Was ist eigentlich Apache Spark?

Viele Technologieanbieter versprechen schlüsselfertige Lösungen für Big Data Analytics, dabei kann keine proprietäre Software-Lösung an den Umfang und die Mächtigkeit einiger Open Source Projekten heranreichen.

Seit etwa 2010 steht das Open Source Projekt Hadoop, ein Top-Level-Produkt der Apache Foundation, als einzige durch Hardware skalierbare Lösung zur Analyse von strukturierten und auch unstrukturierten Daten. Traditionell im Geschäftsbereich eingesetzte Datenbanken speichern Daten in einem festen Schema ab, das bereits vor dem Laden der Daten definiert sein muss. Dieses Schema-on-Write-Prinzip stellt zwar sicher, dass Datenformate bekannt und –konflikte vermieden werden. Es bedeutet jedoch auch, dass bereits vor dem Abspeichern bekannt sein muss, um welche Daten es sich handelt und ob diese relevant sind. Im Hadoop File System (HDFS) wird ein Schema für erst bei lesenden Zugriff erstellt.

Apache Spark ist, ähnlich wie Hadoop, dank Parallelisierung sehr leistungsfähig und umfangreich mit Bibliotheken (z. B. für Machine Learning) und Schnittstellen (z. B. HDFS) ausgestattet. Allerdings ist Apache Spark nicht für jede Big Data Analytics Aufgabe die beste Lösung, Als Einstiegslektüre empfiehlt sich das kostenlose Ebook Getting Started with Spark: From Inception to Production. Wer jedoch erstmal wissen möchte, erfährt nachfolgend die wichtigsten Infos, die es über Apache Spark zu wissen gilt.

Was ist Apache Spark?

Apache Spark ist eine Allzweck-Tool zur Datenverarbeitung, eine sogenannte Data Processing Engine. Data Engineers und Data Scientists setzen Spark ein, um äußerst schnelle Datenabfragen (Queries) auf große Datenmengen im Terabyte-Bereich ausführen zu können.

Spark wurde 2013 zum Incubator-Projekt der Apache Software Foundation, eine der weltweit wichtigsten Organisationen für Open Source. Bereits 2014 es wie Hadoop zum Top-Level-Produkt. Aktuell ist Spark eines der bedeutensten Produkte der Apache Software Foundation mit viel Unterstützung von Unternehmen wie etwa Databricks, IBM und Huawei.

Was ist das Besondere an Spark?

Mit Spark können Daten transformiert, zu fusioniert und auch sehr mathematische Analysen unterzogen werden.
Typische Anwendungsszenarien sind interactive Datenabfragen aus verteilten Datenbeständen und Verarbeitung von fließenden Daten (Streaming) von Sensoren oder aus dem Finanzbereich. Die besondere Stärke von Spark ist jedoch das maschinelle Lernen (Machine Learning) mit den Zusätzen MLib (Machine Learning Bibliothek) oder SparkR (R-Bibliotheken direkt unter Spark verwenden), denn im Gegensatz zum MapReduce-Algorithmus von Hadoop, der einen Batch-Prozess darstellt, kann Spark sehr gut iterative Schleifen verarbeiten, die für Machine Learning Algorithmen, z. B. der K-Nearest Neighbor Algorithmus, so wichtig sind.spark-stack

Spark war von Beginn an darauf ausgelegt, Daten dynamisch im RAM (Arbeitsspeicher) des Server-Clusters zu halten und dort zu verarbeiten. Diese sogenannte In-Memory-Technologie ermöglicht die besonders schnelle Auswertung von Daten. Auch andere Datenbanken, beispielsweise SAP Hana, arbeiten In-Memory, doch Apache Spark kombiniert diese Technik sehr gut mit der Parallelisierung von Arbeitsschritten über ein Cluster und setzt sich somit deutlich von anderen Datenbanken ab. Hadoop ermöglicht über MapReduce zwar ebenfalls eine Prallelisierung, allerdings werden bei jedem Arbeitsschrit Daten von einer Festplatte zu einer anderen Festplatte geschrieben. Im Big Data Umfeld kommen aus Kostengründen überwiegend noch mechanisch arbeitende Magnet-Festplatten zum Einsatz, aber selbst mit zunehmender Verbreitung von sehr viel schnelleren SSD-Festplatten, ist der Arbeitsspeicher hinsichtlich der Zeiten für Zugriff auf und Schreiben von Daten unschlagbar. So berichten Unternehmen, die Spark bereits intensiv einsetzen, von einem 100fachen Geschwindigkeitsvorteil gegenüber Hadoop MapReduce.

Spark kann nicht nur Daten im Terabyte, sondern auch im Petabyte-Bereich analysieren, ein entsprechend großes Cluster, bestehend aus tausenden physikalischer oder virtueller Server, vorausgesetzt. Ähnlich wie auch bei Hadoop, skaliert ein Spark-Cluster mit seiner Größe linear in seiner Leistungsfähigkeit. Spark ist neben Hadoop ein echtes Big Data Framework.
Spark bringt sehr viele Bibliotheken und APIs mit, ist ferner über die Programmiersprachen Java, Python, R und Scala ansprechbar – das sind ohne Zweifel die im Data Science verbreitetsten Sprachen. Diese Flexibilität und geringe Rüstzeit rechtfertigt den Einsatz von Spark in vielen Projekten. Es kann sehr herausfordernd sein, ein Data Science Team mit den gleichen Programmiersprachen-Skills aufzubauen. In Spark kann mit mehreren Programmiersprachen gearbeitet werden, so dass dieses Problem teilweise umgangen werden kann.spark-runs-everywhere

In der Szene wird Spark oftmals als Erweiterung für Apache Hadoop betrachtet, denn es greift nahtlos an HDFS an, das Hadoop Distributed File System. Dank der APIs von Spark, können jedoch auch Daten anderer Systeme abgegriffen werden, z. B. von HBase, Cassandra oder MongoDB.

Was sind gängige Anwendungsbeispiele für Spark?

  • ETL / Datenintegration: Spark und Hadoop eignen sich sehr gut, um Daten aus unterschiedlichen Systemen zu filtern, zu bereinigen und zusammenzuführen.
  • Interaktive Analyse: Spark eignet sich mit seinen Abfragesystemen fantastisch zur interaktiven Analyse von großen Datenmengen. Typische Fragestellungen kommen aus dem Business Analytics und lauten beispielsweise, welche Quartalszahlen für bestimmte Vertriebsregionen vorliegen, wie hoch die Produktionskapazitäten sind oder welche Lagerreichweite vorhanden ist. Hier muss der Data Scientist nur die richtigen Fragen stellen und Spark liefert die passenden Antworten.
  • Echtzeit-Analyse von Datenströmen: Anfangs vor allem zur Analyse von Server-Logs eingesetzt, werden mit Spark heute auch Massen von Maschinen- und Finanzdaten im Sekundentakt ausgewertet. Während Data Stream Processing für Hadoop noch kaum möglich war, ist dies für Spark ein gängiges Einsatzgebiet. Daten, die simultan von mehreren Systemen generiert werden, können mit Spark problemlos in hoher Geschwindigkeit zusammengeführt und analysiert werden.
    In der Finanzwelt setzen beispielsweise Kreditkarten-Unternehmen Spark ein, um Finanztransaktionen in (nahezu) Echtzeit zu analysieren und als potenziellen Kreditkartenmissbrauch zu erkennen.
  • Maschinelles Lernen: Maschinelles Lernen (ML – Machine Learning) funktioniert desto besser, je mehr Daten in die ML-Algorithmen einbezogen werden. ML-Algorithmen haben in der Regel jedoch eine intensive, vom Data Scientist betreute, Trainingsphase, die dem Cluster viele Iterationen an Arbeitsschritten auf die großen Datenmengen abverlangen. Die Fähigkeit, Iterationen auf Daten im Arbeitsspeicher, parallelisiert in einem Cluster, durchführen zu können, macht Spark zurzeit zu dem wichtigsten Machine Learning Framework überhaupt.
    Konkret laufen die meisten Empfehlungssysteme (beispielsweise von Amazon) auf Apache Spark.

 

Einführung in WEKA

Waikato Environment for Knowledge Analysis, kurz WEKA, ist ein quelloffenes, umfangreiches, plattformunabhängiges Data Mining Softwarepaket. WEKA ist in Java geschrieben und wurde an der WAIKATO Iniversität entwickelt. In WEKA sind viele wichtige Data Mining/Machine Learning Algorithmen implementiert und es gibt extra Pakete, wie z. B. LibSVM für Support Vector Machines, welches nicht in WEKA direkt implementiert wurde. Alle Einzelheiten zum Installieren und entsprechende Download-Links findet man unter auf der Webseite der Waikato Universität. Zusammen mit der Software wird ein Manual und ein Ordner mit Beispiel-Datensätzen ausgeliefert. WEKA arbeitet mit Datensätzen im sogenannten attribute-relation file format, abgekürzt arff. Das CSV-Format wird aber ebenfalls unterstützt. Eine Datei im arff-Format ist eine ASCI-Textdatei, welche aus einem Header- und einem Datateil besteht. Im Header muss der Name der Relation und der Attribute zusammen mit dem Typ stehen, der Datenteil beginnt mit einem @data-Schlüsselwort. Als Beispiel sei hier ein Datensatz mit zwei Attributen und nur zwei Instanzen gegeben.

WEKA unterstützt auch direktes Einlesen von Daten aus einer Datenbank (mit JDBC) oder URL. Sobald das Tool installiert und gestartet ist, landet man im Hauptmenü von WEKA – WEKA GUI Chooser 1.

Abbildung 1: WEKA GUI Chooser

Abbildung 1: WEKA GUI Chooser

Der GUI Chooser bietet den Einstieg in WEKA Interfaces Explorer, Experimenter, KnowledgeFlow und simple CLI an. Der Explorer ist ein graphisches Interface zum Bearbeiten von Datensätzen, Ausführen von Algorithmen und Visualisieren von den Resultaten. Es ist ratsam, dieses Interface als Erstes zu betrachten, wenn man in WEKA einsteigen möchte. Beispielhaft führen wir jetzt ein paar Algorithmen im Explorer durch.

Der Explorer bietet mehrere Tabs an: Preprocess, Classify, Cluster, Associate, Select attributes und Visualize. Im Preprocess Tab hat man die Möglichkeit Datensätze vorzubereiten. Hier sind zahlreiche Filter zum Präprozessieren von Datensätzen enthalten. Alle Filter sind in supervised und unsupervised unterteilt, je nachdem, ob das Klassenattribut mitbetrachtet werden soll oder nicht. Außerdem kann man entweder Attribute oder Instanzen betrachten, mit Attributen lässt man Filter spaltenweise arbeiten und bei Instanzen reihenweise. Die Auswahl der Filter ist groß, man kann den ausgewählten Datensatz diskretisieren, normalisieren, Rauschen hinzufügen etc. Unter Visualize können z. B. die geladenen Datensätze visualisert werden. Mit Select attributes kann man mithilfe von Attribut Evaluator und Search Method ein genaueres Ergebnis erzielen. Wenn man im Preprocess den Datensatz lädt, erhält man einen Überblick über den Datensatz und dessen Visualisierung. Als Beispiel wird hier der Datensatz diabetes.arff genommen, welcher mit WEKA zusammen ausgeliefert wird. Dieser Datensatz enthält 768 Instanzen mit je 9 Attributen, wobei ein Attribut das Klassenattribut ist. Die Attribute enthalten z. B. Informationen über die Anzahl der Schwangerschaften, diastolischer Blutdruck, BMI usw. Alle Attribute, außer dem Klassenattribut, sind numerisch. Es gibt zwei Klassen tested negativ und tested positiv, welche das Resultat des Testens auf diabetes mellitus darstellen. über Preprocess -> Open File lädt man den Datensatz in WEKA und sieht alle relevanten Informationen wie z. B. Anzahl und Name der Attribute. Nach dem Laden kann der Datensatz klassifiziert werden.

Abbildung 2: Diabetes.arff Datensatz geladen in WEKA

Abbildung 2: Diabetes.arff Datensatz geladen in WEKA

Hierzu einfach auf Classify klicken und unter Choose den gewünschten Algorithmus auswählen. Für diesen Datensatz wählen wir jetzt den Algorithmus kNN (k-Nearest Neighbour). Der Algorithmus klassifiziert das Testobjekt anhand der Klassenzugehörigkeit von den k Nachbarobjekten, die am nähsten zu dem Testobjekt liegen. Die Distanz zwischen den Objekten und dem Testobjekt wird mit einer Ähnlichkeitsmetrik bestimmt, meistens als euklidische oder Manhattan-Distanz. In WEKA ist der Algorithmus unter lazy iBk zu finden. Wenn man auf das Feld neben dem Algorithmusnamen in WEKA mit rechter Maustaste klickt, kann man unter show properties die Werte für den ausgewählten Algorithmus ändern, bei iBk kann man u.A. den Wert für k ändern. Für den ausgewählten Datensatz diabetes.arff stellen wir beispielsweise k = 3 ein und führen die 10-fache Kreuzvalidierung durch, indem wir unter Test Options die Cross Validation auswählen. Nach der Klassifikation werden die Ergebnisse in einer Warhheitsmatrix präsentiert. In unserem Fall sieht diese wie folgt aus:

Die Anzahl der richtig klassifizierten Instanzen beträgt 72.6563 %. Wenn man in der Result list auf den entsprechenden Algorithmus einen Rechtsklick macht, kann man z. B. noch den Fehler der Klassifizierung visualisieren. Entsprechend lassen sich im Explorer unter Cluster Clustering-Algorithmen und unter Associate Assoziationsalgorithmen auf einen ausgewählten Datensatz anwenden. Die restlichen Interfaces von WEKA bieten z. T. die gleiche Funktionalität oder erweitern die Möglichkeiten des Experimentierens, fordern aber mehr Erfahrung und Wissen von dem User. Das Experimenter Interface dient dazu, mehrere Datensätze mit mehreren Algorithmen zu analysieren. Mit diesem Interface kann man groß-skalierte Experimente durchführen. Simple CLI bietet dem User eine Kommandozeile, statt einem graphischen Interface, an.

Neuronale Netzwerke zur Spam-Erkennung

Die Funktionsweise der in immer mehr Anwendungen genutzten neuronalen Netzwerke stieß bei weniger technik-affinen Menschen bislang nur auf wenig Interesse. Geschuldet wird das sicher vor allem der eher trockenen Theorie, die hinter diesen Konstrukten steht und die sich für die meisten nicht auf Anhieb erschließt. Ein populäres Beispiel für die Fähigkeiten, die ein solches neuronales Netzwerk bereits heute hat, lieferte in jüngster Zeit Googles “Inception”, welches ohne den Anspruch auf einen praktischen Nutzen eigenständig eine spektakuläre Bilderwelt kreierte, die auch Menschen ohne großes Interesse an den dahinter steckenden Technologien ins Staunen versetzte. Ansonsten bieten sich die neuronalen Netze vor allem überall dort an, wo wenig systematisches Wissen zur Verfügung steht, wie etwa bei der Bilderkennung und der Text- bzw. Sprachanalyse.

Weniger effektheischend, als die Ergebnisse von “Inception”, dafür jedoch überaus hilfreich für den vernetzten Alltag, sind neuronale Netzwerke, die zum Aufspüren und zur Kategorisierung von Spam-Seiten entwickelt werden. In diesem Anwendungsbereich können diese ein wertvolles Werkzeug sein.

Wie bei allen selbstlernenden Netzwerken muss dafür zunächst ein Grundgerüst aufgebaut werden, welches später von Hand mit Informationen gefüttert wird, bis es schließlich in der Lage ist, sich selbstständig weiter zu entwickeln, hinzuzulernen und auf diese Weise immer genauere Ergebnisse liefert.

Die Auswahl der Kriterien

Unerwünschte Webseiten mit störenden und oft illegalen Inhalten findet man im Internet zu Hauf und meist locken sie mit dubiosen Angeboten für vermeintliche Wundermittel oder gaukeln leichtgläubigen Nutzern vor, man könne ohne großes Zutun viel Geld verdienen – meist ohne ein tatsächliches Produkt oder eine Dienstleistung dahinter. Ein entsprechend programmiertes neuronales Netzwerk spürt diese Seiten anhand von bestimmten Faktoren automatisch auf. Als Trainingsdaten werden dafür zunächst von Hand Kriterien wie die Registrierungs-IP, der Nutzername und die verwendete Sprachversion eingegeben. Da das Netzwerk nur mit den Zahlen 0 und 1 arbeiten kann, müssen diese Datensätze zuvor manuell aufbereitet werden. Indem alle gewünschten Registrierungs-IPs erst auf den jeweiligen Internetdienstanbieter abgebildet werden und der Grad ihrer jeweiligen Spammigkeit von Hand bestimmt wird, lässt sich der jeweilige Durchschnitt der “Spammigkeit” eines Internetdienstanbieters berechnen. Teilt man die Anzahl der Spammer durch die Gesamtnutzerzahl eines einzelnen Anbieters, erhält man bereits ein Ergebnis, das sich zur Eingabe in das neuronale Netzwerk eignet. Ähnlich kann z. B. bei der Kombination aus Geolocation und Sprachversion verfahren werden. Mit einer Vielzahl weiterer Faktoren kann die Effizienz des neuronalen Netzwerks verbessert werden. So lassen sich etwa große Unterschiede bei dem Herkunftsland feststellen, in dem die Spam-Seiten angesiedelt sind. Ein besonders großes Erkennungspotential bieten bestimmte Keywords und Keyword-Kombinationen, die mitunter eindeutige Rückschlüsse auf ein Spam-Angebot ziehen lassen. Befindet sich z. B. die Wortkombination “Geld verdienen” besonders häufig auf einer Seite, ist dies ein recht deutliches Kriterium für die Klassifizierung als Spam. Doch auch weniger offensichtliche Faktoren helfen dem neuronalen Netzwerk dabei, hellhörig zu werden: Ein ungewöhnliches Verhältnis zwischen Vokalen und Konsonanten oder auch Seitennamen, die vermehrt Zahlen und unübliche Zeichen beinhalten, können die Spam-Wahrscheinlichkeit steigern. Kommt die verwendete IP-Adresse aus einem anonymisierten Netzwerk oder VPN, schürt dies ebenfalls den Verdacht auf unseriöse Inhalte.

Erstellung einer Korrelationsmatrix

Da jedes der einbezogenen Kriterien zur Bestimmung der Spammigkeit einer Seite eine unterschiedlich hohe Relevanz hat, müssen die einzelnen Faktoren verschieden stark gewichtet werden. Damit das neuronale Netzwerk genau das tun kann, wird deshalb eine Korrelationsmatrix erstellt. In dieser Matrix werden alle gesammelten Kriterien in Verbindung zueinander gesetzt, um es dem Netzwerk zu ermöglichen, nicht jeden Punkt nur einzeln zu werten. So ist ein Keyword wie z. B. “100 mg” an sich vergleichsweise unverdächtig. Stammt die Seite, auf der das Wort vorkommt jedoch aus einer Gegend, in der erfahrungsgemäß viele unseriöse Arzneimittelanbieter angesiedelt sind, kann dies die Spam-Wahrscheinlichkeit erhöhen.

Libraries für die Implementierung

Ein wertvolles Tool, das sich für die Implementierung des jeweiligen neuronalen Netzwerks eignet, ist die Open Source Machine Learning Library “Tensor Flow” von Google. Diese Programmierschnittstelle der zweiten Generation verfügt über einige handfeste Vorteile gegenüber anderen Libraries und ermöglicht die Parallelisierung der Arbeit. Berechnet wird sie auf der schnellen GPU des Rechners, was in direkten Vergleichen die Rechenzeit um ein Vielfaches senken konnte. Bewährt hat sich “Tensor Flow” bereits in zahlreichen kommerziellen Diensten von Google, darunter Spracherkennungssoftware, Google Photos, und Gmail.

Für eine bessere Abstraktion des Netzwerks, können zusätzlich zu der hinteren mehrere weitere Schichten angelegt werden. Die hintere Schicht bleibt dabei oft die einzige, die von außerhalb sichtbar ist.

Die Optimierung des neuronalen Netzwerks

Es liegt in der Natur der Sache, dass ein eigenständig lernfähiges Netzwerk nicht von Anfang an durch höchste Zuverlässigkeit hinsichtlich seiner Trefferquote besticht. Zum Lernen gehört Erfahrung und die muss das Netz erst noch sammeln. Zwar gelingt es auch einem noch frisch programmierten Netzwerk bereits die Erfüllung seiner Aufgabe oft recht gut, die Fehlerquote kann jedoch im Laufe der Zeit immer weiter verbessert werden. Gerade am Anfang werden noch viele Spam-Seiten nicht erkannt und einige vermeintliche Spammer stellen sich bei der Überprüfung durch den Menschen als unbedenklich heraus. Darum ist es für die Steigerung der Effizienz praktisch unerlässlich, immer wieder von Hand einzugreifen, falsche Ergebnisse zu korrigieren und dem Netzwerk auf diese Weise zu helfen.

Handeln in Netzwerken ohne Enmesh-Effekt

Die Interaktion in Netzwerken ist mit der Entstehung von sozialen Netzwerken, der Einkauf in Online-Shops, die Finanzierungen mit Crowd-Funding oder die nächste Mitfahrgelegenheit ein wesentlicher Bestandteil in unserem Alltag geworden. Insbesondere in der Share Economy hat sich die Bildung von Netzwerken als Erfolgsfaktor digitaler Geschäftsmodelle bereits fest etabliert. Je nach Geschäftsmodell kommt hierbei im Allgemeinen folgende Fragestellung auf:

Was hängt miteinander zusammen und welcher Effekt löst die Verbindung aus?

Effekte können das Wachsen oder Schrumpfen beschleunigen bzw. zu Strukturveränderungen des Netzwerks selbst führen. Eine Besonderheit ist der mögliche Multiplikator-Effekt bis hin zum Erreichen des Tipping-Points, der zu einen überproportionalen Wachstum, nach Erreichen einer kritischen Masse hervorgerufen wird. Aus der Geschäftsperspektive sind vor allem die Wachstumseffekte für eine schnelle Umsatzgenerierung interessant. Daher ist das Erkennen solcher Effekte wesentlich für den Geschäftserfolg.

Aufgrund der Komplexität und der Dynamik solcher Netzwerke ist der Einsatz von Data Mining Methoden zur Erkennung solcher Effekte, anhand von Mustern oder Regeln, hilfreich. In diesem Blog-Beitrag wird der Effekt von Netzwerken anhand von Produktverkäufen erläutert. Diese können beim Einkauf in Online-Shops oder im stationären Handel stattfinden. Hierbei unterscheiden sich die Konsumentengewohnheiten deutlich vom gewählten Kanal des Einkaufs oder welche Produkte eingekauft werden. Ob es um Lebensmittel, Kleidung oder Autos geht, das Kaufverhalten kann sich deutlich unterscheiden ob hierbei regelmäßige oder Spontankäufe vorliegen. Auch wer mögliche Zielgruppen darstellt ist ein wesentlicher Faktor. All diese Überlegungen werden im analytischen Customer Relationship Management zusammengefasst und bilden eine Reihe an Methoden zur Analyse dieser Phänomene (u.a. Customer-Lifetime-Value, Klassifikation, Churn-Analyse).

Aus den benannten Eigenheiten ist ein Verständnis über das Geschäft entscheidend für die Auswahl geeigneter Data Mining Methoden und dessen Interpretation von Erkenntnissen. Bevor es jedoch zur Interpretation kommt, werden die erforderlichen Vorabschritte über einen strukturierten Prozess für die Analyse in diesem Beitrag vorgestellt.

Data Mining Prozess

Ein ausgewählter Prozess bildet der KDD-Prozess (Knowledge Discovery in Databases) nach Fayyad, Piatetsky-Shapiro und Smyth. Alternative Herangehensweisen wie CRISP-DM (Cross Industry Standard Process for Data Mining) oder SEMMA (Sample, Explore, Modify, Model, Asses) können hierbei zu ähnlichen Ergebnissen führen.

Der KDD-Prozess unterteilt Data Mining Vorhaben in die folgenden Schritte:

  1. Bereitstellung des Domänenwissen und Aufstellung der Ziele
  2. Datenauswahl
  3. Datenbereinigung und -verdichtung (Transformation)
  4. Modellauswahl
  5. Data Mining
  6. Interpretation der Erkenntnissen

Je nach Umfang des Data Mining Vorhaben können sich die sechs Schritte weiter ausdifferenzieren. Jedoch wird sich in diesem Beitrag auf diese sechs Schritte fokussiert.

Domänenwissen und Zielstellung

Aus der obigen Einleitung wurde dargestellt, dass ein Domänenwissen essentiell für das Data Mining Vorhaben darstellt. Aus diesem Grund muss vor Beginn des Projekts ein reger Austausch über die Zielstellung zwischen Data Scientists und Entscheidungsträger stattfinden. Insbesondere die explorative Natur von Analysevorhaben kann dazu genutzt werden, um neue Muster zu identifizieren. Hierbei haben diese Muster jedoch nur einen Neuigkeitswert, wenn diese von den Entscheidungsträgern als originell und wertstiftend interpretiert werden. Daher müssen beide Seiten einen möglichst tiefen Einblick in das Geschäft und möglicher Analysen geben, da ansonsten das Projekt im „Shit-In, Shit-Out“-Prinzip mündet. Dies gilt gleichermaßen für die bereitgestellten Daten.

In diesem Beitrag geht es um den Kauf von Produkten durch Konsumenten. Dabei wird die Platzierung von Produkten in Online-Shops und stationären Handel im Wesentlichen durch den Betreiber bzw. Anbieter bestimmt. Während in Online-Shops die Produkte durch Recommendation-Engines zusätzlich  platziert werden können ist im stationären Handel ein höherer Aufwand durch Point-of-Interest (POI) Platzierungen erforderlich. Jedoch gilt als Vision in der digitalen Transformation, das die Produkte durch das Konsumentenverhalten platziert werden sollen. Hierbei wird davon ausgegangen das die konsumentengetriebene Platzierung den höchstmöglichen Cross-Selling-Effekt erzielt. Dies lässt sich in einer Zielstellung für das Data Mining Vorhaben zusammenfassen:

Steigerung des Umsatzes durch die Steigerung des Cross-Selling-Effekts anhand einer konsumentengetriebenen Platzierung von Produkten

In dieser Zielstellung wird der Cross-Selling-Effekt als Treiber für die Umsatzsteigerung hervorgehoben. Hierbei wird davon ausgegangen, das gemeinsam platzierte Produkte, das Interesse von Konsumenten steigert auch beide Produkte zu kaufen. Dies führt zu einem insgesamt gesteigerten Umsatz anstatt, wenn beide Produkte nicht gemeinsam beworben oder platziert werden. Aus der Zielstellung lässt sich anschließend die Auswahl der Daten und erforderliche Aufbereitungsschritte ableiten.

Datenauswahl, -bereinigung und -verdichtung

Der Umsatz ist die Zielvariable für die Entscheidungsträger und dient als Kennzahl zur Messung der Zielstellung. Für den Cross-Selling-Effekt müssen die Verbindungen von gemeinsam gekauften Produkten identifiziert werden. Dies stellt das grundlegende Netzwerk da und wird durch das Konsumverhalten bestimmt.

Als Datengrundlage wird daher der Warenkorb mit den gemeinsam gekauften Produkten herangezogen. Dieser dient als Entscheidungsgrundlage und es lassen sich einerseits die erzielten Umsätze und Zusammenhänge zwischen den Produkten erkennen.

Aufgrund der Vertraulichkeit solcher Projekte und umfangreichen Datenaufbereitungsschritten wird zur Vereinfachung ein synthetisches Beispiel herangezogen. Insbesondere die erforderlichen Schritte zur Erreichung einer hohen Datenqualität ist ein eigener Beitrag wert und wird von diesem Beitrag abgegrenzt. Dies ermöglicht den Fokus auf die Kernerkenntnisse aus dem Projekt ohne von den detaillierten Schritten und Teilergebnissen abgelenkt zu werden.

Generell besteht ein Warenkorb aus den Informationen gekaufter Produkte, Stückzahl und Preis. Diese können noch weitere Informationen, wie bspw. Mehrwertsteuer, Kasse, Zeitpunkt des Kaufs, etc. enthalten. Für dieses Projekt sieht die allgemeine Struktur wie folgt aus:

Dabei wird jeder Warenkorb mit einem eindeutigen Schlüssel („key“) und den enthaltenen Produktinformationen versehen. In den Rohdaten können sich eine Menge von Datenqualitätsfehlern verbergen. Angefangen von fehlenden Informationen, wie bspw. der Produktmenge aufgrund von Aktionsverkäufen, uneindeutigen Produktbezeichnungen wegen mangelnder Metadaten, Duplikaten aufgrund fehlgeschlagener Datenkonsolidierungen, beginnt die Arbeit von Data Scientists oft mühselig.

In dieser Phase können die Aufwände für die Datenaufbereitung oft steigen und sollten im weiteren Projektvorgehen gesteuert werden. Es gilt eine ausreichende Datenqualität in dem Projekt zu erzielen und nicht eine vollständige Datenqualität des Datensatzes zu erreichen. Das Pareto-Prinzip hilft als Gedankenstütze, um im besten Fall mit 20% des Aufwands auch 80% der Ergebnisse zu erzielen und nicht umgedreht. Dies stellt sich jedoch oft als Herausforderung dar und sollte ggf. in einem Vorabprojekt vor dem eigentlichen Data-Mining Vorhaben angegangen werden.

Modellauswahl und Data Mining

Nach der Datenaufbereitung erfolgen die eigentliche Modellauswahl und Ausführung der Analyseprozesse. Aus der Zielstellung wurde der Umsatz als Kennzahl abgeleitet. Diese Größe bildet eine Variable für das Modell und der anschließenden Diskussion der Ergebnisse. Das dahinterstehende Verfahren ist eine Aggregation der Umsätze von den einzelnen Produkten.

Der Cross-Selling-Effekt ist dagegen nicht einfach zu aggregieren sondern durch ein Netzwerk zu betrachten. Aus Sicht der Netzwerkanalyse bilden die Produkte die Knoten und die gemeinsamen Käufe die Kanten in einem Graphen. Ein Graph hat den Vorteil die Verbindungen zwischen Produkten aufzuzeigen, kann jedoch auch zu einer endlosen Verstrickung führen in der sich bei einer anschließenden Visualisierung nichts erkennen lässt. Dieser Enmesh-Effekt tritt insbesondere bei einer hohen Anzahl an zu verarbeitenden Knoten und Kanten auf. Wenn wir in eine Filiale oder Online-Shop schauen ist dieser Enmesh-Effekt durchaus gegeben, wenn wir anfangen die Produkte zu zählen und einen Blick auf die täglichen Käufe und erzeugten Kassenbons bzw. Bestellungen werfen. Der Effekt wird umso größer wenn wir nicht nur eine Filiale sondern global verteilte Filialen betrachten.

Aus diesem Grund müssen die Knoten und Verbindungen mit den angemessenen Ergebniswerten hinterlegt und visuell enkodiert werden. Auch eine mögliche Aggregation (Hierarchie), durch bspw. einem Category Management ist in Betracht zu ziehen.

Die Modellauswahl bildet daher nicht nur die Auswahl des geeigneten Analysemodells sondern auch dessen geeignete Visualisierung. In dem Beitragsbeispiel wird die Assoziationsanalyse als Modell herangezogen. In diesem Verfahren wird die Suche nach Regeln durch die Korrelation zwischen gemeinsam gekauften Produkten eruiert. Die Bedeutung einer Regel, bspw. „Produkt 1 wird mit Produkt 2 gekauft“ wird anhand des Lifts angegeben. Aus der Definition des Lifts lässt sich erkennen, dass dieses Verfahren für die Messung des Cross-Selling-Effekts geeignet ist. Hierbei können  unterschiedliche Algorithmen mit unterschiedlichen Ausgangsparametern herangezogen werden (z.B. AIS, Apriori, etc.). Entscheidend ist dabei nicht nur eine Modellkonstellation zu wählen sondern sich auf eine Menge von Modellen zu beziehen. Dabei kann das Modell mit den vielversprechendsten Ergebnissen ausgewählt werden.

Nach der Ausführung des Analyseverfahrens und der Bereinigung sowie -verdichtung der Warenkorbdaten ergeben sich einerseits die aggregierten Produktumsätze als auch die berechneten Modelldaten.

Neben den Lift dienen die Hilfsvariablen Support und Confidence auch als Kenngrößen, um einen Aufschluss auf die Validität der errechneten Ergebnisse zu geben. Diese beiden Werte können dazu genutzt werden, einzelnen Knoten aufgrund ihrer unwesentlichen Bedeutung zu entfernen und damit das Netzwerk auf die wesentlichen Produktverbindungen zu fokussieren.

 

Diese beiden Zieldatensätze werden für die Ergebnispräsentation und der Interpretation herangezogen. Generell findet in den Phasen der Datenauswahl bis zum Data Mining ein iterativer Prozess statt, bis die Zielstellung adäquat beantwortet und gemessen werden kann. Dabei können weitere Datenquellen hinzukommen oder entfernt werden.

Interpretation der Erkenntnisse

Bevor die Ergebnisse interpretiert werden können muss eine Visualisierung auch die Erkenntnisse verständlich präsentieren. Dabei kommt es darauf die originellsten und nützlichsten Erkenntnisse in den Vordergrund zu rücken und dabei das bereits Bekannte und Wesentliche des Netzwerks nicht zur vergessen. Nichts ist schlimmer als das die investierten Mühen in Selbstverständnis und bereits bekannten Erkenntnissen in der Präsentation vor den Entscheidungsträgern versickern.

Als persönliche Empfehlung bietet sich Datenvisualisierung als geeignetes Medium für die Aufbereitung von Erkenntnissen an. Insbesondere die Darstellung in einem „Big Picture“ kann dazu genutzt werden, um bereits bekannte und neue Erkenntnisse zusammenzuführen. Denn in der Präsentation geht es um eine Gradwanderung zwischen gehandhabter Intuition der Entscheidungsträger und dem Aufbrechen bisheriger Handlungspraxis.

In der folgenden Visualisierung wurden die Produkte mit ihren Umsätzen kreisförmig angeordnet. Durch die Sortierung lässt sich schnell erkennen welches Produkt die höchsten Umsätze anhand der Balken erzielt. Der Lift-Wert wurde als verbindende Linie zwischen zwei Produkten dargestellt. Dabei wird die Linie dicker und sichtbarer je höher der Lift-Wert ist.

netzwerk-visualisierung-javascript-cross-selling

Abbildung 1: Netzwerkvisualisierung von erkannten Regeln zu gekauften Produkten (ein Klick auf die Grafik führt zur interaktiven JavaScript-Anwendung)

[box type=”info” style=”rounded”]Dieser Link (Klick) führt zur interaktiven Grafik (JavaScript) mit Mouse-Hover-Effekten.[/box]

Es wurde versucht die Zieldatensätze in einem Big Picture zusammenzuführen, um das Netzwerk in seiner Gesamtheit darzustellen. Hieraus lässt sich eine Vielzahl von Erkenntnissen ablesen:

  1. Das „Produkt 37“ erzielt den höchsten Umsatz, zeigt jedoch keinen Cross-Selling-Effekt von gemeinsam gekauften Produkten.
  2. Dagegen das „Produkt 23“ erzielte weniger Umsatz, wird jedoch häufig mit anderen Produkten gemeinsam gekauft.
  3. Das „Produkt 8“ weist zwei starke Regeln (Assoziationen) für „Produkt 45 & 56“ auf. Ggf. lassen sich diese Produkte in Aktionen zusammenanbieten.

Im Erstellungsprozess der Ergebnispräsentation ergab sich die Erfahrungspraxis flexibel eine geeignete Visualisierung zu erstellen anstatt die Erkenntnisse in vordefinierte Visualisierungen oder Diagramme zur pressen. Dies kann einerseits den Neuigkeitswert erhöhen und die Informationen anschließend besser transportieren aber auf der anderen Seite den Aufwand zur Erstellung der Visualisierung und das Verständnis für die neu erstellte Visualisierung mindern.

Ein Blick hinter die Bühne zeigt, dass die Visualisierung mit D3.js erstellt wurde. Dies bietet ein geeignetes Framework für die Flexibilität zur Erstellung von Datenpräsentationen. Wer sich nach Bibliotheken in R oder Python umschaut, wird auch in diesen Technologiebereichen fündig. Für R-Entwickler existierten die Packages „statnet“ und „gplots“ zur Verarbeitung und Visualisierung von Netzwerkdaten. Für Ptyhon-Entwickler steht graph-tool als sehr leistungsfähiges Modul, insb. für große Mengen an Knoten und Kanten zur Verfügung.

In unserem Vorhaben haben wir uns für D3.js aufgrund der möglichen Implementierung von Interaktionsmöglichkeiten, wie bspw. Highlighting von Verbindungen, entschieden. Dies ermöglicht auch eine bessere Interaktion mit den Entscheidungsträgern, um relevante Details anhand der Visualisierung darzustellen.

Ein Abriss in die Entwicklung der D3-Visualisierung zeigt, dass die Daten durch eine Verkettung von Methoden zur Enkodierung von Daten implementiert werden. Hierbei wird bspw. den Produkten ein Rechteck mit der berechneten Größe, Position und Farbe (.attr()) zugewiesen.

Insbesondere die Höhe des Balkens zur Darstellung des Umsatzes wird mit der Implementierung von Skalen erleichtert.

Für die verbindenden Linien wurde auch ein visuelles Clustering anhand eines Edge-Bundling herangezogen. Dies führt gemeinsame Verbindungen zusammen und reduziert den Enmesh-Effekt.

* Das vollständige Beispiel kann dem zip-File (siehe Download-Link unten) entnommen werden. Die Ausführung reicht mit einem Klick auf die index.html Datei zur Darstellung im Browser aus.
Eine kritische Betrachtung der Ergebnisvisualisierung zeigt auf, dass die Anordnung der Produkte (Knoten) das interpretieren der Darstellung vereinfacht aber auch hier der Enmesh-Effekt fortschreitet je höher die Anzahl an Verbindungen ist. Dies wurde mit verschiedenen Mitteln im Analyseverfahren (Modellparameter, Entfernen von Produkten aufgrund eines geringen Supprt/Confidence Wertes oder Pruning) als auch in der der Darstellung (Transparenz, Linienstärke Edge-Bundling) reduziert.

Fazit

Als Quintessenz lässt sich festhalten, dass eine Auseinandersetzung mit Netzwerken auch Überlegungen über Komplexität im gesamten Data-Mining Vorhaben mit sich bringt. Dabei unterscheiden sich diese Überlegungen zwischen Data Scientists und Entscheidungsträger nach dem Kontext. Während Data Scientists über das geeignete Analyseverfahren und Visualisierung nachdenken überlegt der Entscheidungsträger welche Produkte wesentlich für sein Geschäft sind. Auf beiden Seiten geht es darum, die entscheidenden Effekte herauszuarbeiten und die Zielstellung gemeinsam voranzutreiben. Im Ergebnis wurde die Zielstellung durch die Darstellung der Produktumsätze und der Darstellung des Cross-Selling-Impacts in einem Netzwerk als Big Picture aufbereitet. Hieraus können Entscheidungsträger interaktiv, die geeigneten Erkenntnisse für sich interpretieren und geeignete Handlungsalternativen ableiten. Dabei hängt jedoch die Umsetzung einer konsumentengetriebenen Produktplatzierung vom eigentlichen Geschäftsmodell ab.

Während sich diese Erkenntnisse im Online-Geschäft einfach umsetzen lassen, ist dies eine Herausforderungen für den stationären Handel. Die Produktplatzierung in Filialen kann aufgrund der begrenzten Fläche als auch den Gewohnheiten von Konsumenten nur bedingt verändert werden. Daher können auch Mischformen aus bspw. „Online-Schauen, Offline-Kaufen“ eruiert werden.

Nach der Entscheidung erfolgt sogleich auch die Überlegung nach den Konsequenzen, Veränderungen und Einfluss auf das Geschäft. Hieraus bildet sich für Data Scientists und Entscheidungsträger eine Kette von Überlegungen über erkannte Muster in Netzwerken, Implikation und möglicher Prognosefähigkeit. Letzteres ist eine besondere Herausforderung, da die Analyse der Dynamik vom Netzwerk im Vordergrund steht. Die Suche nach einer kritischen Masse oder Tipping-Point kann zu möglichen Veränderungen führen, die aufgrund des Informationsmangels nur schwer vorhersagbar sind. Dies kann vom Ablegen bisheriger Gewohnheiten zu negativen Kundenfeedback aber auch positiver Wirkung gesteigerter Absätze rangieren.

Hierbei zeigt sich das evolutionäre als auch das disruptive Potenzial von Data Mining-Vorhaben unabhängig davon welche Entscheidung aus den Erkenntnissen abgeleitet wird. Data Scientists schaffen neue Handlungsalternativen anstatt auf bestehende Handlungspraxen zu verharren. Die Eigenschaft sich entsprechend der Dynamik von Netzwerken zu verändern ist umso entscheidender „Wie“ sich ein Unternehmen verändern muss, um im Geschäft bestehen zu bleiben. Dies gelingt nur in dem sich auf das Wesentliche fokussiert wird und so der Enmesh-Effekt erfolgreich durch einen Dialog zwischen Entscheidungsträger und Data Scientists in einer datengetriebenen Geschäftswelt gemeistert wird.

Quellcode Download

Der vollständige und sofort einsatzbereite Quellcode steht als .zip-Paket zum Download bereit.
Bitte hierbei beachten, dass die meisten Browser die Ausführung von JavaScript aus lokalen Quellen standardmäßig verhindern. JavaScript muss daher in der Regel erst manuell aktiviert werden.

Data Leader Day

Unser Event für Big Data Anwender – Data Leader Day

Mit Stolz und Freude darf ich verkünden, dass wir ausgehend von unserer Data Science Blog Community den Data Leader Day am 17. November in Berlin maßgeblich mitorganisieren werden!

Der große DataLeaderDay am 17. November 2016 in Berlin bringt das Silicon Valley nach Deutschland. Die Konferenz fokussiert dabei auf die beiden Megatrends in der Digitalwirtschaft: Data Science und Industrie 4.0. Erleben Sie auf dem Data Leader Day was jetzt möglich ist – von Pionieren und hochrangigen Anwendern.
dataleaderday-teilnehmer-logos

www.dataleaderday.com

Ein vielfältiges Programm mit Keynote, Präsentationen sowie Use & Business Cases zeigt Ihnen aus der Praxis, wie Sie die Digitalisierung im Unternehmen umsetzen und als neues Wertschöpfungsinstrument einsetzen können. Und das Wichtigste: Sie erleben, welche Wettbewerbsvorteile Sie mit diesen Technologien verwirklichen können. Der Networking-Hub bietet zudem viele Möglichkeiten um Spitzenkräfte zu treffen und um sich über neueste Technologien, Methoden und Entwicklungen auszutauschen.

Zielgruppe – und was Euch erwartet

Auf dem Event werden Entscheider in Führungsposition ihre erfolgreichen Big Data & Data Science Anwendungen präsentieren. Es wird für unterschiedliche Branchen und Fachbereiche viele Erfolgsstories geben, die Mut machen, selbst solche oder ähnliche Anwendungsfälle anzugehen. Ihr werdet mit den Entscheidern networken können!

– Persönliche Vermittlung für ein Karrieregespräch gesucht? Sprecht mich einfach an! –

Unser Data Leader Day richtet sich an Führungskräfte, die von der Digitalisierung bereits profitieren oder demnächst profitieren wollen, aber auch an technische Entwickler, die neue Impulse für erfolgreiche Big Data bzw. Smart Data Projekte mitnehmen möchten. Das Event ist exklusiv und nicht – wie sonst üblich – von Vertrieblern zum Verkauf designed, sondern von Anwendern für Anwender gemacht.

Ort, Programm und Agenda

Aktuelle Informationen zum Event finden sich auf der Event-Seite: www.dataleaderday.com

 

 

Machine Learning mit Python – Minimalbeispiel

Maschinelles Lernen (Machine Learning) ist eine Gebiet der Künstlichen Intelligenz (KI, bzw. AI von Artificial Intelligence) und der größte Innovations- und Technologietreiber dieser Jahre. In allen Trendthemen – wie etwa Industrie 4.0 oder das vernetzte und selbstfahrende Auto – spielt die KI eine übergeordnete Rolle. Beispielsweise werden in Unternehmen viele Prozesse automatisiert und auch Entscheidungen auf operativer Ebene von einer KI getroffen, zum Beispiel in der Disposition (automatisierte Warenbestellungen) oder beim Festsetzen von Verkaufspreisen.

Aufsehen erregte Google mit seiner KI namens AlphaGo, einem Algortihmus, der den Weltmeister im Go-Spiel in vier von fünf Spielen besiegt hatte. Das Spiel Go entstand vor mehr als 2.500 Jahren in China und ist auch heute noch in China und anderen asiatischen Ländern ein alltägliches Gesellschaftsspiel. Es wird teilweise mit dem westlichen Schach verglichen, ist jedoch einfacher und komplexer zugleich (warum? das wird im Google Blog erläutert). Machine Learning kann mit einer Vielzahl von Methoden umgesetzt werden, werden diese Methoden sinnvoll miteinander kombiniert, können durchaus äußerst komplexe KIs erreicht werden.  Der aktuell noch gängigste Anwendungsfall für Machine Learning ist im eCommerce zu finden und den meisten Menschen als die Produktvorschläge von Amazon.com bekannt: Empfehlungsdienste (Recommender System).

Klassifikation via K-Nearest Neighbour Algorithmus

Ein häufiger Zweck des maschinellen Lernens ist, technisch gesehen, die Klassifikation von Daten in Abhängigkeit von anderen Daten. Es gibt mehrere ML-Algorithmen, die eine Klassifikation ermöglichen, die wohl bekannteste Methode ist der k-Nearest-Neighbor-Algorithmus (Deutsch:„k-nächste-Nachbarn”), häufig mit “kNN” abgekürzt. Das von mir interviewte FinTech StartUp Number26 nutzt diese Methodik beispielsweise zur Klassifizierung von Finanztransaktionen.

Um den Algorithmus Schritt für Schritt aufbauen zu können, müssen wir uns

Natürlich gibt es in Python, R und anderen Programmiersprachen bereits fertige Bibliotheken, die kNN bereits anbieten, denen quasi nur Matrizen übergeben werden müssen. Am bekanntesten ist wohl die scikit-learn Bibliothek für Python, die mehrere Nächste-Nachbarn-Modelle umfasst. Mit diesem Minimalbeispiel wollen wir den grundlegenden Algorithmus von Grund auf erlernen. Wir wollen also nicht nur machen, sondern auch verstehen.

Vorab: Verwendete Bibliotheken

Um den nachstehenden Python-Code (Python 3.x, sollte allerdings auch mit Python 2.7 problemlos funktionieren) ausführen zu können, müssen folgende Bibliotheken  eingebunden werden:

Übrigens: Eine Auflistung der wohl wichtigsten Pyhton-Bibliotheken für Datenanalyse und Datenvisualisierung schrieb ich bereits hier.

Schritt 1 – Daten betrachten und Merkmale erkennen

Der erste Schritt ist tatsächlich der aller wichtigste, denn erst wenn der Data Scientist verstanden hat, mit welchen Daten er es zu tun hat, kann er die richtigen Entscheidungen treffen, wie ein Algorithmus richtig abgestimmt werden kann und ob er für diese Daten überhaupt der richtige ist.

In der Realität haben wir es oft mit vielen verteilten Daten zu tun, in diesem Minimalbeispiel haben wir es deutlich einfacher: Der Beispiel-Datensatz enthält Informationen über Immobilien über vier Spalten.

  • Quadratmeter: Größe der nutzbaren Fläche der Immobilie in der Einheit m²
  • Wandhoehe: Höhe zwischen Fußboden und Decke innerhalb der Immobilie in der Einheit m
  • IA_Ratio: Verhältnis zwischen Innen- und Außenflächen (z. B. Balkon, Garten)
  • Kategorie: Enthält eine Klassifizierung der Immobilie als “Haus”, “Wohnung” und “Büro”

 

beispiel-txt-file

[box]Hinweis für Python-Einsteiger: Die Numpy-Matrix ist speziell für Matrizen-Kalkulationen entwickelt. Kopfzeilen oder das Speichern von String-Werten sind für diese Datenstruktur nicht vorgesehen![/box]

Aufgerufen wird diese Funktion dann so:

Die Matrix mit den drei Spalten (Quadratmeter, Wandhohe, IA_Ratio) landen in der Variable “dataSet”.

Schritt 2 – Merkmale im Verhältnis zueinander perspektivisch betrachten

Für diesen Anwendungsfall soll eine Klassifizierung (und gewissermaßen die Vorhersage) erfolgen, zu welcher Immobilien-Kategorie ein einzelner Datensatz gehört. Im Beispieldatensatz befinden sich vier Merkmale: drei Metriken und eine Kategorie (Wohnung, Büro oder Haus). Es stellt sich zunächst die Frage, wie diese Merkmale zueinander stehen. Gute Ideen der Datenvisualisierung helfen hier fast immer weiter. Die gängigsten 2D-Visualisierungen in Python wurden von mir bereits hier zusammengefasst.

[box]Hinweis: In der Praxis sind es selten nur drei Dimensionen, mit denen Machine Learning betrieben wird. Das Feature-Engineering, also die Suche nach den richtigen Features in verteilten Datenquellen, macht einen wesentlichen Teil der Arbeit eines Data Scientists aus – wie auch beispielsweise Chief Data Scientist Klaas Bollhoefer (siehe Interview) bestätigt.[/box]

Die beiden Scatter-Plots zeigen, das Häuser (blau) in allen Dimensionen die größte Varianz haben. Büros (gelb) können größer und höher ausfallen, als Wohnungen (rot), haben dafür jedoch tendenziell ein kleineres IA_Ratio. Könnten die Kategorien (blau, gelb, rot) durch das Verhältnis innerhalb von einem der beiden Dimensionspaaren in dem zwei dimensionalen Raum exakt voneinander abgegrenzt werden, könnten wir hier stoppen und bräuchten auch keinen kNN-Algorithmus mehr. Da wir jedoch einen großen Überschneidungsbereich in beiden Dimensionspaaren haben (und auch Wandfläche zu IA_Ratio sieht nicht besser aus),

Eine 3D-Visualisierung eignet sich besonders gut, einen Überblick über die Verhältnisse zwischen den drei Metriken zu erhalten: (die Werte wurden hier bereits normalisiert, liegen also zwischen 0,00 und 1,00)

3D Scatter Plot in Python [Matplotlib]

Es zeigt sich gerade in der 3D-Ansicht recht deutlich, dass sich Büros und Wohnungen zum nicht unwesentlichen Teil überschneiden und hier jeder Algorithmus mit der Klassifikation in Probleme geraten wird, wenn uns wirklich nur diese drei Dimensionen zur Verfügung stehen.

Schritt 3 – Kalkulation der Distanzen zwischen den einzelnen Punkten

Bei der Berechnung der Distanz in einem Raum hilft uns der Satz des Pythagoras weiter. Die zu überbrückende Distanz, um von A nach B zu gelangen, lässt sich einfach berechnen, wenn man entlang der Raumdimensionen Katheten aufspannt.

c = \sqrt{a^2+ b^2}

Die Hypotenuse im Raum stellt die Distanz dar und berechnet sich aus der Wurzel aus der Summe der beiden Katheten im Quadrat. Die beiden Katheten bilden sich aus der Differenz der Punktwerte (q, p) in ihrer jeweiligen Dimension.Bei mehreren Dimensionen gilt der Satz entsprechend:

Distanz = \sqrt{(q_1-p_1)^2+(q_2-p_2)^2+…+(q_n-p_n)^2}

Um mit den unterschiedlichen Werte besser in ihrer Relation zu sehen, sollten sie einer Normalisierung unterzogen werden. Dabei werden alle Werte einer Dimension einem Bereich zwischen 0.00 und 1.00 zugeordnet, wobei 0.00 stets das Minimum und 1.00 das Maximum darstellt.

NormWert = \frac{Wert - Min}{Wertspanne} = \frac{Wert - Min}{Max - Min}

Die Funktion kann folgendermaßen aufgerufen werden:

Schritt 4 & 5 – Klassifikation durch Eingrenzung auf k-nächste Nachbarn

Die Klassifikation erfolgt durch die Kalkulation entsprechend der zuvor beschriebenen Formel für die Distanzen in einem mehrdimensionalen Raum, durch Eingrenzung über die Anzahl an k Nachbarn und Sortierung über die berechneten Distanzen.

Über folgenden Code rufen wir die Klassifikations-Funktion auf und legen die k-Eingrenzung fest, nebenbei werden Fehler gezählt und ausgewertet. Hier werden der Reihe nach die ersten 30 Zeilen verarbeitet:

Nur 30 Testdatensätze auszuwählen ist eigentlich viel zu knapp bemessen und hier nur der Übersichtlichkeit geschuldet. Besser ist für dieses Beispiel die Auswahl von 100 bis 300 Datensätzen. Die Ergebnisse sind aber bereits recht ordentlich, allerdings fällt dem Algorithmus – wie erwartet – noch die Unterscheidung zwischen Wohnungen und Büros recht schwer.

0 – klassifiziert wurde: Buero, richtige Antwort: Buero
1 – klassifiziert wurde: Wohnung, richtige Antwort: Wohnung
2 – klassifiziert wurde: Buero, richtige Antwort: Buero
3 – klassifiziert wurde: Buero, richtige Antwort: Buero
4 – klassifiziert wurde: Wohnung, richtige Antwort: Wohnung
5 – klassifiziert wurde: Wohnung, richtige Antwort: Wohnung
6 – klassifiziert wurde: Wohnung, richtige Antwort: Wohnung
7 – klassifiziert wurde: Wohnung, richtige Antwort: Buero
8 – klassifiziert wurde: Wohnung, richtige Antwort: Wohnung
9 – klassifiziert wurde: Wohnung, richtige Antwort: Wohnung
10 – klassifiziert wurde: Wohnung, richtige Antwort: Wohnung
11 – klassifiziert wurde: Wohnung, richtige Antwort: Wohnung
12 – klassifiziert wurde: Buero, richtige Antwort: Buero
13 – klassifiziert wurde: Wohnung, richtige Antwort: Buero
14 – klassifiziert wurde: Wohnung, richtige Antwort: Wohnung
15 – klassifiziert wurde: Wohnung, richtige Antwort: Wohnung
16 – klassifiziert wurde: Buero, richtige Antwort: Buero
17 – klassifiziert wurde: Wohnung, richtige Antwort: Wohnung
18 – klassifiziert wurde: Haus, richtige Antwort: Haus
19 – klassifiziert wurde: Wohnung, richtige Antwort: Wohnung
20 – klassifiziert wurde: Wohnung, richtige Antwort: Wohnung
21 – klassifiziert wurde: Buero, richtige Antwort: Buero
22 – klassifiziert wurde: Buero, richtige Antwort: Buero
23 – klassifiziert wurde: Buero, richtige Antwort: Buero
24 – klassifiziert wurde: Wohnung, richtige Antwort: Wohnung
25 – klassifiziert wurde: Wohnung, richtige Antwort: Wohnung
26 – klassifiziert wurde: Wohnung, richtige Antwort: Wohnung
27 – klassifiziert wurde: Wohnung, richtige Antwort: Wohnung
28 – klassifiziert wurde: Wohnung, richtige Antwort: Wohnung
29 – klassifiziert wurde: Buero, richtige Antwort: Buero
Error Count: 2

Über weitere Tests wird deutlich, dass k nicht zu niedrig und auch nicht zu hoch gesetzt werden darf.

 Datensätze  k Fehler
 150 1   25
 150 3   23
 150 5   21
 150 20   26

Ein nächster Schritt wäre die Entwicklung eines Trainingprogramms, dass die optimale Konfiguration (k-Eingrenzung, Gewichtung usw.) ermittelt.

Fehlerraten herabsenken

Die Fehlerquote ist im Grunde niemals ganz auf Null herabsenkbar, sonst haben wir kein maschinelles Lernen mehr, sondern könnten auch feste Regeln ausmachen, die wir nur noch einprogrammieren (hard-coding) müssten. Wer lernt, macht auch Fehler! Dennoch ist eine Fehlerquote von 10% einfach zu viel für die meisten Anwendungsfälle. Was kann man hier tun?

  1. Den Algorithmus verbessern (z. B. optimale k-Konfiguration und Gewichtung finden)
  2. mehr Merkmale finden (= mehr Dimensionen)
  3. mehr Daten hinzuziehen (gut möglich, dass alleine dadurch z. B. Wohnungen und Büros besser unterscheidbar werden)
  4. einen anderen Algorithmus probieren (kNN ist längst nicht für alle Anwendungen ideal!)

Das Problem mit den Dimensionen

Theoretisch kann kNN mit undenklich vielen Dimensionen arbeiten, allerdings steigt der Rechenaufwand damit auch ins unermessliche. Der k-nächste-Nachbar-Algorithmus ist auf viele Daten und Dimensionen angewendet recht rechenintensiv.

In der Praxis hat nicht jedes Merkmal die gleiche Tragweite in ihrer Bedeutung für die Klassifikation und mit jeder weiteren Dimension steigt auch die Fehleranfälligkeit, insbesondere durch Datenfehler (Rauschen). Dies kann man sich bei wenigen Dimensionen noch leicht bildlich vorstellen, denn beispielsweise könnten zwei Punkte in zwei Dimensionen nahe beieinander liegen, in der dritten Dimension jedoch weit auseinander, was im Ergebnis dann eine lange Distanz verursacht. Wenn wir beispielsweise 101 Dimensionen berücksichtigen, könnten auch hier zwei Punkte in 100 Dimensionen eng beieinander liegen, läge jedoch in der 101. Dimension (vielleicht auch auf Grund eines Datenfehlers) eine lange Distanz vor, wäre die Gesamtdistanz groß. Mit Gewichtungen könnten jedoch als wichtiger einzustufenden Dimensionen bevorzugt werden und als unsicher geltende Dimensionen entsprechend entschärft werden.

Je mehr Dimensionen berücksichtigt werden sollen, desto mehr Raum steht zur Verfügung, so dass um wenige Datenpunkte viel Leerraum existiert, der dem Algorithmus nicht weiterhilft. Je mehr Dimensionen berücksichtigt werden, desto mehr Daten müssen zu Verfügung gestellt werden, im exponentiellen Anstieg – Wo wir wieder beim Thema Rechenleistung sind, die ebenfalls exponentiell ansteigen muss.

Weiterführende Literatur


Machine Learning in Action

 


Introduction to Machine Learning with Python

Einführung in Data Science: Grundprinzipien der Datenanalyse mit Python

KNN: Rückwärtspass

Im letzten Artikel der Serie haben wir gesehen wie bereits trainierte Netzwerke verwendet werden können. Als Training wird der Prozess bezeichnet der die Gewichte in einen Netzwerk so anpasst, dass bei einem Vorwärtspass durch ein Netzwerk zu einen festgelegten Eingangsdatensatz ein bestimmtes Ergebnis in der Ausgangsschicht ausgegeben wird. Im Umkehrschluss heißt das auch, dass wenn etwas anderes ausgeliefert wurde als erwartet, das Netzwerk entweder noch nicht gut genug oder aber auf ein anderes Problem hin trainiert wurde.

Training

Das Training selbst findet in drei Schritten statt. Zunächst werden die Gewichte initialisiert. Üblicherweise geschieht das mit zufälligen Werten, die aus einer Normalverteilung gezogen werden. Je nachdem wie viele Gewichte eine Schicht hat, ist es sinnvoll die Verteilung über den Sigma Term zu skalieren. Als Daumenregeln kann dabei eins durch die Anzahl der Gewichte in einer Schicht verwendet werden.

Im zweiten Schritt wird der Vorwärtspass für die Trainingsdaten errechnet. Das Ergebnis wird beim ersten Durchlauf alles andere als zufrieden stellend sein, es dient aber dem Rückwärtspass als Basis für dessen Berechnungen und Gewichtsänderungen. Außerdem kann der Fehler zwischen der aktuellen Vorhersage und dem gewünschten Ergebnis ermittelt werden, um zu entscheiden, ob weiter trainiert werden soll.

Der eigentliche Rückwärtspass errechnet aus der Differenz der Vorwärtspassdaten und der Zieldaten die Steigung für jedes Gewicht aus, in dessen Richtung dieses geändert werden muss, damit das Netzwerk bessere Vorhersagen trifft. Das klingt zunächst recht abstrakt, die genauere Mathematik dahinter werde ich in einem eigenen Artikel erläutern. Zur besseren Vorstellung betrachten wir die folgende Abbildung.

    visuelle Darstellung aller Gewichtskombinationen und deren Vorhersagefehler

Das Diagramm zeigt in blau zu allen möglichen Gewichtskombinationen eines bestimmten, uns unbekannten, Netzwerks und Problems den entsprechenden Vorhersagefehler. Die Anzahl der Kombinationen hängt von der Anzahl der Gewichte und der Auflösung des Wertebereiches für diese ab. Theoretisch ist die Menge also unendlich, weshalb die blaue Kurve eine von mir ausgedachte Darstellung aller Kombinationen ist. Der erste Vorwärtspass liefert uns eine Vorhersage die eine normalisierte Differenz von 0.6 zu unserem eigentlichen Wunschergebnis aufweist. Visualisiert ist das Ganze mit einer schwarzen Raute. Der Rückwärtspass berechnet aus der Differenz und den Daten vom Vorwärtspass einen Änderungswunsch für jedes Gewicht aus. Da die Änderungen unabhängig von den anderen Gewichten ermittelt wurden, ist nicht bekannt was passieren würde wenn alle Gewichte sich auf einmal ändern würden. Aus diesem Grund werden die Änderungswünsche mit einer Lernrate abgeschwächt. Im Endeffekt ändert sich jedes Gewicht ein wenig in die Richtung, die es für richtig erachtet. In der Hoffnung einer Steigerung entlang zu einem lokalen Minimum zu folgen, werden die letzten beiden Schritte (Vor- und Rückwärtspass) mehrfach wiederholt. In dem obigen Diagramm würde die schwarze Raute der roten Steigung folgen und sich bei jeder Iteration langsam auf das linke lokale Minimum hinzubewegen.

 

Anwendungsbeispiel und Programmcode

Um den ganzen Trainingsprozess im Einsatz zu sehen, verwenden wir das Beispiel aus dem Artikel “KNN: Vorwärtspass”. Die verwendeten Daten kommen aus der Wahrheitstabelle eines X-OR Logikgatters und werden in ein 2-schichtiges Feedforward Netzwerk gespeist.

XOR Wahrheitstabelle

X1 X2 Y = X1 ⊻ X2
0 0 0
0 1 1
1 0 1
1 1 0

Der Programmcode ist in Octave geschrieben und kann zu Testzwecken auf der Webseite von Tutorialpoint ausgeführt werden. Die erste Hälfte von dem Algorithmus kennen wir bereits, der Vollständigkeit halber poste ich ihn noch einmal, zusammen mit den Rückwärtspass. Hinzugekommen sind außerdem ein paar Konsolenausgaben, eine Lernrate- und eine Iterations-Variable die angibt wie viele Trainingswiederholungen durchlaufen werden sollen.

Zu jeder Zeile bzw. Funktion die wir im Vorwärtspass geschrieben haben, gibt es im Rückwärtspass eine abgeleitete Variante. Dank den Ableitungen können wir die Änderungswünsche der Gewichte in jeder Schicht ausrechnen und am Ende einer Trainingsiteration anwenden. Wir trainieren 10.000 Iterationen lang und verwenden eine Lernrate von 0,8. In komplexeren Fragestellungen, mit mehr Daten, würden diese Werte niedriger ausfallen.

Es ist außerdem möglich den ganzen Programmcode viel modularer aufzubauen. Dazu werde ich im nächsten Artikel auf eine mehr objekt-orientiertere Sprache wechseln. Nichts desto trotz liefert der obige Algorithmus gute Ergebnisse. Hier ist mal ein Ausgabebeispiel:

 

Toolkits & Services für Semantische Textanalysen

Named Entity Recognition ist ein Teilgebiet von Information Extraction. Ziel von Information Extraction ist die Gewinnung semantischer Informationen aus Texten (im Gegensatz zum verwandten Gebiet des Information Retrieval, bei dem es um das möglichst intelligente Finden von Informationen, die u.U. vorab mit Information Extraction gewonnen wurden, geht). Named Entity Recognition (kurz NER) bezeichnet die Erkennung von Entitäten wie z.B. Personen, Organisationen oder Orten in Texten.

[box]Beispiel:
Albert Einstein war ein theoretischer Physiker, der am 14. März 1879 in Ulm geboren wurde. Er erhielt 1921 den Nobelpreis für Physik. Isaac Newton, Einstein und Stephen Hawking werden oft als die größten Physiker seit der Antike bezeichnet.”[/box]

Die Disambiguierung von Entitäten ist ein weiterer wichtiger Schritt auf dem Weg zu einem semantischen Verständnis von Texten. Wenn man so in obigem Text erkennen kann, dass “Albert Einstein“, “Er” und “Einstein” die gleiche Person bezeichnen, so kann ein Analyseverfahren z.B. daraus schließen, dass in diesem Text Einstein eine wichtigere Rolle spielt, als Newton, der nur einmal erwähnt wurde. Die Hyperlinks hinter den jeweiligen Entitäten zeigen eine Möglichkeit der semantischen Anreicherung von Texten an – in diesem Fall wurden die Entitäten mit entsprechenden Einträgen bei DBpedia automatisch verlinkt.

Named Entity Recognition dient vorrangig zwei Zwecken:

  • Anreicherung von Texten mit Metadaten
  • Abstraktion von Texten zur besseren Erkennung von Mustern

Punkt 1 dient direkt dem Information Retrieval. Anwender können so z.B. gezielt nach bestimmten Personen suchen, ohne alle möglichen Schreibweisen oder Berufsbezeichnungen auflisten zu müssen.

Punkt 2 dient der Vorverarbeitung von Texten als Input für Machine Learning Verfahren. So ist es (je nach Anwendung!) oft nicht von Bedeutung, welche Person, welcher Ort oder auch welche Uhrzeit in einem Text steht sondern nur die Tatsache, dass Personen, Orte oder Zeiten erwähnt wurden.

Sirrus Shakeri veranschaulicht die zentrale Bedeutung semantischer Analyse in seinem Beitrag From Big Data to Intelligent Applications:

intelligent-applications-cirrus-shakeri

Abbildung 1: Von Big Data zu Intelligent Applications von Cirrus Shakeri

Sein “Semantic Graph” setzt voraus, dass Entitäten mittels “Natural Language Processing” erkannt und zueinander in Beziehung gesetzt wurden.

Es ist interessant zu vermerken, dass Natural Language Processing und Data Mining / Machine Learning über viele Jahre als Alternativen zueinander und nicht als Ergänzungen voneinander gesehen wurden. In der Tat springen die meisten Vorgehensmodelle heutzutage von “Data Preparation” zu “Machine Reasoning”. Wir argumentieren, dass sich in vielen Anwendungen, die auf unstrukturierten Daten basieren, signifikante Qualitätsverbesserungen erzielen lassen, wenn man zumindest NER (inklusive Disambiguierung) in die Pipeline mit einbezieht.

Toolkits und Services für NER

Es existiert eine Vielzahl von Toolkits für Natural Language Processing, die Sie mehr oder weniger direkt in Ihre Programme einbinden können. Exemplarisch seien drei Toolkits für Java, Python und R erwähnt:

Diese Toolkits enthalten Modelle, die auf Korpora für die jeweils unterstützten Sprachen trainiert wurden. Sie haben den Vorteil, dass sie auch vollkommen neue Entitäten erkennen können (wie z.B. neue Politiker oder Fernsehstars, die zur Trainingszeit noch unbekannt waren). Je nach Einstellung haben diese Systeme aber auch eine relativ hohe Falsch-Positiv-Rate.

Wer NER nur ausprobieren möchte oder lediglich gelegentlich kleinere Texte zu annotieren hat, sei auf die folgenden Web Services verwiesen, die auch jeweils eine REST-Schnittstelle anbieten.

DBpedia

Das DBpedia Projekt nutzt die strukturierten Informationen der verschieden-sprachigen Wikipedia Sites für den Spotlight Service. Im Unterschied zu den reinen Toolkits nutzen die nun genannten Werkzeuge zusätzlich zu den trainierten Modellen eine Wissensbasis zur Verringerung der Falsch-Positiv-Rate. Die mehrsprachige Version unter http://dbpedia-spotlight.github.io/demo zeigt die Möglichkeiten des Systems auf. Wählen Sie unter “Language” “German“) und dann über “SELECT TYPES…” die zu annotierenden Entitätstypen. Ein Beispieltext wird automatisch eingefügt. Sie können ihn natürlich durch beliebige andere Texte ersetzen. Im folgenden Beispiel wurden “Organisation”, “Person”, und “Place“ ausgewählt:

DBprediaSpotlight

Abbildung 2: DBpedia Demo (de.dbpedia.org)

Die erkannten Entitäten werden direkt mit ihren DBpedia Datenbankeinträgen verlinkt. Im Beispiel wurden die Orte Berlin, Brandenburg und Preußen sowie die Organisationen Deutsches Reich, Deutsche Demokratische Republik, Deutscher Bundestag und Bundesrat erkannt. Personen wurden in dem Beispieltext nicht erkannt. Die Frage, ob man “Sitz des Bundespräsidenten” als Ort (Sitz), Organisation (das Amt des Bundespräsidenten) und / oder Person (der Bundespräsident) bezeichnen sollte, hängt durchaus vom Anwendungsszenario ab.

OpeNER

Das OpeNER Projekt ist das Ergebnis eines europäischen Forschungsprojekts und erweitert die Funktionalität von DBpedia Spotlight mit weiteren semantischen Analysen. Die Demo unter http://demo2-opener.rhcloud.com/welcome.action (Tab “Live Analysis Demo“, “Named Entity Recognition and Classification” und “Named Entity Linking” auswählen und “Analyse” drücken, dann auf der rechten Seite das Tab “NERC” anwählen) ergibt für den gleichen Beispieltext:

opeNER-projekt

Abbildung 3: OpeNER Projekt (opener-project.eu)

Organisationen sind blau hinterlegt, während Orte orange markiert werden. Auch hier werden erkannte Entitäten mit ihren DBpedia Datenbankeinträgen verknüpft. Die Bedeutung dieser Verknüpfung erkennt man wenn man auf das Tab “Map” wechselt. Berlin wurde als Ort erkannt und über die Geo-Koordinaten (geo:long = 13.4083, geo.lat = 52.5186) im DBpedia Eintrag von Berlin konnte das Wort “Berlin” aus obigem Text automatisch auf der Weltkarte referenziert werden.

Es gibt eine Vielzahl weiterer Services für NLP wie z.B. OpenCalais. Einige dieser Services bieten bestimmte Funktionalitäten (wie z.B. Sentiment Analysis) oder andere Sprachen neben Englisch nur gegen eine Gebühr an.

Listen Tagger

Der Vollständigkeit halber sei noch erwähnt, dass in den meisten Anwendungsszenarien die oben genannten Werkzeuge durch sogenannte Listen-Tagger (englisch Dictionary Tagger) ergänzt werden. Diese Tagger verwenden Listen von Personen, Organisationen oder auch Marken, Bauteilen, Produktbezeichnern oder beliebigen anderen Gruppen von Entitäten. Listen-Tagger arbeiten entweder unabhängig von den oben genannten statistischen Taggern (wie z.B. dem Standford Tagger) oder nachgeschaltet. Im ersten Fall markieren diese Tagger alle Vorkommen bestimmter Worte im Text (z.B. „Zalando“ kann so direkt als Modemarke erkannt werden). Im zweiten Fall werden die Listen genutzt, um die statistisch erkannten Entitäten zu verifizieren. So könnte z.B. der Vorschlag des statistischen Taggers automatisch akzeptiert werden wenn die vorgeschlagene Person auch in der Liste gefunden wird. Ist die Person jedoch noch nicht in der Liste enthalten, dann könnte ein Mitarbeiter gebeten werden, diesen Vorschlag zu bestätigen oder zu verwerfen. Im Falle einer Bestätigung wird die neu erkannte Person dann in die Personenliste aufgenommen während sie im Falle einer Ablehnung in eine Negativliste übernommen werden könnte damit dieser Vorschlag in Zukunft automatisch unterdrückt wird.

Regular Expression Tagger

Manche Entitätstypen folgen klaren Mustern und können mit hoher Zuverlässigkeit durch reguläre Ausdrücke erkannt werden. Hierzu zählen z.B. Kreditkarten- oder Telefon- oder Versicherungsnummern aber auch in vielen Fällen Bauteilbezeichner oder andere firmeninterne Identifikatoren.

Fazit

Natural Language Processing und insbesondere Named Entity Recognition und Disambiguierung sollte Teil der Werkzeugkiste eines jeden Anwenders bei der Analyse von unstrukturierten Daten sein. Es existieren mehrere mächtige Toolkits und Services, die allerdings je nach Anwendungsgebiet kombiniert und verfeinert werden müssen. So erkennt DBpedia Spotlight nur Entitäten, die auch einen Wikipedia Eintrag haben, kann für diese aber reichhaltige Metadaten liefern. Der Stanford Tagger hingegen kann auch vollkommen unbekannte Personennamen aus dem textuellen Kontext erkennen, hat aber bei manchen Texten eine relativ hohe Falsch-Positiv-Rate. Eine Kombination der beiden Technologien und anwendungsspezifischen Listen von Entitäten kann daher zu qualitativ sehr hochwertigen Ergebnissen führen.

Data Science mit Neo4j und R

Traurig, aber wahr: Data Scientists verbringen 50-80% ihrer Zeit damit, Daten zu bereinigen, zu ordnen und zu bearbeiten. So bleibt nur noch wenig Zeit, um tatsächlich vorausschauende Vorhersagemodelle zu entwickeln. Vor allem bei klassischen Stacks, besteht die Datenanalyse zum Großteil darin, Zeile für Zeile in SQL zu überführen. Zeit zum Schreiben von Modell-Codes in einer statistischen Sprache wie R bleibt da kaum noch. Die langen, kryptischen SQL-Abfragen verlangsamen aber nicht nur die Entwicklungszeit. Sie stehen auch einer sinnvollen Zusammenarbeit bei Analyse-Projekten im Weg, da alle Beteiligten zunächst damit beschäftigt sind, die SQL-Abfragen der jeweils anderen zu verstehen.

Komplexität der Daten steigt

Der Grund für diese Schwierigkeiten: Die Datenstrukturen werden immer komplexer, die Vernetzung der Daten untereinander nimmt immer stärker zu. Zwängt man diese hochgradig verbundenen Datensätze in eine SQL-Datenbank, in der Beziehungen naturgemäß abstrakt über Fremdschlüssel dargestellt werden, erhält man als Ergebnis übermäßig komplizierte Schematas und Abfragen. Als Alternative gibt es jedoch einige NoSQL-Lösungen – allen voran Graphdatenbanken – die solche hochkomplexen und heterogenen Daten ohne Informationsverlust speichern können – und zwar nicht nur die Entitäten an sich, sondern auch besonders die Beziehungen der Daten untereinander.

Datenanalysen zielen immer stärker darauf ab, das Verhalten und die Wünsche von Kunden besser verstehen zu können. Die Fragen lauten z. B.:

  • Wie hoch ist die Wahrscheinlichkeit, dass ein Besucher auf eine bestimmte Anzeige klickt?
  • Welcher Kunde sollte in welchem Kontext welche Produktempfehlungen erhalten?
  • Wie kann man aus der bisherigen Interaktionshistorie des Kunden sein Ziel vorhersagen, bevor er selbst dort ankommt?
  • In welchen Beziehungen steht Nutzer A zu Nutzer B?

Menschen sind bekanntermaßen von Natur aus sozial. Einige dieser Fragen lassen sich daher beantworten, wenn man weiß, wie Personen miteinander in Verbindung stehen: Unsere Zielperson, Nutzer A ähnelt in seinem Kontext und Verhalten Benutzer B. Und da Benutzer B ein bestimmtes Produkt (z. B. ein Spielfilm) gefällt, empfehlen wir diesen Film auch Nutzer A. In diese Auswertung fließen natürlich auch noch weitere Faktoren mit ein, z. B. die Demographie und der soziale Status des Nutzers, seine Zuordnung zu Peer Groups, vorher gesehene Promotions oder seine bisherigen Interaktionen.

Visualisierung eines Graphen mit RNeo4j

Mit R und Neo4j lassen sich Graphen und Teilgraphen ganz einfach mit RNeo4j, igraph und visNetwork libraries visualisieren.

 

Das folgende Beispiel zeigt wie in einem Graphen Schauspieler und Filme sowie ihre Beziehungen zueinander anschaulich dargestellt werden können, z. B. um Empfehlungen innerhalb eines Filmportals zu generieren. Dabei sind zwei Schauspieler über eine Kante miteinander verbunden, wenn sie beide im gleichen Film mitspielen.

Im ersten Schritt werden dazu in Neo4j die Film-Datensätze importiert (Achtung: Dieser Vorgang löscht die aktuelle Datenbank).

Als nächstes wird mit Cypher eine entsprechende Liste von Beziehungen aus Neo4j gezogen. Wie man sehen kann, ist die Darstellung des gewünschten Graph-Musters innerhalb der Abfrage sehr anschaulich.

Die visNetwork Funktion erwartet sowohl Kanten-Dataframes als auch Knoten-Dataframes. Ein Knoten-Dataframe lässt sich daher über die eindeutigen Werte des Kanten-Dataframes generieren.

Im Anschluss können die Knoten- und Kanten-Dataframes in das visNetwork übertragen werden.
visNetwork(nodes, edges)

Nun kommt igraph mit ins Spiel, eine Bibliothek von Graph-Algorithmen. Durch Einbindung der Kantenliste lässt sich einfach ein igraph Graph-Objekt erstellen, das den Teilgraphen miteinschließt.

Die Größe der Knoten kann als Funktion der Edge-Betweeness-Centrality definiert werden. In visNetwork entspricht dabei jede “value”-Spalte im Knoten-Dataframe der Größe des Knoten.
nodes$value = betweenness(ig)

Mit Einführung der “Value”-Spalte werden die Knoten nun alle unterschiedlich groß dargestellt.
visNetwork(nodes, edges)

Mit Hilfe eines Community-Detection-Algorithmus lassen sich im Graphen nun Cluster finden. In diesem Beispiel wird der „Girvan-Newman”-Algorithmus verwendet, der in igraph als cluster_edge_betweenness bezeichnet wird.

In der Liste oben sind alle Schauspieler der ersten zwei Cluster zu sehen. Insgesamt konnten sechs Cluster identifiziert werden.

Durch Hinzufügen einer “Group”-Spalte im Knoten-Dataframe, werden alle Knoten in visNetwork entsprechend ihrer Gruppenzugehörigkeit farblich markiert. Diese Cluster-Zuordnung erfolgt über clusters$membership. Durch Entfernen der “Value”-Spalte lassen sich die Knoten wieder auf eine einheitliche Größe bringen.

Werden die Knoten- und Kanten-Datenframes erneut in visNetwork übertragen, sind nun alle Knoten eines Clusters in derselben Farbe dargestellt.
visNetwork(nodes, edges)

Mit diesem Workflow lassen sich Teilgraphen in Neo4j einfach abfragen und Cluster-Algorithmen einfach darstellen.

Generell eignen sich Graphdatenbanken wie Neo4j besonders gut, um stark vernetzte und beliebig strukturierte Informationen zu handhaben – egal ob es sich um Schauspieler, Filme, Kunden, Produkte, Kreditkarten oder Bankkonten handelt. Zudem können sowohl den Knoten als auch den Kanten beliebige qualitative und quantitative Eigenschaften zugeordnet werden. Beziehungen zwischen Daten sind also nicht mehr bloße Strukturinformationen, sondern stehen vielmehr im Zentrum des Modells.

Cypher: intuitiv nutzbare Programmiersprache

Die Zeiten, in denen Data Science zum Großteil aus Datenbereinigung und -mapping besteht, sind damit vorbei. Mit dem entsprechenden Ansatz laufen Entwicklungsprozesse deutlich schneller und einfacher ab. Data Scientists kommen mit weniger Code schneller ans Ziel und können mehr Zeit in das tatsächliche Entwickeln von relevanten Modellen investieren. Dabei nutzen sie die Flexibilität einer quelloffenen NoSQL-Graphdatenbank wie Neo4j kombiniert mit der Reife und weiten Verbreitung der Statistiksprache R für statistisches Rechnen und Visualisierung. Programmierer müssen nicht mehr stundenlang komplexe SQL-Anweisungen schreiben oder den ganzen Tag damit verbringen, eine Baumstruktur in SQL zu überführen. Sie benutzen einfach Cypher, eine musterbasierte, für Datenbeziehungen und Lesbarkeit optimierte Abfragesprache und legen los.

Intelligence Gathering

Beispiele für Data Science stehen häufig im Kontext von innovativen Internet-StartUps, die mit entsprechenden Methoden individuelle Kundenbedürfnisse in Erfahrung bringen. Es gibt jedoch auch eine Dunkle Seite der Macht, auf die ich nachfolgend über ein Brainstorming eingehen möchte.

Was ist Intelligence Gathering?

Unter Intelligence Gathering wird jegliche legale und illegale Beschaffung von wettbewerbsentscheidenden Informationen verstanden, von traditioneller Marktforschung bis hin zur Wirtschaftsspionage. Unter Intelligence Gathering fallen die Informationsbeschaffung und die Auswertung, wobei nicht zwangsläufig elektronische Beschaffungs- und Auswertungsszenarien gemeint sind, auch wenn diese den Großteil der relevanten Informationsbeschaffung ausmachen dürften.

Welche Data Science Methoden kommen zum Einsatz?

Alle. Unter dem Oberbegriff von Intelligence Gathering fallen die vielfältigsten Motive der Informationsgewinnung um Wettbewerbsvorteile zu erzielen. Genutzt werden statistische Datenanalysen, Process Mining, Predictive Analytics bis hin zu Deep Learning Netzen. Viele Einsatzzwecke bedingen ein gutes Data Engineering vorab, da Daten erstmal gesammelt, häufig in großen Mengen gespeichert und verknüpft werden müssen. Data Scraping, das Absammeln von Daten aus Dokumenten und von Internetseiten, kommt dabei häufig zum Einsatz. Dabei werden manchmal auch Grenzen nationaler Gesetze überschritten, wenn z. B. über die Umgehung von Sicherheitsmaßnahmen (z. B. IP-Sperren, CAPTCHA, bis hin zum Passwortschutz) unberechtigte Zugriffe auf Daten erfolgen.

Welche Daten werden beispielsweise analysiert?

  • Social-Media-Daten
  • Freie und kommerzielle Kontaktdatenbanken
  • Internationale Finanzdaten (Stichwort: SWIFT)
  • Import-Export-Daten (Stichworte: PIERS, AMS)
  • Daten über Telefonie und Internetverkehr (Sitchwort: Vorratsdatenspeicherung)
  • Positionsdaten (z. B. via GPS, IPs, Funkzellen, WLAN-Mapping)
  • Daten über den weltweiten Reiseverkehr (Stichworte: CRS, GDS, PNR, APIS)

Das volle Potenzial der Daten entfaltet sich – wie jeder Data Scientist weiß – erst durch sinnvolle Verknüpfung.

Welche Insights sind beispielsweise üblich? Und welche darüber hinaus möglich?

Übliche Einblicke sind beispielsweise die Beziehungsnetze eines Unternehmens, aus denen sich wiederum alle wichtigen Kunden, Lieferanten, Mitarbeiter und sonstigen Stakeholder ableiten lassen. Es können tatsächliche Verkaufs- und Einkaufskonditionen der fremden Unternehmen ermittelt werden. Im Sinne von Wissen ist Macht können solche Informationen für eigene Verhandlungen mit Kunden, Lieferanten oder Investoren zum Vorteil genutzt werden. Häufiges Erkenntnisziel ist ferner, welche Mitarbeiter im Unternehmen tatsächliche Entscheider sind, welche beruflichen und persönlichen Vorlieben diese haben. Dies ist auch für das gezielte Abwerben von Technologieexperten möglich.

Darüber hinaus können dolose Handlungen wie etwa Bestechung oder Unterschlagung identifiziert werden. Beispielsweise gab es mehrere öffentlich bekannt gewordene Aufdeckungen von Bestechungsfällen bei der Vergabe von Großprojekten, die US-amerikanische Nachrichtendienste auf anderen Kontinenten aufgedeckt haben (z. B. der Thomson-Alcatel-Konzern Korruptionsfall in Brasilien). Die US-Politik konnte dadurch eine Neuvergabe der Projekte an US-amerikanische Unternehmen erreichen.

Welche Akteure nutzen diese Methoden der Informationsgewinnung?

Die Spitzenakteure sind Nachrichtendienste wie beispielsweise der BND (Deutschland), die CIA (USA) und die NSA (USA).  In öffentlichen Diskussionen und Skandalen ebenfalls im Rampenlicht stehende Geheimdienste sind solche aus Frankreich, Großbritanien, Russland und China. Diese und andere nationale Nachrichtendienste analysieren Daten aus öffentlich zugänglichen Systemen, infiltrieren aber auch gezielt oder ungezielt fremde Computernetzwerke. Die Nachrichtendienste analysieren Daten in unterschiedlichsten Formen, neben Metadaten von z. B. Telefonaten und E-Mails auch umfangreiche Textinformationen, Bild-/Videomaterial sowie IT-Netzwerkverkehr. Der weltweit eingeschlagene Weg zur vernetzten Welt (Internet of Things) wird Intelligence Gathering weiter beflügeln.

[box]Anmerkung: Open Data Analytics

Eine Informationsquelle, die selbst von Experten häufig unterschätzt wird, ist die Möglichkeit der Gewinnung von Erkenntnissen über Märkte, Branchen und Unternehmen durch die Auswertung von öffentlich zugänglichen Informationen, die in gedruckter oder elektronischer Form in frei zugänglichen Open-Data-Datenbanken und Internetplattformen verfügbar gemacht werden, aber beispielsweise auch über Radio, Zeitungen, Journalen oder über teilweise frei zugängliche kommerzielle Datenbanken.[/box]

Die Nachrichtendienste analysieren Daten, um nationale Gefahren möglichst frühzeitig erkennen zu können. Längst ist jedoch bekannt, dass alle Nachrichtendienste zumindest auf internationaler Ebene auch der Wirtschaftsspionage dienen, ja sogar von Regierungen und Konzernen direkt dazu beauftragt werden.

Internet-Giganten wie Google, Baidu, Microsoft (Bing.com) oder Facebook haben Intelligence Gathering, häufig aber einfach als Big Data oder als Datenkrake bezeichnet, zu einem Hauptgeschäftszweck gemacht und sind nicht weit von der Mächtigkeit der Nachrichtendienste entfernt, in einigen Bereichen diesen vermutlich sogar deutlich überlegen (und zur Kooperation mit diesen gezwungen).

Finanzdienstleister wie Versicherungen und Investmentbanker nutzen Intelligence Gathering zur Reduzierung ihrer Geschäftsrisiken. Weitere Akteure sind traditionelle Industrieunternehmen, die auf einen Wettbewerbsvorteil durch Intelligence Methoden abzielen.

Nachfolgend beschränke ich mich weitgehend auf Intelligence Gathering für traditionelle Industrieunternehmen:

competitive-intelligence-wirtschaftsspionage

Industrielle Marktforschung

Die Industrielle Marktforschung ist eine auf bestimmte Branchen, Produkt- oder Kundengruppen spezialisierte Marktforschung die vor allem auf die Analyse des Kundenverhaltens abzielt. Diese kann auf vielen Wegen, beispielsweise durch gezielte Marktbeobachtung oder statistische Analyse der durch Kundenbefragung erhobenen Daten erfolgen. Customer Analytics und Procurement Analytics sind zwei Anwendungsgebiete für Data Science in der industriellen Marktforschung.

Business Intelligence und Competitive Intelligence

Der Begriff Business Intelligence ist aus der modernen Geschäftswelt nicht mehr wegzudenken. Business Intelligence bezeichnet die Analyse von unternehmensinternen und auch -externen Daten, um das eigene Unternehmen benchmarken zu können, eine Transparenz über die Prozesse und die Leistungsfähigkeit des Unternehmens zu erreichen. Das Unternehmen reflektiert sich mit Business Intelligence selbst.

Competitive Intelligence nutzt sehr ähnliche, in den überwiegenden Fällen genau dieselben Methoden, jedoch nicht mit dem Ziel, ein Abbild des eigenen, sondern ein Abbild von anderen Unternehmen zu erstellen, nämlich von direkten Konkurrenten des eigenen Unternehmens oder auch von strategischen Lieferanten oder Zielkunden.

Motivationen für Competitive Intelligence

Die Motivationen für die genaue Analyse von Konkurrenzunternehmen können sehr vielfältig sein, beispielsweise:

  • Ermittlung der eigenen Wettbewerbsposition für ein Benchmarking oder zur Wettbewerberprofilierung
  • (Strategische) Frühwarnung/-aufklärung
  • Due Diligence bei Unternehmenskauf oder Bewertung von Marktzugangschancen
  • Chancen-/Risikoanalyse für neue Angebote/Absatzregionen
  • Issues Monitoring (für das eigene Unternehmen relevante Themen)
  • Analyse von Kundenanforderungen
  • Satisfaction Surveys (eigene und Wettbewerberkunden bzw. -zulieferer)
  • Bewertung von Zulieferern (Loyalität, Preisgestaltung, Überlebensfähigkeit)

Viele dieser Anwendungsszenarien sind nicht weit weg von aktuellen Business Intelligence bzw. Data Science Projekten, die öffentlich kommuniziert werden. Beispielsweise arbeiten Data Scientists mit aller Selbstverständlichkeit im Rahmen von Procurement Analytics daran, Lieferantennetzwerke hinsichtlich der Ausfallrisiken zu analysieren oder auch in Abhängigkeit von Marktdaten ideale Bestellzeitpunkte zu berechnen. Im Customer Analytics ist es bereits Normalität, Kundenausfallrisiken zu berechnen, Kundenbedürfnisse und Kundenverhalten vorherzusagen. Die viel diskutierte Churn Prediction, also die Vorhersage der Loyalität des Kunden gegenüber dem Unternehmen, grenzt an Competetitve Intelligence mindestens an.

Wirtschaftsspionage

Während Competititve Intelligence noch mit grundsätzlich legalen Methoden der Datenbeschaffung und -auswertung auskommt, ist die Wirtschaftsspionage eine Form der Wirtschaftskriminalität, also eine illegale Handlung darstellt, die strafrechtliche Konsequenzen haben kann. Zur Wirtschaftsspionage steigern sich die Handlungen dann, wenn beispielsweise auch interne Dokumente oder der Datenverkehr ohne Genehmigung der Eigentümer abgegriffen werden.

Beispiele für Wirtschaftsspionage mit Unterstützung durch Data Science Methoden ist die Analyse von internen Finanztransaktionsdaten, des Datenverkehrs (über Leitungen oder Funknetze) oder des E-Mail-Verkehrs. Neue Methoden aus den Bereichen Machine Learning / Deep Learning werden auch die Möglichkeiten der Wirtschaftsspionage weiter beflügeln, beispielsweise durch Einsatz von gezielter Schrift-/Spracherkennung in Abhör-Szenarien.

Strafrechtliche Bewertung und Verfolgung

Die strafrechtliche Verfolgung von datengetriebener Wirtschaftsspionage ist in der Regel schwierig bis praktisch unmöglich. Zu Bedenken gilt zudem, dass Datenabgriffe und -analysen mit Leichtigkeit in anderen Nationen außerhalb der lokalen Gesetzgebung durchgeführt werden können.

Nicht zu vergessen: Data Science ist stets wertfrei zu betrachten, denn diese angewandte Wissenschaft kann zur Wirtschaftsspionage dienen, jedoch genauso gut auch bei der Aufdeckung von Wirtschaftsspionage helfen.

Literaturempfehlungen

Folgende Bücher sind Quellen für einen tieferen Einblick in Intelligence Gathering und die Möglichkeiten von Data Science zur Informationsbeschaffung.


Wirtschaftsspionage und Intelligence Gathering: Neue Trends der wirtschaftlichen Vorteilsbeschaffung

Data Mining and Predictive Analysis: Intelligence Gathering and Crime Analysis