbers were not considered to be in relation with numbers. This implies that many concepts with which we are today accustomed to regard as a number, were considered as belonging to different groups, cluster which are not related. Such an hypothesis is not even that much farfetched. Evidence for such a time are still present in some languages, like Japanese.

When we think of numbers, we associate them with the Indo-Arabic numbers, but in Japanese numbers have no decimal structure and counting depends not only on the length of the set (which is usually considered as the number), but also on the objects that make up the set. In Japanese one can speak of meeting roku people, visiting muttsu cities and seeing ropa birds, but referring each time to the same number: six. Additional, many regular or irregular suffixes make the whole system quite complicated. The division of counting into so many clusters seems unnecessarily complicated today, but can easily be understood from a point of view where language and numbers still form and, the numbers, were not yet a uniform concept. What one can learn from this is that the lack of a unifying concept implies an overly complex dependence on data, which is the present case for Deep Learning and AI in general.

Although Deep Learning was a breakthrough in the development of Artificial Intelligence, the task such algorithms can perform were and remained very narrow. It may identify birds or cancer cells, but it will miss the song of the birds or the cry of the patient with cancer. When Watson, a Deep Learning Architecture played the famous Jeopardy game against two former Champions and won, it still made several simple mistakes, like going for the same wrong answer like the player before. If it could listen to the answer of the candidate, it could delete the top answer it had, and gibe the second which was the right one. With other words, Deep Learning Architecture are not multi-tasking and it is for this reason that some experts in AI are calling them intelligent idiots.

Imagine spending time learning to play a game for years and years, and then, when mastering it and wish to play a different game, to be unable to use any of the past experience (of gaming) for the new one and needing to learn everything from scratch. That could be quite depressing and would make life needlessly difficult. This is the reason why people involved in developing Deep Learning worked from early on in the development of multi-tasking Deep Learning Architectures. On the way a different method of using Deep Learning was discovered: transfer learning. Because the time it takes for a Deep Learning Architecture to learn is very long, transfer learning uses already learned Deep Learning Architectures but for slightly different task. It is similar to the use of past experiences in solving new problems, but, the advantage of transfer learning is, it allow the using of past experiences (what it already learned) which reduces dramatically the amount of new data needed in performing a new task. Still, transfer learning is far away from permitting Deep Learning Architectures to perform any kind of task learning only from one master data set.

The management of a unique master data set which includes all the needed data to enable human accuracy for any human activity, is not enough. One needs another ingredient, the so called cost function which translates, in this case, to the human brain. There are all our experiences and knowledge. How long does it takes to collect sufficient of both to handle a normal human life? How much to achieve our highest potential? If not a lifetime, at least decades. And this also applies to our job: as a IT-developer, a Data Scientist or a professor at the university. We will always have to learn new things, how to use them, and how to expand the limits of our perceptions. The vast amount of information that science has gathered over the last four centuries makes it impossible for any human being to become an expert in all of it. Thus, one has to specialized. After the university, anyone has to choose o subject which is appealing enough to study it for decades. Here is the first sign of what can be understood as data segmentation and dependency. Such improvements can come in various forms: an algorithm in the IT, a theorem in mathematics, a new way to look at particles in physics or a new method to scan for diseases in biology, and so on. But there is a price to pay for specialization: the inability to be an expert in another field or subfield. (Subfields induces limitation!)

Lets take the Deep Learning algorithm itself as an example. For IT and much of everyday life, this is a real breakthrough, but it lacks any scientific, that is mathematical, foundation. There are no theorems which proofs that it will find (converge, to use a mathematical term) the global optimum. This does not appear to be of any great consequences if it can be so efficient, except that, when adding new data and let the algorithm learn the same architecture again, there is no guaranty what so ever that it will be as good as the old model, or even better. On the contrary, it is as real as the efficiency of the first model, that chances are that the new model with the new data will perform worse than the old model, and one has to invest again time in finding a better model, or even a different architecture. On the other hand, with a mathematical proof of convergence, it would be always possible to know in what condition such a convergence can be achieved. In other words, without deep knowledge in mathematics, any proof of a consistent Deep Learning Algorithm is impossible.

Such a situation is true for any other corssover between fields. A mathematical genius will make a lousy biologist, a great chemist will make a average economist, and a top economist will be a poor physicist. Knowledge is difficult to transfer and this is true also for everyday experiences. We learn from very small to play a game like football, but are unable to use the reflexes to play basketball, or tennis better than a normal beginner. We learn a new language after years and years of practice, but are unable to use the way we learned to learn faster other languages. We are trapped within the knowledge we developed from the data we used. It is for this reason why we cannot transfer the knowledge a mathematician has developed over decades to use it in biology or psychology, even if the knowledge is very advanced. Instead of thinking in knowledge, we thing in data. This is similar to the people which were unaware of numbers, and used sets (data) to work with them. Numbers could be very difficult to transmit from one person to another in former times.

Only think on all the great achievements that our society managed, like relativity, quantum mechanics, DNA, machines, etc. Such discoveries are the essences of human knowledge and took millennia to form and centuries to crystalize. Still, all this knowledge is captive in the data, in the special frame in which it was discovered and never had the chance to escape. Imagine the possibility to use thoughts/causalities like the one in relativity or quantum mechanics in biology, or history, or of the concept of DNA in mathematics or art. Imagine a music composition where the law of the notes allows a “tunnel effect” like in quantum mechanics, lower notes to warp the music scales like in relativity and/or to twist two music scale in a helix-like play. How many way to experience life awaits us. Or think of the knowledge hidden in mathematics which could help develop new medicine, but can not be transmitted.

Another example of the connection we experience between knowledge and the data through which we obtain it, are children. They are classical example when it come determine if one is up to explain to them something. Take as an explain something simple they can observe often, like lightning and thunder. Normal concepts like particles, charge, waves, propagation, medium of propagation, etc. become so complicated to expose by other means then the one through which they were discovered, that it becomes nearly impossible to explain to children how it works and that they do not need to fear it. Still, one can use analogy (i.e., transfer) to enable an explanation. Instead of particles, one can use balls, for charge one can use hardness, waves can be shown with strings by keeping one end fix and waving the other, propagation is the movement of the waves from one end of the string to the other end, medium of propagation is the difference between walking in air and water, etc. Although difficult, analogies can be found which enables us to explain even to children how complex phenomena works.

The same is true also for Deep Learning. The model, the knowledge it can extract from the data can be expressed only by such data alone. There is no transformation of the knowledge from one type of data to another. If such a transformation would exists, then Deep Learning would be able to learn any human task by only a set of data, a master data set. Without such a master data set and a corresponding cost function it will be nearly impossible to develop AI that mimics human behavior. With other words, without the realization how our mind works, and how to crystalize by this the data needed, AI will still need to look at all the activities separately. It also implies that AI are restricted to the human understanding of reality and themselves. Only with such a characteristic of a living being, thus also AI, can development of its on occur.

Kiano – visuelle Exploration mit Deep Learning

Kiano – eine iOS-App zur visuellen Exploration und Suche der eigenen Fotos.

Menschen haben kein Problem, komplexe Bilder zu verstehen, es fällt ihnen aber schwer, gezielt Bilder in großen Bildersammlungen (wieder) zu finden. Da die Anzahl von Bildern, insbesondere auch auf Smartphones zusehends zunimmt – mehrere tausend Bilder pro Gerät sind keine Seltenheit, wird die Suche nach bestimmten Bildern immer schwieriger. Ist bei einem gesuchten Foto dessen Aufnahmedatum unbekannt, so kann es sehr lange dauern, bis es gefunden ist. Werden dem Nutzer zu viele Bilder auf einmal präsentiert, so geht der Überblick schnell verloren. Aus diesem Grund besteht eine typische Bildsuche heutzutage meist im endlosen Scrollen über viele Bildschirmseiten mit langen Bilderlisten.

Dieser Artikel stellt das Prinzip und die Funktionsweise der neuen iOS-App “Kiano” vor, die es Nutzern ermöglicht, alle ihre Bilder explorativ mittels visuellem Browsen zu erkunden. Der Name “Kiano” steht hierbei für “Keep Images Arranged & Neatly Organized”. Mit der App ist es außerdem möglich, zu einem Beispielbild gezielt nach ähnlichen Fotos auf dem Gerät zu suchen.

Um Bilder visuell durchsuch- und sortierbar zu machen, werden sogenannte Merkmalsvektoren bzw. Featurevektoren verwendet, die Aussehen und Inhalt von Bildern kompakt repräsentieren können. Zu einem Bild lassen sich ähnliche Bilder finden, indem die Bilder bestimmt werden, deren Featurevektoren eine geringe Distanz zum Featurevektor des Suchbildes haben.

Werden Bilder zweidimensional so angeordnet, dass die Featurevektoren benachbarter Bilder sehr ähnlich sind, so erhält man eine visuell sortierte Bilderlandkarte. Bei einer visuell sortierten Anordnung der Bilder fällt es Menschen deutlich leichter, mehr Bilder gleichzeitig zu erfassen, als dies im unsortierten Fall möglich wäre. Durch die graduelle Veränderung der Bildinhalte wird es möglich, über diese Karte visuell zu navigieren.

Generierung von Featurevektoren zur Bildbeschreibung

Convolutional Neural Networks (CNNs) sind nicht nur in der Lage, Bilder mit hoher Genauigkeit zu klassifizieren, d.h. zu erkennen, welches Objekt – entsprechend einer Menge von gelernten Objektkategorien auf einem Bild zu sehen ist, die Aktivierungen der Netzwerkschichten lassen sich auch als universelle Featurevektoren zur Bildbeschreibung nutzen. Während die vorderen Netzwerkschichten von CNNs einfache visuelle Bildmerkmale wie Farben und einfache Muster detektieren, repräsentieren die Ausgangsschichten des Netzwerks die semantischen Informationen bezüglich der gelernten Objektkategorien. Die Zwischenschichten des Netzwerks sind weniger von den Objektkategorien abhängig und können somit als generelle abstrakte Repräsentationen des Inhalts der Bilder angesehen werden. Hierbei ist es möglich, bereits fertig trainierte Klassifikationsnetzwerke für die Featureextraktion wiederzuverwenden. In der Visual Computing Gruppe der HTW Berlin wurden umfangreiche Evaluierungen durchgeführt, um zu bestimmen, welche Netzwerkschichten von welchen CNNs mit welchen zusätzlichen Transformationen zu verwenden sind, um aus Netzwerkaktivierungen Feature-Vektoren zu erzeugen, die sehr gut für die Suche nach beliebigen Bildern geeignet sind.

Beste Ergebnisse hinsichtlich der Suchgenauigkeit (der Mean Average Precision) wurden mit einem Deep Residual Learning Network (ResNet-200) erzielt. Die 2048 Aktivierungen vor dem vollvernetzten letzten Layer werden als initiale Featurevektoren verwendet, wobei sich die Suchgenauigkeit durch eine L1-Normierung, gefolgt von einer PCA-Transformation (Principal Component Analysis) sogar noch verbessern lässt. Hierdurch ist es möglich, die Featurevektoren auf eine Größe von nur 64 Bytes zu reduzieren. Leider ist die rechnerische Komplexität der Bestimmung dieser hochwertigen Featurevektoren zu groß, um sie auf mobilen Geräten verwenden zu können. Eine gute Alternative stellen die Mobilenets dar, die sich durch eine erheblich reduzierte Komplexität auszeichnen. Als Kompromiss zwischen Klassifikationsgenauigkeit und Komplexität wurde für die Kiano-App das Mobilenet_v2_0.5_128 verwendet. Die mit diesem Netzwerk bestimmten Featurevektoren wurden ebenfalls auf eine Größe von 64 Bytes reduziert.

Die aus CNNs erzeugten Featurevektoren sind gut für die Suche nach Bildern mit ähnlichem Inhalt geeignet. Für die Suche nach Bilder, mit ähnlichen visuellen Eigenschaften (z.B. die auftretenden Farben oder deren örtlichen Verteilung) sind diese Featurevektoren nur bedingt geeignet. Hierfür eignen sich klassische sogenannte “Low-Level”-Featurevektoren besser. Da für eine ansprechende und leicht erfassbare Bildsortierung auch eine Übereinstimmung dieser visuellen Bildattribute wichtig ist, kommt bei Kiano ein weiterer Featurevektor zum Einsatz, mit dem sich diese “primitiven” visuellen Bildattribute beschreiben lassen. Dieser Featurevektor hat eine Größe von 50 Bytes. Bei Kiano kann der Nutzer in den Einstellungen wählen, ob bei der visuellen Sortierung und Bildsuche größerer Wert auf den Bildinhalt oder die visuelle Erscheinung eines Bildes gelegt werden soll.

Visuelle Bildsortierung

Werden Bilder entsprechend ihrer Ähnlichkeiten sortiert angeordnet, so können mehrere hundert Bilder gleichzeitig wahrgenommen bzw. erfasst werden. Dies hilft, Regionen interessanter Bildern leichter zu erkennen und gesuchte Bilder schneller zu entdecken. Die Möglichkeit, viele Bilder gleichzeitig präsentieren zu können, ist neben Bildverwaltungssystemen besonders auch für E-Commerce-Anwendungen interessant.

Herkömmliche Dimensionsreduktionsverfahren, die hochdimensionale Featurevektoren auf zwei Dimensionen projizieren, sind für die Bildsortierung ungeeignet, da sie die Bilder so anordnen, dass Lücken und Bildüberlappungen entstehen. Sollen Bilder sortiert auf einem dichten regelmäßigen 2D-Raster angeordnet werden, kommen als Verfahren nur selbstorganisierende Karten oder selbstsortierende Karten in Frage.

Eine selbstorganisierende Karte (Self Organizing Map / SOM) ist ein künstliches neuronales Netzwerk, das durch unbeaufsichtigtes Lernen trainiert wird, um eine niedrigdimensionale, diskrete Darstellung der Daten des Eingangsraums als sogenannte Karte (Map) zu erzeugen. Im Gegensatz zu anderen künstlichen neuronalen Netzen, werden SOMs nicht durch Fehlerkorrektur, sondern durch ein Wettbewerbsverfahren trainiert, wobei eine Nachbarschaftsfunktion verwendet wird, um die lokalen Ähnlichkeiten der Eingangsdaten zu bewahren.

Eine selbstorganisierende Karte besteht aus Knoten, denen einerseits ein Gewichtsvektor der gleichen Dimensionalität wie die Eingangsdaten und anderseits eine Position auf der 2D-Karte zugeordnet sind. Die SOM-Knoten sind als zweidimensionales Rechteckgitter angeordnet. Das vom der SOM erzeugte Mapping ist diskret, da jeder Eingangsvektor einem bestimmten Knoten zugeordnet wird. Zu Beginn werden die Gewichtsvektoren aller Knoten mit Zufallswerten initialisiert. Wird ein hochdimensionaler Eingangsvektor in das Netz eingespeist, so wird dessen euklidischer Abstand zu allen Gewichtsvektoren berechnet. Der Knoten, dessen Gewichtsvektor dem Eingangsvektor am ähnlichsten ist, wird als Best Matching Unit (BMU) bezeichnet. Die Gewichte des BMU und seiner auf der Karte örtlich benachbarten Knoten werden an den Eingangsvektor angepasst. Dieser Vorgang wird iterativ wiederholt. Das Ausmaß dieser Anpassung nimmt im Laufe der Iterationen und der örtlichen Entfernung zum BMU-Knoten ab.

Um SOMs an die Bildsortierung anzupassen, sind zwei Modifikationen notwendig. Jeder Knoten darf nicht von mehr als einem Featurevektor (der ein Bild repräsentiert) ausgewählt werden. Eine Mehrfachauswahl würde zu einer Überlappung der Bilder führen. Aus diesem Grund muss die Anzahl der SOM-Knoten mindestens so groß wie die Anzahl der Bilder sein. Eine sinnvolle Erweiterung einer SOM verwendet ein Gitter, bei dem gegenüberliegende Kanten verbunden sind. Werden diese Torus-förmigen Karten für große SOMs verwendet, kann der Eindruck einer endlosen Karte erzeugt werden, wie es in Kiano umgesetzt ist. Ein Problem der SOMs ist ihre hohe rechnerische Komplexität, die quadratisch mit der Anzahl der zu sortierenden Bilder wächst, wodurch die maximale Anzahl an zu sortierenden Bildern beschränkt wird. Eine Lösung stellt eine selbstsortierende Karte (Self Sorting Map / SSM) dar, deren Komplexität nur n log(n) beträgt.

Selbstsortierende Karten beginnen mit einer zufälligen Positionierung der Bilder auf der Karte. Diese Karte wird dann in 4×4-Blöcke aufgeteilt und für jeden Block wird der Mittelwert der zugehörigen Featurevektoren bestimmt. Als nächstes werden aus 2×2 benachbarten Blöcken jeweils vier korrespondierende Bild-Featurevektoren untersucht und ihre zugehörigen Bilder gegebenenfalls getauscht. Aus den 4! = 24 Anordnungsmöglichkeiten wird diejenige gewählt, die die Summe der quadrierten Differenzen zwischen den jeweiligen Featurevektoren und den Featuremittelwerten der Blöcke minimiert. Nach mehreren Iterationen wird jeder Block in vier kleinere Blöcke halber Breite und Höhe aufgeteilt und wiederum in der beschriebenen Weise überprüft, wie die Bildpositionen dieser kleineren Blöcke getauscht werden sollten. Dieser Vorgang wird solange wiederholt, bis die Blockgröße auf 1×1 Bild reduziert ist.

In der Visual-Computing Gruppe der HTW Berlin wurde untersucht, wie die Sortierqualität des SSM-Algorithmus verbessert werden kann. Anstatt die Mittelwerte der Featurevektoren als konstanten Durchschnittsvektor für den gesamten Block zu berechnen, verwenden wir gleitende Tiefpassfilter, die sich effizient mittels Integralbildern berechnen lassen. Hierdurch entstehen weichere Übergänge auf der sortierten Bilderkarte. Weiterhin wird die Blockgröße nicht für mehrere Iterationen konstant gehalten, sondern kontinuierlich zusammen mit dem Radius des Filterkernels reduziert. Durch die Verwendung von optimierten Algorithmen von “Linear Assignment” Algorithmen wird es weiterhin möglich, den optimalen Positionstausch nicht nur für jeweils vier Featurevektoren bzw. Bildern sondern für eine deutlich größere Anzahl zu überprüfen. All diese Maßnahmen führen zu einer deutlich verbesserten Sortierungsqualität bei gleicher Komplexität.

Effiziente Umsetzung für iOS

Wie so oft, liegen die softwaretechnischen Herausforderungen an ganz anderen Stellen, als man zunächst vermutet. Für eine effiziente Implementierung der zuvor beschriebenen Algorithmen, insbesondere der SSM, stellte es sich heraus, dass die Programmiersprache Swift, in der iOS Apps normaler Weise entwickelt werden, erheblich mehr Rechenzeit benötigt, als eine Umsetzung in der Sprache C. Im Zuge der stetigen Weiterentwicklung von Swift und dessen Compiler mag sich die Lücke zu C zwar immer weiter schließen, zum Zeitpunkt der Umsetzung war die Implementierung in C aber um einen Faktor vier schneller als in Swift. Hierbei liegt die Vermutung nahe, dass der Zugriff auf und das Umsortieren von Featurevektoren als native C-Arrays deutlich effektiver passiert, als bei der Verwendung von Swift-Arrays. Da Swift-Arrays Value-Type sind, kommt es in Swift vermutlich zu unnötigen Kopieroperationen der Fließkommazahlen in den einzelnen Featurevektoren.

Die Berechnung des Mobilenet-Anteils der Featurevektoren konnte sehr komfortabel mit Apples CoreML Machine Learning Framework umgesetzt werden. Hierbei ist zu beachten, dass es sich wie oben beschrieben, nicht um eine Klassifikation handelt, sondern um das Abgreifen der Aktivierungen einer tieferen Schicht. Für Klassifikationen findet man praktisch sofort nutzbare Beispiele, für den Zugriff auf die Aktivierungen waren jedoch Anpassungen notwendig, die bei der Portierung eines vortrainierten Mobilenet nach CoreML vorgenommen wurden. Das stellte sich als erheblich einfacher heraus, als der Versuch, auf die tieferen Schichten eines Klassifizierungsnetzes in CoreML zuzugreifen.

Für die Verwaltung der Bilder, ihrer Featurevektoren und ihrer Position in der sortieren Karte wird in Kiano eine eigene Datenstruktur verwendet, die es zu persistieren gilt. Es ist dem Nutzer ja nicht zuzumuten, bei jedem Start der App auf die Berechnung aller Featurevektoren zu warten. Die Strategie ist es hierbei, bereits bekannte Bilder zu identifizieren und deren Features nur dann neu zu berechnen, falls sich das Bild verändert hat. Die über Appels Photos Framework zur Verfügung gestellten local Identifier identifizieren dabei die Bilder. Veränderungen werden über das Modifikationsdatum eines Bildes detektiert. Die größte Herausforderung ist hierbei das Zeichnen der Karte. Die Benutzerinteraktion soll schnell und flüssig erscheinen, auf Animationen wie das Nachlaufen der Karte beim Verschieben möchte man nicht verzichten. Die Umsetzung geschieht hierbei nicht in OpenGL ES, welches ab iOS 12 ohnehin als deprecated bezeichnet wird. Auf der anderen Seite wird aber auch nicht der „Standardweg“ des Überschreibens der draw-Methode einer Ableitung von UIView gewählt. Letztes führt bekanntlich zu Performanceeinbußen. Insbesondere deshalb, weil das System sehr oft Backing-Images der Ansichten erstellt. Um die Kontrolle über das Neuzeichnen zu behalten, wird in Kiano ein eigenes Backing-Image implementiert, das auf Ebene des Core Animation Frameworks dem View als Layer zugweisen wird. Diesem Layer kann dann sehr komfortabel eine 3D-Transformation zugewiesen werden und man profitiert von der GPU-Beschleunigung, ohne OpenGL ES direkt verwenden zu müssen.

 

Trotz der Verwendung eines Core Animation Layers ist das Zeichnen der Karte immer noch sehr zeitaufwendig. Das liegt an der Tatsache, dass je nach Zoomstufe tausende von Bildern darzustellen sind, die alle über das Photos Framework angefordert werden müssen. Das Nadelöhr ist dann weniger das Zeichnen, als die Zeit, die vergeht, bis einem das Bild zur Verfügung gestellt wird. Diese Vorgänge sind praktisch alle nebenläufig. Zur Erinnerung: Ein Foto kann in der iCloud liegen und zum Zeitpunkt der Anfrage noch gar nicht (oder noch nicht in geeigneter Auflösung) heruntergeladen sein. Netzwerkbedingt gibt es keine Vorhersage, wann oder ob überhaupt das Bild zur Verfügung gestellt wird. In Kiano werden zum einen Bilder in sehr kleiner Auflösung gecached, zum anderen wird beim Navigieren auf der Karte im Hintergrund ein neues Kartenteil als Backing-Image vorbereitet, das dem Nutzer nach Fertigstellung angezeigt wird. Die vorberechneten Kartenteile sind dabei drei Mal so breit und drei Mal so hoch wie das Display, so dass man diese „Hintergrundaktivität“ beim Verschieben der Karte in der Regel nicht bemerkt. Nur wenn die Bewegung zu schnell wird oder die Bilder zu langsam „geliefert“ werden, erkennt man schwarze Flächen, die sich dann verzögert mit Bildern füllen.

Vergleichbares passiert beim Hineinzoomen in die Karte. Der Nutzer sieht zunächst eine vergrößerte und damit unscharfe Version des aktuellen Kartenteils, während im Hintergrund ein Kartenteil in höherer Auflösung und mit weniger Bildern vorbereitet wird. In der Summe geht Kiano hier einen Kompromiss ein. Die Pixeldichte der Geräte würde eine schärfere Darstellung der Bilder auf der Karte erlauben. Allerdings müssten dann die Bilder in so höher Auflösung angefordert werden, dass eine flüssige Kartennavigation nicht mehr möglich wäre. So sieht der Nutzer in der Regel eine Karte mit Bildern in halber Auflösung gemessen an den physikalischen Pixeln seines Displays.

Ein anfangs unterschätzter Arbeitsaufwand bei der Umsetzung von Kiano liegt darin begründet, dass sich die Photo Library des Nutzers jederzeit während der Benutzung der App verändern kann. Bilder können durch Synchronisationen mit der iCloud oder mit iTunes verschwinden, sich in andere Alben bewegen, oder neue können auftauchen. Der Nutzer kann Bildschirmfotos machen. Das Photos Framework stellt komfortable Benachrichtigungen für solche Events zur Verfügung. Der Implementierung obliegt es dabei aber herauszubekommen, ob die Karte neu zu sortieren ist oder nicht, ob das gerade anzeigte Bild überhaupt noch existiert und was zu tun ist, wenn es verschwunden ist.

Zusammenfassend kann man feststellen, dass natürlich die Umsetzung der Algorithmen und die Darstellung dessen auf einer Karte zu den spannendsten Teilen der Arbeiten an Kiano zählen, dass aber der Umgang mit einer sich dynamisch ändernden Datenbasis nicht unterschätzt werden sollte.

Autoren

Prof. Dr. Klaus JungProf. Dr. Klaus Jung studierte Physik an der TU Berlin, wo er im Bereich der Mathematischen Physik promovierte. Bis 2008 arbeitete er als Leiter F&E bei der Firma LuraTech im Bereich der Dokumentenverarbeitung und Langzeitarchivierung. In der JPEG-Gruppe leitete er die deutsche Delegation bei der Standardisierung von JPEG2000. Seit 2008 ist er Professor für Medieninformatik an der HTW Berlin mit dem Schwerpunkt „Visual Computing“.

Prof. Dr. Kai Uwe Barthel

Prof. Dr. Kai Uwe Barthel studierte Elektrotechnik an der TU Berlin, bevor er Assistent am Institut für Nachrichtentechnik wurde und im Bereich Bildkompression promovierte. Seit 2001 ist er Professor der HTW Berlin. Hauptforschungsbereiche sind visuelle Bildsuche und automatisches Bildverstehen. 2009 gründete er die pixolution GmbH www.pixolution.de, ein Unternehmen, das Technologien für die visuelle Bildsuche anbietet.

Interview – Von der Utopie zur Realität der KI: Möglichkeiten und Grenzen

Interview mit Prof. Dr. Sven Buchholz über die Evolution von der Utopie zur Realität der KI – Möglichkeiten und Grenzen

Prof. Sven Buchholz hat eine Professur für die Fachgebiete Data Management und Data Mining am Fachbereich Informatik und Medien an der TH Brandenburg inne. Er ist wissenschaftlicher Leiter des an der Agentur für wissenschaftliche Weiterbildung und Wissenstransfer – AWW e. V. angesiedelten Projektes „Datenkompetenz 4.0 für eine digitale Arbeitswelt“ und Dozent des Vertiefungskurses „Machine Learning mit Python“, der seit 2018 von der AWW e. V. in Kooperation mit der TH Brandenburg angeboten wird.

Data Science Blog: Herr Prof. Buchholz, künstliche Intelligenz ist selbst für viele datenaffine Fachkräfte als Begriff noch zu abstrakt und wird mit Filmen wir A.I. von Steven Spielberg oder Terminator assoziiert. Gibt es möglicherweise unterscheidbare Stufen bzw. Reifegrade einer KI?

Für den Reifegrad einer KI könnte man, groß gedacht, ihre kognitiven Leistungen bewerten. Was Kognition angeht, dürfte Hollywood zurzeit aber noch meilenweit führen.  Man kann natürlich KIs im selben Einsatzgebiet vergleichen. Wenn von zwei Robotern einer lernt irgendwann problemlos durch die Tür zu fahren und der andere nicht, dann gibt es da schon einen Sieger. Wesentlich ist hier das Lernen, und da geht es dann auch weiter. Kommt er auch durch andere Türen, auch wenn ein Sensor
ausfällt?

Data Science Blog: Künstliche Intelligenz, Machine Learning und Deep Learning sind sicherlich die Trendbegriffe dieser Jahre. Wie stehen sie zueinander?

Deep Learning ist ein Teilgebiet von Machine Learning und das ist wiederum ein Teil von KI. Deep Learning meint eigentlich nur tiefe neuronale Netze (NN). Das sind Netze, die einfach viele Schichten von Neuronen haben und folglich als tief bezeichnet werden. Viele Architekturen, insbesondere auch die oft synonym mit Deep Learning assoziierten sogenannten Convolutional NNs gibt es seit Ewigkeiten. Solche Netze heute einsetzen zu können verdanken wir der Möglichkeit auf Grafikkarten rechnen zu können. Ohne Daten würde das uns aber auch nichts nützen. Netze lernen aus Daten (Beispielen) und es braucht für erfolgreiches Deep Learning sehr viele davon. Was wir oft gerade sehen ist also, was man mit genug vorhandenen Daten „erschlagen“ kann. Machine Learning sind alle Algorithmen, die ein Modell als Ouput liefern. Die Performanz von Modellen ist messbar, womit ich quasi auch noch eine Antwort zur ersten Frage nachreichen will.

Data Science Blog: Sie befassen sich beruflich seit Jahren mit künstlicher Intelligenz. Derzeitige Showcases handeln meistens über die Bild- oder Spracherkennung. Zweifelsohne wichtige Anwendungen, doch für Wirtschaftsunternehmen meistens zu abstrakt und zu weit weg vom Kerngeschäft. Was kann KI für Unternehmen noch leisten?

Scherzhaft oder vielleicht boshaft könnte man sagen, alles was Digitalisierung ihnen versprochen hat.
Wenn sie einen Chat-Bot einsetzen, sollte der durch KI besser werden. Offensichtlich ist das jetzt kein Anwendungsfall, der jedes Unternehmen betrifft. Mit anderen Worten, es hängt vom Kerngeschäft ab. Das klingt jetzt etwas ausweichend, meint aber auch ganz konkret die Ist-Situation.
Welche Prozesse sind jetzt schon datengetrieben, welche Infrastruktur ist vorhanden. Wo ist schon wie optimiert worden? Im Einkauf, im Kundenmanagement und so weiter.

Data Science Blog: Es scheint sich also zu lohnen, in das Thema fachlich einzusteigen. Was braucht man dazu? Welches Wissen sollte als Grundlage vorhanden sein? Und: Braucht man dazu einen Mindest-IQ?

Gewisse mathematische und informatorische Grundlagen braucht man sicher relativ schnell. Zum Beispiel: Wie kann man Daten statistisch beschreiben, was darf man daraus folgern? Wann ist etwas signifikant? Einfache Algorithmen für Standardprobleme sollte man formal hinschreiben können und implementieren können. Welche Komplexität hat der Algorithmus, wo genau versteckt sie sich? Im Prinzip geht es aber erst einmal darum, dass man mit keinem Aspekt von Data Science Bauchschmerzen hat. Einen Mindest-IQ braucht es also nur insofern, um diese Frage für sich selbst beantworten zu können.

Data Science Blog: Gibt es aus Ihrer Sicht eine spezielle Programmiersprache, die sich für das Programmieren einer KI besonders eignet?

Das dürfte für viele Informatiker fast eine Glaubensfrage sein, auch weil es natürlich davon abhängt,
was für eine KI das sein soll. Für Machine Learning und Deep Learning lautet meine Antwort aber ganz klar Python. Ein Blick auf die bestimmenden Frameworks und Programmierschnittstellen ist da
ziemlich eindeutig.

Data Science Blog: Welche Trends im Bereich Machine Learning bzw. Deep Learning werden Ihrer Meinung nach im kommenden Jahr 2019 von Bedeutung werden?

Bei den Deep Learning Anwendungen interessiert mich, wie es mit Sprache weitergeht. Im Bereich Machine Learning denke ich, dass Reinforcement Learning weiter an Bedeutung gewinnt. KI-Chips halte ich für einen der kommenden Trends.

Data Science Blog: Es heißt, dass Data Scientist gerade an ihrer eigenen Arbeitslosigkeit arbeiten, da zukünftige Verfahren des maschinellen Lernens Data Mining selbstständig durchführen können. Werden Tools Data Scientists bald ersetzen?

Die Prognosen für das jährliche Datenwachstum liegen ja momentan so bei 30%. Wichtiger als diese Zahl alleine ist aber, dass dieses Wachstum von Daten kommt, die von Unternehmen generiert werden. Dieser Anteil wird über die nächsten Jahre ständig und rasant weiter wachsen. Nach den einfachen Problemen kommen also erst einmal mehr einfache Probleme und/oder mehr anspruchsvollere Probleme statt Arbeitslosigkeit. Richtig ist aber natürlich, dass Data Scientists zukünftig methodisch mehr oder speziellere Kompetenzen abdecken müssen. Deswegen haben die AWW e. V. und die TH Brandenburg ihr Weiterbildungsangebot um das Modul ‚Machine Learning mit Python‘ ergänzt.

Data Science Blog: Für alle Studenten, die demnächst ihren Bachelor, beispielsweise in Informatik, Mathematik, Ingenieurwesen oder Wirtschaftswissenschaften, abgeschlossen haben, was würden Sie diesen jungen Damen und Herren raten, wie sie gute Data Scientists mit gutem Verständnis für Machine Learning werden können?

Neugierig sein wäre ein Tipp von mir. Im Bereich Deep Learning gibt es ja ständig neue Ideen, neue Netze. Die Implementierungen sind meist verfügbar, also kann und sollte man die Sachen ausprobieren. Je mehr Netze sie selbst zum Laufen gebracht und angewendet haben, umso besser werden sie.  Und auch nur so  verlieren sie nicht den Anschluss.