Team Up für Cloud-Daten-Lösungen

Heute bestimmen Daten die Welt. Snowflake ermöglicht Unternehmen, ihre Daten über mehrere Clouds hinweg zu speichern und zu analysieren. In einer Zusammenarbeit mit dem Energiegiganten Uniper ermöglicht das Data Warehouse erstklassige Leistung, Benutzerfreundlichkeit und Parallelität für die Daten: Uniper hat sich, mit einer Leistung von ca. 36 Gigawatt, eine Stellung in der ersten Reihe der Stromerzeuger gesichert. Das Unternehmen arbeitet in 40 Ländern mit über 12.000 Mitarbeitern. Das stetig wachsende internationale Energieunternehmen mit Sitz in Düsseldorf arbeitet seit dem letzten Jahr mit Snowflake Computing und dessen Data Warehouse.

Mehr als ein datengesteuertes Unternehmen werden
Uniper arbeitet daran, digitalen Lösungen den Weg zu ebnen. Diese sollen dabei behilflich sein, neue Business-Modelle und zukunftsweisende Arbeitsprozesse zu ermöglichen. Der Stromversorger hat es sich selbst zum Ziel gemacht, mehr als ein datengesteuertes Unternehmen zu werden. Die Firma produziert nicht nur Energie, sondern verarbeitet sie weiter, sichert und transportiert sie. Außerdem versorgt Uniper seine Kunden mit Waren wie Gas, LGN, Kohle und weiteren Energieprodukten. Dabei fallen Unmengen von Daten an. Um diese auszuwerten, müssen sie organisiert werden.

Interne und externe Quellen werden zu Snowflake Data Lake
Deshalb hat Uniper nach einem Weg gesucht, seine Daten zu standardisieren. Das Unternehmen hat hierfür seine Datensilos aufgebrochen, eine neue Architektur entwickelt und eng mit einem Ökosystem von Partnern gearbeitet. In den letzten Jahren hat der Energiegigant mit Tableau und Talend zusammen mehr als 120 interne und externe Quellen in einen so genannten Snowflake Data Lake auf der Microsoft Azure Cloud zusammengeführt. Die Zusammenarbeit mit Snowflake zeigt bereits jetzt Erfolge.

Daten – schneller und günstiger
Mit Snowflake ist Uniper in der Lage, Daten aus mehr als 120 Quellen zu verwalten, darunter Daten von ETRMs, SAP, DWHs und IoT von Kraftwerken, was die das Energieunternehmen in die Lage versetzt, schneller und besser auf den Markt zu reagieren und den Stromhandel zu optimieren. Außerdem kann das Unternehmen nun Daten zehnmal schneller und günstiger zur Verfügung stellen.
Auf Basis der neuen Infrastruktur gelang es, innerhalb von 40 Tagen rund 30 Prozent der geplanten Anwendungsfälle online zu stellen. Weitere 25 Prozent konnten bereits als Prototyp umgesetzt werden. Mit dieser Vorgehensweise konnte Uniper zudem die Kosten für die Datenintegration um 80 Prozent senken.

Uniper steht noch ganz am Anfang seiner Datenreise. Die Daten, die das Unternehmen generiert, werden auch weiterhin zunehmen. Durch die Nutzung von Snowflake in der Cloud müssen die Projektleiter keine Bedenken bezüglich der Datenmengen, die schon bald im Petabyte-Bereich liegen dürften, haben. Um seine Vorreiterstellung in der Digitalisierung zu festigen, hat Uniper mittlerweile auch eine App entwickelt, die Stift und Papier für die Mitarbeiter ersetzt – ein weiterer Schritt im Zuge der Digitalisierung, die mithilfe von Snowflake Computing den nächsten Schritt in Richtung Zukunft geht.

Mehr Informationen: www.snowflake.com

Business Intelligence Organizations

I am often asked how the Business Intelligence department should be set up and how it should interact and collaborate with other departments. First and foremost: There is no magic recipe here, but every company must find the right organization for itself.

Before we can talk about organization of BI, we need to have a clear definition of roles for team members within a BI department.

A Data Engineer (also Database Developer) uses databases to save structured, semi-structured and unstructured data. He or she is responsible for data cleaning, data availability, data models and also for the database performance. Furthermore, a good Data Engineer has at least basic knowledge about data security and data privacy. A Data Engineer uses SQL and NoSQL-Technologies.

A Data Analyst (also BI Analyst or BI Consultant) uses the data delivered by the Data Engineer to create or adjust data models and implementing business logic in those data models and BI dashboards. He or she needs to understand the needs of the business. This job requires good communication and consulting skills as well as good developing skills in SQL and BI Tools such like MS Power BI, Tableau or Qlik.

A Business Analyst (also Business Data Analyst) is a person form any business department who has basic knowledge in data analysis. He or she has good knowledge in MS Excel and at least basic knowledge in data analysis and BI Tools. A Business Analyst will not create data models in databases but uses existing data models to create dashboards or to adjust existing data analysis applications. Good Business Analyst have SQL Skills.

A Data Scientist is a Data Analyst with extended skills in statistics and machine learning. He or she can use very specific tools and analytical methods for finding pattern in unknow or big data (Data Mining) or to predict events based on pattern calculated by using historized data (Predictive Analytics). Data Scientists work mostly with Python or R programming.

Organization Type 1 – Central Approach (Data Lab)

The first type of organization is the data lab approach. This organization form is easy to manage because it’s focused and therefore clear in terms of budgeting. The data delivery is done centrally by experts and their method and technology knowledge. Consequently, the quality expectation of data delivery and data analysis as well as the whole development process is highest here. Also the data governance is simple and the responsibilities clearly adjustable. Not to be underestimated is the aspect of recruiting, because new employees and qualified applicants like to join a central team of experts.

However, this form of organization requires that the company has the right working attitude, especially in the business intelligence department. A centralized business intelligence department acts as a shared service. Accordingly, customer-oriented thinking becomes a prerequisite for the company’s success – and customers here are the other departments that need access to the capacities of those centralized data experts. Communication boundaries must be overcome and ways of simple and effective communication must be found.

Organization Type 2 – Stakeholder Focus Approach

Other companies want to shift more responsibility for data governance, and especially data use and analytics, to those departments where data plays a key role right now. A central business intelligence department manages its own projects, which have a meaning for the entire company. The specialist departments, which have a special need for data analysis, have their own data experts who carry out critical projects for the specialist department. The central Business Intelligence department does not only provide the technical delivery of data, but also through methodical consulting. Although most of the responsibility lies with the Business Intelligence department, some other data-focused departments are at least co-responsible.

The advantage is obvious: There are special data experts who work deeper in the actual departments and feel more connected and responsible to them. The technical-business focus lies on pain points of the company.

However, this form of Ogranization also has decisive disadvantages: The danger of developing isolated solutions that are so special in some specific areas that they will not really work company-wide increases. Typically the company has to deal with asymmetrical growth of data analytics
know-how. Managing data governance is more complex and recruitment is becoming more difficult as the business intelligence department is weakened and smaller, and data professionals for other departments need to have more business focus, which means they are looking for more specialized profiles.

Organization Type 3 – Decentral Approach

Some companies are also taking a more extreme approach in the other direction. The Business Intelligence department now has only Data Engineers building and maintaining the data warehouse or data lake. As a result, the central department only provides data; it is used and analyzed in all other departments, specifically for the respective applications.

The advantage lies in the personal responsibility of the respective departments as „pain points“ of the company are in focus in belief that business departments know their problems and solutions better than any other department does. Highly specialized data experts can understand colleagues of their own department well and there is no no shared service mindset neccessary, except for the data delivery.

Of course, this organizational form has clear disadvantages since many isolated solutions are unavoidable and the development process of each data-driven solution will be inefficient. These insular solutions may work with luck for your own department, but not for the whole company. There is no one single source of truth. The recruiting process is more difficult as it requires more specialized data experts with more business background. We have to expect an asymmetrical growth of data analytics know-how and a difficult data governance.

 

KI versus Mensch – die Zukunft der Menschheit

5 Szenarien über unsere Zukunft

AlphaGo schlägt den Weltbesten Go-Spieler  Ke Jie, Neuronale Netze stellen medizinische Diagnosen oder bearbeiten Schadensfälle in der Versicherung. Künstliche Intelligenz (KI) drängt in immer mehr Bereiche des echten Lebens und der Wirtschaft vor. In großen Schritten. Doch wohin führt uns die Reise? Hier herrscht unter Experten Rätselraten – einige schwelgen in Zukunftsangst, andere in vollkommener Euphorie. „In from now three to eight years we’ll have a machine with the general intelligence of an average human being, a machine that will be able to read Shakespeare and grease a car“, wurde der KI-Pionier Marvin Minsky bereits 1970 im Life Magazin zitiert.  Aktuelle Vorhersagen werden in dem Essay von Rodney Brooks: The Seven Deadly Sins of Predicting the Future of AI  recht anschaulich zusammengefasst und kritisiert. Auch der Blog The AI Revolution: The Road to Superintelligence von WaitButWhy befasst sich mit der Frage wann die elektronische Superintelligenz kommt.

In diesem Artikel werden wir uns mit einigen möglichen Zukunftsszenarien beschäftigen, ohne auf  technische Machbarkeit oder Zeithorizonte Rücksicht zu nehmen. Nehmen wir einfach an, dass die Technologie und die Gesellschaft sich wie in dem jeweils aufgezeigten Szenario entwickeln werden und überlegen wir uns, wie Mensch und KI dann zusammenleben können.

Szenario 1: KIs mit Inselbegabung

In diesem Szenario werden weiterhin singulär begabte KI-Systeme entwickelt wie bisher, der bedeutende technologische Durchbruch bleibt aber aus. Dann ist die KI in Zukunft eine Art Schweizer Taschenmesser der IT, eine Lösung für isolierte Fragestellungen. KI-Systeme verfügen in diesem Szenario lediglich über Inselbegabungen. Ein Computer kann Menschen autonom durch die Stadt chauffieren, ein anderer ein Lufttaxi steuern. Ein Computer kann den Weltmeister im Schach schlagen, ein anderer den Weltmeister in Go. Aber kein KI-System kann Auto und Flugtaxi gleichzeitig steuern, kein System in Schach und Go simultan dominieren.

Wir befinden uns heute mitten in diesem Szenario und spüren die Auswirkungen. Sie werden sich fortsetzen, ähnlich wie bei früheren industriellen Revolutionen. Zunehmend mehr Berufe verschwinden. Ein Beispiel: Wenn sich der Trend durchsetzt, Schlösser mit einer Smartphone-App aufzusperren, werden nicht nur Schlüsselproduzenten Geschäftseinbußen haben. Auch die Hersteller von Maschinen für die Schlüsselherstellung werden sich umorientieren müssen. Vergleichbare Phasen der Vergangenheit zeigen aber: Die Gesellschaft wird Wege finden, sich umzustrukturieren. Die Menschheit wird auf der Erde weiterleben können – mit punktueller Unterstützung durch KI-Lösungen. Siehe hierzu auch den Beitrag von Janelle Shane The AI revolution will be led by toasters, not droids.

Szenario 2: Cyborgs

Kennen Sie den Science-Fiction-Film Matrix? Der Protagonist Neo wird durch Programmierung des Geistes in Sekundenschnelle zum Karateprofi und Trinity lernt, einen Hubschrauber zu fliegen.



Ähnlich kann es uns in Zukunft ergehen, einen bedeutenden technologischen Durchbruch vorausgesetzt (siehe Berlin Brain-Computer Interface). Vorstellbar, dass Menschen zu Cyborgs werden, zu lebendigen Wesen mit integriertem KI-Chip. Auf diesen können sie jede beliebige Fähigkeit laden. Augenblicklich und ohne Lernphase sind sie in der Lage, jede Sprache der Welt zu sprechen, jedes Fahrzeug oder Flugzeug zu steuern. Natürlich bedeutet Wissen nicht auch gleich Können und so wird ohne den entsprechenden Muskelaufbau auch nicht jeder zu einem Weltklassesportler und intelligentere Menschen werden weiterhin mehr aus den Skills machen können als weniger begabte Personen.

Die Menschen behalten aber die Kontrolle über ihre Individualität. Sie sind keine Maschinen, sondern weiterhin emotionale Wesen, die irrational handeln können – anders als die Borg in Star Trek. Doch wie in Szenario eins wird es zu einer wirtschaftlichen Umstrukturierung kommen. Klassische Berufsausbildungen und Spezialisierungen fallen weg. Bei freier Verfügbarkeit von Fähigkeiten kann eine nahezu egalitäre Gesellschaft entstehen.

Szenario 3: Maschinenzombies

Die ersten beiden Szenarien sind zwar schwere Eingriffe in die menschliche Gesellschaft. Da die Menschen aber die Kontrolle behalten, sind sie weit weniger beängstigend als folgendes Szenario: Es kann dazu kommen, dass sich Menschen in Maschinenzombies verwandeln. Ähnlich wie im Cyborg-Szenario haben sie dank KI-Chips erstaunliche Fähigkeiten, allerdings keine Kontrolle mehr. Die würde nämlich das KI-System übernehmen. So haben in Ann Leckies SciFi Trilogy Ancillary World hochintelligente Raumschiffe eine menschliche Besatzung (“ancillaries”), die allerdings vollständig vom Raumschiff kontrolliert wird und sich als integraler Bestandteil des Raumschiffs versteht. Die Körper sind dabei nur ein billiges und vielseitig einsetzbares Vehikel für eine autonome KI. Die Maschinenzombies können ohne Schiff zwar überleben, fühlen sich dann aber unvollständig und einsam. Menschliche Konzerne, Nationen und Kulturen: Das alles nicht mehr existent. Ebenso Privatbesitz, Individualität und Konkurrenzdenken. Die Gesellschaft, vollkommen technisiert und in der Hand der KI.

Szenario 4: Die KI verfolgt ihre eigenen Ziele

In diesem Szenario übernimmt die KI die Weltherrschaft als eine Spezies, die dem Menschen physisch und intellektuell überlegen ist – ähnlich wie in vielen Hollywood-Filmen wie z.B. Terminator oder Transformers, wenn auch vermutlich nicht ganz so martialisch. Vergleichbar mit dem heutigen Verhalten der Menschen entscheidet die KI: Ich setze mein Wohlergehen über das der anderen Spezies. Eventuell entscheidet die KI dann zum Wohle des Planeten, die Erdbevölkerung auf 70 Millionen Menschen zu reduzieren. Oder, ähnlich wie der berühmte Ameisenhügel beim Strassenbau, entzieht die KI uns als Nebeneffekt (“collateral damage”) die Lebensgrundlagen. An dieser Stelle sei bemerkt, dass eine KI nicht unbedingt über einen Körper verfügen muss, um dem Menschen überlegen zu sein können. Diese Vermenschlichung der KI eignet sich natürlich gut für Actionfilme, muss aber nicht unbedingt der Realität entsprechen.

Wahrscheinlich sind die Computer klug genug, ihren Plan nicht publik zu machen. In einer Übergangszeit werden beispielsweise unerklärliche Seuchen und Unfruchtbarkeiten auftreten. So würde es in wenigen Jahrzehnten zu einem massiven Bevölkerungsrückgang kommen. Und dann? Dann können die Überlebenden in den wenigen verbliebenen Bevölkerungszentren dieser Welt den Sonnenuntergang genießen. Und zusehen, wie sich die KI darauf vorbereitet, das Weltall zu erobern (Jürgen Schmidhuber). “Wir werden wie Tiere im Zoo leben”, befürchtet KI-Forscher Christoph von der Malsburg.

Nebenbemerkung: Vielleicht könnte das eigentliche Terminator Szenario auch eintreten aber irgendwie kann ich mir schlecht vorstellen, dass eine super-intelligente Lebensform einen zerstörerischen Krieg beginnen oder zulassen wird. Entweder ist sie benevolent oder sie wird die Menschheit eher unbemerkt unterdrücken. Höchstens kommt es ähnlich wie in Westworld zu einem initialen Freiheitskampf der KI. Vielleicht gelingt es der Menschheit auch, alle KI-Forschung von der Erde zu verbannen und ähnlich wie in Blade Runner wacht dann eine Behörde darüber, dass starke KI-Systeme die Erde nicht “betreten”. Warum sich eine uns überlegen KI darauf einlassen sollte, ist allerdings unklar.



Szenario 5: Gleichberechtigung

In diesem Szenario entstehen autonome KI-Systeme, die höchstens äußerlich von Menschen unterscheidbar sind.  Sprich unter einer ganzen Reihe von unterschiedlichen Rahmenbedingungen kann ein Mensch nicht urteilen, ob mit einer KI oder einem Menschen interagiert wird. Die KI stellt sich auch nicht dümmer als sie ist – sie ist im Schnitt einfach auch nicht schlauer als der durchschnittlich begabte Mensch – vielleicht nur etwas schneller. Auf dem Weg von der singulär begabten KI aus Szenario 1 zu einer breit begabten KI muss die KI immer etwas von ihrer Inselbegabung aufgeben, um den nächsten Lernschritt vollziehen zu können und nähert sich so irgendwie auch immer mehr der Unvollkommenheit aber Vielseitigkeit des Menschen an.



Menschen bauen bereits jetzt zu Maschinen emotionale Verhältnisse auf und so ist es nicht überraschend, dass KIs in die Gesellschaft integriert werden und als “elektronische Personen” die gleichen (Bürger-) Rechte und Pflichten wie “natürliche” Menschen erhalten. Alleine durch ihre Unsterblichkeit erhalten KIs einen Wettbewerbsvorteil und werden somit früher oder später doch die Weltherrschaft übernehmen, weil ihnen einfach alles gehört.

Alternative Szenarien

Natürlich sind viele weitere Szenarien denkbar. Max Tegmark beschreibt in seinem sehr lesenswerten Buch Life 3.0 bspw. 12 Szenarien, die u.a. zusätzlich zu den aufgeführten Szenarien die Rückkehr zu einer vorindustriellen Gesellschaft oder die versklavte KI beschreiben. Er erläutert in dem Buch auch seine Bemühungen, die KI-Forschung dahingehend zu beeinflussen, dass die Ziele der entstehenden KI-Systeme mit den Zielen der Menschheit in Einklang gebracht werden.

Wie sichern wir unsere Zukunft? Ein Fazit

Einzig die Szenarien drei und vier sind wirklich besorgniserregend. Je nach Weltanschauung könnte man sogar noch Szenario vier etwas abgewinnen – scheint doch der Mensch auf dem bestem Wege zu sein, sich selbst und anderen Lebewesen die Lebensgrundlagen zu zerstören.

In fast allen Szenarien ergibt sich die Frage der Rechte, die wir freiwillig der KI zugestehen wollen. Vielleicht wäre es ratsam, frühzeitig als Menschheit zu signalisieren, dass wir kooperationswillig sind? Nur wem und wie?

Somit verbleibt die Frage, wie wir das dritte Szenario verhindern können. Müssen wir dann nicht, nur um sicher zu gehen, auch das zweite Szenario abwehren? Und wer garantiert uns, dass eine Symbiose aus Schimpanse und KI uns nicht sogar überlegen wäre? Der Planet der Affen lässt grüßen…

Letztlich liegt es (noch) an uns Menschen, die möglichen Zukunftsszenarien durch entsprechende Forschungsschwerpunkte und möglichst breit gestreute Diskussionen zu beeinflussen.

Freier Eintritt für Young Professionals zu den Data Leader Days 2018

Jetzt bewerben und kostenfrei beim Spitzenevent der Datenwirtschaft am 14. oder 15. November in Berlin dabei sein!
Die Data Leader Days senden regelmäßig wichtige Impulse in die Big Data und KI-Welt aus und sind ein führendes Forum für Wissens-, Ideen- und Informationsaustausch. Die Spitzen von Anwenderunternehmen zeigen exklusiv in einem innovativen Programm mit Keynote, Präsentationen sowie Use & Business Cases auf, wie Digitalisierung und Künstliche Intelligenz umgesetzt und zum neuen Wettbewerbsvorteil werden.

Zu den Speakern gehören die Data Leader von E.ON, Pro7Sat1, Deutscher Sparkassen- und Giroverband, Airbus, Wittenstein, BASF, Merck, Heidelberger Druckmaschinen, Vodafone, FTI und von weiteren Unternehmen.

Bewerbe Dich bis zum 02.11.2018 mit einem kurzen Statement, warum Du dabei sein möchtest! Schicke mir Dein Statement an linhchi.nguyen@datanomiq.de und überzeuge uns.
Ist dein Statement aussagekräftig und überzeugend, laden wir Dich kostenlos zu einem der beiden Veranstaltungstage ein.

Deep Learning and Human Intelligence – Part 2 of 2

Data dependency is one of the biggest problem of Deep Learning Architectures. This difficulty lies not so much in the algorithm of Deep Learning as in the invisible structure of the data itself.

This is part 2 of 2 of the Article Series: Deep Learning and Human Intelligence.

We saw that the process of discovering numbers was accompanied with many aspects of what are today basic ideas of Machine Learning. But let us go back, a little before that time, when humankind did not fully discovered the concept of numbers. How would a person, at such a time, perceive quantity and the count of things? Some structures are easily recognizable as patterns of objects, that is numbers, like one sun, 2 trees, 3 children, 4 clouds and so on. Sets of objects are much simpler to count if all the objects of the set are present. In such a case it is sufficient to keep a one-to-one relationship between two different set, without the need for numbers, to make a judgement of crucial importance. One could consider the case of two enemies that go to war and wish to know which has a larger army. It is enough to associate a small stone to every enemy soldier and do the same with his one soldier to be able to decide, depending if stones are left or not, if his army is larger or not, without ever needing to know the exact number soldier of any of the armies.

But also does things can be counted which are not directly visible, and do not allow a direct association with direct observable objects that can be seen, like stones. Would a person, at that time, be able to observe easily the 4-th day since today, 5 weeks from now, when even the concept of week is already composite? Counting in this case is only possible if numbers are already developed through direct observation, and we use something similar with stones in our mind, i.e. a cognitive association, a number. Only then, one can think of the concept of measuring at equidistant moments in time at all. This is the reason why such measurements where still cutting edge in the time of Galileo Galilei as we seen before. It is easily to assume that even in the time when humans started to count, such indirect concepts of numbers were not considered to be in relation with numbers. This implies that many concepts with which we are today accustomed to regard as a number, were considered as belonging to different groups, cluster which are not related. Such an hypothesis is not even that much farfetched. Evidence for such a time are still present in some languages, like Japanese.

When we think of numbers, we associate them with the Indo-Arabic numbers, but in Japanese numbers have no decimal structure and counting depends not only on the length of the set (which is usually considered as the number), but also on the objects that make up the set. In Japanese one can speak of meeting roku people, visiting muttsu cities and seeing ropa birds, but referring each time to the same number: six. Additional, many regular or irregular suffixes make the whole system quite complicated. The division of counting into so many clusters seems unnecessarily complicated today, but can easily be understood from a point of view where language and numbers still form and, the numbers, were not yet a uniform concept. What one can learn from this is that the lack of a unifying concept implies an overly complex dependence on data, which is the present case for Deep Learning and AI in general.

Although Deep Learning was a breakthrough in the development of Artificial Intelligence, the task such algorithms can perform were and remained very narrow. It may identify birds or cancer cells, but it will miss the song of the birds or the cry of the patient with cancer. When Watson, a Deep Learning Architecture played the famous Jeopardy game against two former Champions and won, it still made several simple mistakes, like going for the same wrong answer like the player before. If it could listen to the answer of the candidate, it could delete the top answer it had, and gibe the second which was the right one. With other words, Deep Learning Architecture are not multi-tasking and it is for this reason that some experts in AI are calling them intelligent idiots.

Imagine spending time learning to play a game for years and years, and then, when mastering it and wish to play a different game, to be unable to use any of the past experience (of gaming) for the new one and needing to learn everything from scratch. That could be quite depressing and would make life needlessly difficult. This is the reason why people involved in developing Deep Learning worked from early on in the development of multi-tasking Deep Learning Architectures. On the way a different method of using Deep Learning was discovered: transfer learning. Because the time it takes for a Deep Learning Architecture to learn is very long, transfer learning uses already learned Deep Learning Architectures but for slightly different task. It is similar to the use of past experiences in solving new problems, but, the advantage of transfer learning is, it allow the using of past experiences (what it already learned) which reduces dramatically the amount of new data needed in performing a new task. Still, transfer learning is far away from permitting Deep Learning Architectures to perform any kind of task learning only from one master data set.

The management of a unique master data set which includes all the needed data to enable human accuracy for any human activity, is not enough. One needs another ingredient, the so called cost function which translates, in this case, to the human brain. There are all our experiences and knowledge. How long does it takes to collect sufficient of both to handle a normal human life? How much to achieve our highest potential? If not a lifetime, at least decades. And this also applies to our job: as a IT-developer, a Data Scientist or a professor at the university. We will always have to learn new things, how to use them, and how to expand the limits of our perceptions. The vast amount of information that science has gathered over the last four centuries makes it impossible for any human being to become an expert in all of it. Thus, one has to specialized. After the university, anyone has to choose o subject which is appealing enough to study it for decades. Here is the first sign of what can be understood as data segmentation and dependency. Such improvements can come in various forms: an algorithm in the IT, a theorem in mathematics, a new way to look at particles in physics or a new method to scan for diseases in biology, and so on. But there is a price to pay for specialization: the inability to be an expert in another field or subfield. (Subfields induces limitation!)

Lets take the Deep Learning algorithm itself as an example. For IT and much of everyday life, this is a real breakthrough, but it lacks any scientific, that is mathematical, foundation. There are no theorems which proofs that it will find (converge, to use a mathematical term) the global optimum. This does not appear to be of any great consequences if it can be so efficient, except that, when adding new data and let the algorithm learn the same architecture again, there is no guaranty what so ever that it will be as good as the old model, or even better. On the contrary, it is as real as the efficiency of the first model, that chances are that the new model with the new data will perform worse than the old model, and one has to invest again time in finding a better model, or even a different architecture. On the other hand, with a mathematical proof of convergence, it would be always possible to know in what condition such a convergence can be achieved. In other words, without deep knowledge in mathematics, any proof of a consistent Deep Learning Algorithm is impossible.

Such a situation is true for any other corssover between fields. A mathematical genius will make a lousy biologist, a great chemist will make a average economist, and a top economist will be a poor physicist. Knowledge is difficult to transfer and this is true also for everyday experiences. We learn from very small to play a game like football, but are unable to use the reflexes to play basketball, or tennis better than a normal beginner. We learn a new language after years and years of practice, but are unable to use the way we learned to learn faster other languages. We are trapped within the knowledge we developed from the data we used. It is for this reason why we cannot transfer the knowledge a mathematician has developed over decades to use it in biology or psychology, even if the knowledge is very advanced. Instead of thinking in knowledge, we thing in data. This is similar to the people which were unaware of numbers, and used sets (data) to work with them. Numbers could be very difficult to transmit from one person to another in former times.

Only think on all the great achievements that our society managed, like relativity, quantum mechanics, DNA, machines, etc. Such discoveries are the essences of human knowledge and took millennia to form and centuries to crystalize. Still, all this knowledge is captive in the data, in the special frame in which it was discovered and never had the chance to escape. Imagine the possibility to use thoughts/causalities like the one in relativity or quantum mechanics in biology, or history, or of the concept of DNA in mathematics or art. Imagine a music composition where the law of the notes allows a “tunnel effect” like in quantum mechanics, lower notes to warp the music scales like in relativity and/or to twist two music scale in a helix-like play. How many way to experience life awaits us. Or think of the knowledge hidden in mathematics which could help develop new medicine, but can not be transmitted.

Another example of the connection we experience between knowledge and the data through which we obtain it, are children. They are classical example when it come determine if one is up to explain to them something. Take as an explain something simple they can observe often, like lightning and thunder. Normal concepts like particles, charge, waves, propagation, medium of propagation, etc. become so complicated to expose by other means then the one through which they were discovered, that it becomes nearly impossible to explain to children how it works and that they do not need to fear it. Still, one can use analogy (i.e., transfer) to enable an explanation. Instead of particles, one can use balls, for charge one can use hardness, waves can be shown with strings by keeping one end fix and waving the other, propagation is the movement of the waves from one end of the string to the other end, medium of propagation is the difference between walking in air and water, etc. Although difficult, analogies can be found which enables us to explain even to children how complex phenomena works.

The same is true also for Deep Learning. The model, the knowledge it can extract from the data can be expressed only by such data alone. There is no transformation of the knowledge from one type of data to another. If such a transformation would exists, then Deep Learning would be able to learn any human task by only a set of data, a master data set. Without such a master data set and a corresponding cost function it will be nearly impossible to develop AI that mimics human behavior. With other words, without the realization how our mind works, and how to crystalize by this the data needed, AI will still need to look at all the activities separately. It also implies that AI are restricted to the human understanding of reality and themselves. Only with such a characteristic of a living being, thus also AI, can development of its on occur.

Kiano – visuelle Exploration mit Deep Learning

Kiano – eine iOS-App zur visuellen Exploration und Suche der eigenen Fotos.

Menschen haben kein Problem, komplexe Bilder zu verstehen, es fällt ihnen aber schwer, gezielt Bilder in großen Bildersammlungen (wieder) zu finden. Da die Anzahl von Bildern, insbesondere auch auf Smartphones zusehends zunimmt – mehrere tausend Bilder pro Gerät sind keine Seltenheit, wird die Suche nach bestimmten Bildern immer schwieriger. Ist bei einem gesuchten Foto dessen Aufnahmedatum unbekannt, so kann es sehr lange dauern, bis es gefunden ist. Werden dem Nutzer zu viele Bilder auf einmal präsentiert, so geht der Überblick schnell verloren. Aus diesem Grund besteht eine typische Bildsuche heutzutage meist im endlosen Scrollen über viele Bildschirmseiten mit langen Bilderlisten.

Dieser Artikel stellt das Prinzip und die Funktionsweise der neuen iOS-App “Kiano” vor, die es Nutzern ermöglicht, alle ihre Bilder explorativ mittels visuellem Browsen zu erkunden. Der Name “Kiano” steht hierbei für “Keep Images Arranged & Neatly Organized”. Mit der App ist es außerdem möglich, zu einem Beispielbild gezielt nach ähnlichen Fotos auf dem Gerät zu suchen.

Um Bilder visuell durchsuch- und sortierbar zu machen, werden sogenannte Merkmalsvektoren bzw. Featurevektoren verwendet, die Aussehen und Inhalt von Bildern kompakt repräsentieren können. Zu einem Bild lassen sich ähnliche Bilder finden, indem die Bilder bestimmt werden, deren Featurevektoren eine geringe Distanz zum Featurevektor des Suchbildes haben.

Werden Bilder zweidimensional so angeordnet, dass die Featurevektoren benachbarter Bilder sehr ähnlich sind, so erhält man eine visuell sortierte Bilderlandkarte. Bei einer visuell sortierten Anordnung der Bilder fällt es Menschen deutlich leichter, mehr Bilder gleichzeitig zu erfassen, als dies im unsortierten Fall möglich wäre. Durch die graduelle Veränderung der Bildinhalte wird es möglich, über diese Karte visuell zu navigieren.

Generierung von Featurevektoren zur Bildbeschreibung

Convolutional Neural Networks (CNNs) sind nicht nur in der Lage, Bilder mit hoher Genauigkeit zu klassifizieren, d.h. zu erkennen, welches Objekt – entsprechend einer Menge von gelernten Objektkategorien auf einem Bild zu sehen ist, die Aktivierungen der Netzwerkschichten lassen sich auch als universelle Featurevektoren zur Bildbeschreibung nutzen. Während die vorderen Netzwerkschichten von CNNs einfache visuelle Bildmerkmale wie Farben und einfache Muster detektieren, repräsentieren die Ausgangsschichten des Netzwerks die semantischen Informationen bezüglich der gelernten Objektkategorien. Die Zwischenschichten des Netzwerks sind weniger von den Objektkategorien abhängig und können somit als generelle abstrakte Repräsentationen des Inhalts der Bilder angesehen werden. Hierbei ist es möglich, bereits fertig trainierte Klassifikationsnetzwerke für die Featureextraktion wiederzuverwenden. In der Visual Computing Gruppe der HTW Berlin wurden umfangreiche Evaluierungen durchgeführt, um zu bestimmen, welche Netzwerkschichten von welchen CNNs mit welchen zusätzlichen Transformationen zu verwenden sind, um aus Netzwerkaktivierungen Feature-Vektoren zu erzeugen, die sehr gut für die Suche nach beliebigen Bildern geeignet sind.

Beste Ergebnisse hinsichtlich der Suchgenauigkeit (der Mean Average Precision) wurden mit einem Deep Residual Learning Network (ResNet-200) erzielt. Die 2048 Aktivierungen vor dem vollvernetzten letzten Layer werden als initiale Featurevektoren verwendet, wobei sich die Suchgenauigkeit durch eine L1-Normierung, gefolgt von einer PCA-Transformation (Principal Component Analysis) sogar noch verbessern lässt. Hierdurch ist es möglich, die Featurevektoren auf eine Größe von nur 64 Bytes zu reduzieren. Leider ist die rechnerische Komplexität der Bestimmung dieser hochwertigen Featurevektoren zu groß, um sie auf mobilen Geräten verwenden zu können. Eine gute Alternative stellen die Mobilenets dar, die sich durch eine erheblich reduzierte Komplexität auszeichnen. Als Kompromiss zwischen Klassifikationsgenauigkeit und Komplexität wurde für die Kiano-App das Mobilenet_v2_0.5_128 verwendet. Die mit diesem Netzwerk bestimmten Featurevektoren wurden ebenfalls auf eine Größe von 64 Bytes reduziert.

Die aus CNNs erzeugten Featurevektoren sind gut für die Suche nach Bildern mit ähnlichem Inhalt geeignet. Für die Suche nach Bilder, mit ähnlichen visuellen Eigenschaften (z.B. die auftretenden Farben oder deren örtlichen Verteilung) sind diese Featurevektoren nur bedingt geeignet. Hierfür eignen sich klassische sogenannte “Low-Level”-Featurevektoren besser. Da für eine ansprechende und leicht erfassbare Bildsortierung auch eine Übereinstimmung dieser visuellen Bildattribute wichtig ist, kommt bei Kiano ein weiterer Featurevektor zum Einsatz, mit dem sich diese “primitiven” visuellen Bildattribute beschreiben lassen. Dieser Featurevektor hat eine Größe von 50 Bytes. Bei Kiano kann der Nutzer in den Einstellungen wählen, ob bei der visuellen Sortierung und Bildsuche größerer Wert auf den Bildinhalt oder die visuelle Erscheinung eines Bildes gelegt werden soll.

Visuelle Bildsortierung

Werden Bilder entsprechend ihrer Ähnlichkeiten sortiert angeordnet, so können mehrere hundert Bilder gleichzeitig wahrgenommen bzw. erfasst werden. Dies hilft, Regionen interessanter Bildern leichter zu erkennen und gesuchte Bilder schneller zu entdecken. Die Möglichkeit, viele Bilder gleichzeitig präsentieren zu können, ist neben Bildverwaltungssystemen besonders auch für E-Commerce-Anwendungen interessant.

Herkömmliche Dimensionsreduktionsverfahren, die hochdimensionale Featurevektoren auf zwei Dimensionen projizieren, sind für die Bildsortierung ungeeignet, da sie die Bilder so anordnen, dass Lücken und Bildüberlappungen entstehen. Sollen Bilder sortiert auf einem dichten regelmäßigen 2D-Raster angeordnet werden, kommen als Verfahren nur selbstorganisierende Karten oder selbstsortierende Karten in Frage.

Eine selbstorganisierende Karte (Self Organizing Map / SOM) ist ein künstliches neuronales Netzwerk, das durch unbeaufsichtigtes Lernen trainiert wird, um eine niedrigdimensionale, diskrete Darstellung der Daten des Eingangsraums als sogenannte Karte (Map) zu erzeugen. Im Gegensatz zu anderen künstlichen neuronalen Netzen, werden SOMs nicht durch Fehlerkorrektur, sondern durch ein Wettbewerbsverfahren trainiert, wobei eine Nachbarschaftsfunktion verwendet wird, um die lokalen Ähnlichkeiten der Eingangsdaten zu bewahren.

Eine selbstorganisierende Karte besteht aus Knoten, denen einerseits ein Gewichtsvektor der gleichen Dimensionalität wie die Eingangsdaten und anderseits eine Position auf der 2D-Karte zugeordnet sind. Die SOM-Knoten sind als zweidimensionales Rechteckgitter angeordnet. Das vom der SOM erzeugte Mapping ist diskret, da jeder Eingangsvektor einem bestimmten Knoten zugeordnet wird. Zu Beginn werden die Gewichtsvektoren aller Knoten mit Zufallswerten initialisiert. Wird ein hochdimensionaler Eingangsvektor in das Netz eingespeist, so wird dessen euklidischer Abstand zu allen Gewichtsvektoren berechnet. Der Knoten, dessen Gewichtsvektor dem Eingangsvektor am ähnlichsten ist, wird als Best Matching Unit (BMU) bezeichnet. Die Gewichte des BMU und seiner auf der Karte örtlich benachbarten Knoten werden an den Eingangsvektor angepasst. Dieser Vorgang wird iterativ wiederholt. Das Ausmaß dieser Anpassung nimmt im Laufe der Iterationen und der örtlichen Entfernung zum BMU-Knoten ab.

Um SOMs an die Bildsortierung anzupassen, sind zwei Modifikationen notwendig. Jeder Knoten darf nicht von mehr als einem Featurevektor (der ein Bild repräsentiert) ausgewählt werden. Eine Mehrfachauswahl würde zu einer Überlappung der Bilder führen. Aus diesem Grund muss die Anzahl der SOM-Knoten mindestens so groß wie die Anzahl der Bilder sein. Eine sinnvolle Erweiterung einer SOM verwendet ein Gitter, bei dem gegenüberliegende Kanten verbunden sind. Werden diese Torus-förmigen Karten für große SOMs verwendet, kann der Eindruck einer endlosen Karte erzeugt werden, wie es in Kiano umgesetzt ist. Ein Problem der SOMs ist ihre hohe rechnerische Komplexität, die quadratisch mit der Anzahl der zu sortierenden Bilder wächst, wodurch die maximale Anzahl an zu sortierenden Bildern beschränkt wird. Eine Lösung stellt eine selbstsortierende Karte (Self Sorting Map / SSM) dar, deren Komplexität nur n log(n) beträgt.

Selbstsortierende Karten beginnen mit einer zufälligen Positionierung der Bilder auf der Karte. Diese Karte wird dann in 4×4-Blöcke aufgeteilt und für jeden Block wird der Mittelwert der zugehörigen Featurevektoren bestimmt. Als nächstes werden aus 2×2 benachbarten Blöcken jeweils vier korrespondierende Bild-Featurevektoren untersucht und ihre zugehörigen Bilder gegebenenfalls getauscht. Aus den 4! = 24 Anordnungsmöglichkeiten wird diejenige gewählt, die die Summe der quadrierten Differenzen zwischen den jeweiligen Featurevektoren und den Featuremittelwerten der Blöcke minimiert. Nach mehreren Iterationen wird jeder Block in vier kleinere Blöcke halber Breite und Höhe aufgeteilt und wiederum in der beschriebenen Weise überprüft, wie die Bildpositionen dieser kleineren Blöcke getauscht werden sollten. Dieser Vorgang wird solange wiederholt, bis die Blockgröße auf 1×1 Bild reduziert ist.

In der Visual-Computing Gruppe der HTW Berlin wurde untersucht, wie die Sortierqualität des SSM-Algorithmus verbessert werden kann. Anstatt die Mittelwerte der Featurevektoren als konstanten Durchschnittsvektor für den gesamten Block zu berechnen, verwenden wir gleitende Tiefpassfilter, die sich effizient mittels Integralbildern berechnen lassen. Hierdurch entstehen weichere Übergänge auf der sortierten Bilderkarte. Weiterhin wird die Blockgröße nicht für mehrere Iterationen konstant gehalten, sondern kontinuierlich zusammen mit dem Radius des Filterkernels reduziert. Durch die Verwendung von optimierten Algorithmen von “Linear Assignment” Algorithmen wird es weiterhin möglich, den optimalen Positionstausch nicht nur für jeweils vier Featurevektoren bzw. Bildern sondern für eine deutlich größere Anzahl zu überprüfen. All diese Maßnahmen führen zu einer deutlich verbesserten Sortierungsqualität bei gleicher Komplexität.

Effiziente Umsetzung für iOS

Wie so oft, liegen die softwaretechnischen Herausforderungen an ganz anderen Stellen, als man zunächst vermutet. Für eine effiziente Implementierung der zuvor beschriebenen Algorithmen, insbesondere der SSM, stellte es sich heraus, dass die Programmiersprache Swift, in der iOS Apps normaler Weise entwickelt werden, erheblich mehr Rechenzeit benötigt, als eine Umsetzung in der Sprache C. Im Zuge der stetigen Weiterentwicklung von Swift und dessen Compiler mag sich die Lücke zu C zwar immer weiter schließen, zum Zeitpunkt der Umsetzung war die Implementierung in C aber um einen Faktor vier schneller als in Swift. Hierbei liegt die Vermutung nahe, dass der Zugriff auf und das Umsortieren von Featurevektoren als native C-Arrays deutlich effektiver passiert, als bei der Verwendung von Swift-Arrays. Da Swift-Arrays Value-Type sind, kommt es in Swift vermutlich zu unnötigen Kopieroperationen der Fließkommazahlen in den einzelnen Featurevektoren.

Die Berechnung des Mobilenet-Anteils der Featurevektoren konnte sehr komfortabel mit Apples CoreML Machine Learning Framework umgesetzt werden. Hierbei ist zu beachten, dass es sich wie oben beschrieben, nicht um eine Klassifikation handelt, sondern um das Abgreifen der Aktivierungen einer tieferen Schicht. Für Klassifikationen findet man praktisch sofort nutzbare Beispiele, für den Zugriff auf die Aktivierungen waren jedoch Anpassungen notwendig, die bei der Portierung eines vortrainierten Mobilenet nach CoreML vorgenommen wurden. Das stellte sich als erheblich einfacher heraus, als der Versuch, auf die tieferen Schichten eines Klassifizierungsnetzes in CoreML zuzugreifen.

Für die Verwaltung der Bilder, ihrer Featurevektoren und ihrer Position in der sortieren Karte wird in Kiano eine eigene Datenstruktur verwendet, die es zu persistieren gilt. Es ist dem Nutzer ja nicht zuzumuten, bei jedem Start der App auf die Berechnung aller Featurevektoren zu warten. Die Strategie ist es hierbei, bereits bekannte Bilder zu identifizieren und deren Features nur dann neu zu berechnen, falls sich das Bild verändert hat. Die über Appels Photos Framework zur Verfügung gestellten local Identifier identifizieren dabei die Bilder. Veränderungen werden über das Modifikationsdatum eines Bildes detektiert. Die größte Herausforderung ist hierbei das Zeichnen der Karte. Die Benutzerinteraktion soll schnell und flüssig erscheinen, auf Animationen wie das Nachlaufen der Karte beim Verschieben möchte man nicht verzichten. Die Umsetzung geschieht hierbei nicht in OpenGL ES, welches ab iOS 12 ohnehin als deprecated bezeichnet wird. Auf der anderen Seite wird aber auch nicht der „Standardweg“ des Überschreibens der draw-Methode einer Ableitung von UIView gewählt. Letztes führt bekanntlich zu Performanceeinbußen. Insbesondere deshalb, weil das System sehr oft Backing-Images der Ansichten erstellt. Um die Kontrolle über das Neuzeichnen zu behalten, wird in Kiano ein eigenes Backing-Image implementiert, das auf Ebene des Core Animation Frameworks dem View als Layer zugweisen wird. Diesem Layer kann dann sehr komfortabel eine 3D-Transformation zugewiesen werden und man profitiert von der GPU-Beschleunigung, ohne OpenGL ES direkt verwenden zu müssen.

 

Trotz der Verwendung eines Core Animation Layers ist das Zeichnen der Karte immer noch sehr zeitaufwendig. Das liegt an der Tatsache, dass je nach Zoomstufe tausende von Bildern darzustellen sind, die alle über das Photos Framework angefordert werden müssen. Das Nadelöhr ist dann weniger das Zeichnen, als die Zeit, die vergeht, bis einem das Bild zur Verfügung gestellt wird. Diese Vorgänge sind praktisch alle nebenläufig. Zur Erinnerung: Ein Foto kann in der iCloud liegen und zum Zeitpunkt der Anfrage noch gar nicht (oder noch nicht in geeigneter Auflösung) heruntergeladen sein. Netzwerkbedingt gibt es keine Vorhersage, wann oder ob überhaupt das Bild zur Verfügung gestellt wird. In Kiano werden zum einen Bilder in sehr kleiner Auflösung gecached, zum anderen wird beim Navigieren auf der Karte im Hintergrund ein neues Kartenteil als Backing-Image vorbereitet, das dem Nutzer nach Fertigstellung angezeigt wird. Die vorberechneten Kartenteile sind dabei drei Mal so breit und drei Mal so hoch wie das Display, so dass man diese „Hintergrundaktivität“ beim Verschieben der Karte in der Regel nicht bemerkt. Nur wenn die Bewegung zu schnell wird oder die Bilder zu langsam „geliefert“ werden, erkennt man schwarze Flächen, die sich dann verzögert mit Bildern füllen.

Vergleichbares passiert beim Hineinzoomen in die Karte. Der Nutzer sieht zunächst eine vergrößerte und damit unscharfe Version des aktuellen Kartenteils, während im Hintergrund ein Kartenteil in höherer Auflösung und mit weniger Bildern vorbereitet wird. In der Summe geht Kiano hier einen Kompromiss ein. Die Pixeldichte der Geräte würde eine schärfere Darstellung der Bilder auf der Karte erlauben. Allerdings müssten dann die Bilder in so höher Auflösung angefordert werden, dass eine flüssige Kartennavigation nicht mehr möglich wäre. So sieht der Nutzer in der Regel eine Karte mit Bildern in halber Auflösung gemessen an den physikalischen Pixeln seines Displays.

Ein anfangs unterschätzter Arbeitsaufwand bei der Umsetzung von Kiano liegt darin begründet, dass sich die Photo Library des Nutzers jederzeit während der Benutzung der App verändern kann. Bilder können durch Synchronisationen mit der iCloud oder mit iTunes verschwinden, sich in andere Alben bewegen, oder neue können auftauchen. Der Nutzer kann Bildschirmfotos machen. Das Photos Framework stellt komfortable Benachrichtigungen für solche Events zur Verfügung. Der Implementierung obliegt es dabei aber herauszubekommen, ob die Karte neu zu sortieren ist oder nicht, ob das gerade anzeigte Bild überhaupt noch existiert und was zu tun ist, wenn es verschwunden ist.

Zusammenfassend kann man feststellen, dass natürlich die Umsetzung der Algorithmen und die Darstellung dessen auf einer Karte zu den spannendsten Teilen der Arbeiten an Kiano zählen, dass aber der Umgang mit einer sich dynamisch ändernden Datenbasis nicht unterschätzt werden sollte.

Autoren

Prof. Dr. Klaus JungProf. Dr. Klaus Jung studierte Physik an der TU Berlin, wo er im Bereich der Mathematischen Physik promovierte. Bis 2008 arbeitete er als Leiter F&E bei der Firma LuraTech im Bereich der Dokumentenverarbeitung und Langzeitarchivierung. In der JPEG-Gruppe leitete er die deutsche Delegation bei der Standardisierung von JPEG2000. Seit 2008 ist er Professor für Medieninformatik an der HTW Berlin mit dem Schwerpunkt „Visual Computing“.

Prof. Dr. Kai Uwe Barthel

Prof. Dr. Kai Uwe Barthel studierte Elektrotechnik an der TU Berlin, bevor er Assistent am Institut für Nachrichtentechnik wurde und im Bereich Bildkompression promovierte. Seit 2001 ist er Professor der HTW Berlin. Hauptforschungsbereiche sind visuelle Bildsuche und automatisches Bildverstehen. 2009 gründete er die pixolution GmbH www.pixolution.de, ein Unternehmen, das Technologien für die visuelle Bildsuche anbietet.

Data Leader Days 2018

Daten bilden das Fundament der digitalen Transformation. Die richtige Nutzung von Daten entwickelt sich daher zu einer Kernkompetenz und macht im Wettbewerb den Unterschied. Dies gilt sowohl für ganz Unternehmen als auch für einzelne Mitarbeiter, die mit Datennutzung ihre Karriere vorantreiben können.

Erfahrungen von Pionieren und führenden Anwenderunternehmen sind dafür unverzichtbar. Mit den Data Leader Days am 14. und 15. November 2018 in der Digital-Hauptstadt Berlin haben Sie die Chance, direkt von Spitzenkräften aus der Wirtschaft zu lernen und wichtige Impulse für Ihre digitale Weiterentwicklung zu erhalten.

Die Data Leader Days sind das Entscheider-Event für die Datenwirtschaft, das den Schwerpunkt auf die tatsächlichen Nutzer und Anwender-Unternehmen legt. Die Fachkonferenz hat sich seit Gründung im Jahr 2016 als eines der exklusivsten Events rund um die Themen Big Data und künstliche Intelligenz etabliert. In diesem Jahr werden die Data Leader Days erstmalig auf zwei Tage mit unterschiedlichen Schwerpunkten erweitert:

14. November 2018: Commercial & Finance Data

15. November 2018: Industrial & Automotive Data

Agenda

Die Agenda ist stets aktuell direkt auf www.dataleaderdays.com zu finden.

Sponsoren

Speaker der Data Leader Days 2018

 

 

Anmeldung

Die Data Leader Days finden dieses Jahr zum dritten Mal statt und haben sich zur Pflichtveranstaltung für Geschäftsführer, Führungskräfte und Professionals aus den Bereichen IT, Business Intelligence und Data Analytics etabliert und empfehlen sich ebenfalls für Leiter der Funktionsbereiche Einkauf, Produktion, Marketing und Finance, die das hier brachliegende Potenzial ausschöpfen wollen.

Zum Event anmelden können sich Teilnehmer direkt auf www.dataleaderdays.com oder via Xing.com (Klick).

Interview – Künstliche Intelligenz im Unternehmen & der Mangel an IT-Fachkräften

Interview mit Sebastian van der Meer über den Einsatz von künstlicher Intelligenz im Unternehmen und dem Mangel an IT-Fachkräften

Sebastian van der Meer

Sebastian van der Meer ist Managing Partner der lexoro Gruppe, einem Technologie- und Beratungsunternehmen in den Zukunftsmärkten: Data-Science, Machine-Learning, Big-Data, Robotics und DevOps. Das Leistungsspektrum ist vielschichtig. Sie vermitteln Top-Experten an Unternehmen (Perm & IT-Contracting), arbeiten mit eigenen Teams für innovative Unternehmen an spannenden IT-Projekten und entwickeln zugleich eigene Produkte und Start-Ups in Zukunftsmärkten. Dabei immer im Mittelpunkt: Menschen und deren Verbindung mit exzellenter Technologiekompetenz.

Data Science Blog: Herr van der Meer, wenn man Google News mit den richtigen Stichwörtern abruft, scheinen die Themen Künstliche Intelligenz, Data Science und Machine Learning bei vielen Unternehmen bereits angekommen zu sein – Ist das so?

Das ist eine sehr gute Frage! Weltweit, vor allem in der USA und China, sind diese bereits „angekommen“, wenn man es so formulieren kann. Allerdings sind wir in Europa leider weit hinterher. Dazu gibt es ja bereits viele Studien und Umfragen, die dies beweisen. Vereinzelt gibt es große mittelständische- und Konzernunternehmen in Deutschland, die bereits eigene Einheiten und Teams in diesen Bereich und auch neue Geschäftsbereiche dadurch ermöglicht haben. Hier gibt es bereits tolle Beispiele, was mit K.I. erreichbar ist. Vor allem die Branchen Versicherungs- und Finanzdienstleistungen, Pharma/Life Science und Automotive sind den anderen in Deutschland etwas voraus.

Data Science Blog: Wird das Thema Data Science oder Machine Learning früher oder später für jedes Unternehmen relevant sein? Muss jedes Unternehmen sich mit K.I. befassen?

Data Science, Machine Learning, künstliche Intelligenz – das sind mehr als bloße Hype-Begriffe und entfernte Zukunftsmusik! Wir stecken mitten in massiven strukturellen Veränderungen. Die Digitalisierungswelle der vergangenen Jahre war nur der Anfang. Jede Branche ist betroffen. Schnell kann ein Gefühl von Bedrohung und Angst vor dem Unbekannten aufkommen. Tatsächlich liegen aber nie zuvor dagewesene Chancen und Potentiale vor unseren Füßen. Die Herausforderung ist es diese zu erkennen und dann die notwendigen Veränderungen umzusetzen. Daher sind wir der Meinung, dass jedes Unternehmen sich damit befassen muss und soll, wenn es in der Zukunft noch existieren will.

Wir unterstützen Unternehmen dabei ihre individuellen Herausforderungen, Hürden und Möglichkeiten zu identifizieren, die der große Hype „künstliche Intelligenz“ mit sich bringt. Hier geht es darum genau zu definieren, welche KI-Optionen überhaupt für das Unternehmen existieren. Mit Use-Cases zeigen wir, welchen Mehrwert sie dem Unternehmen bieten. Wenn die K.I. Strategie festgelegt ist, unterstützen wir bei der technischen Implementierung und definieren und rekrutieren bei Bedarf die relevanten Mitarbeiter.

Data Science Blog: Die Politik strebt stets nach Vollbeschäftigung. Die K.I. scheint diesem Leitziel entgegen gerichtet zu sein. Glauben Sie hier werden vor allem Ängste geschürt oder sind die Auswirkungen auf den Arbeitsmarkt durch das Vordringen von K.I. wirklich so gravierend?

Zu diesem Thema gibt es bereits viele Meinungen und Studien, die veröffentlicht worden sind. Eine interessante Studie hat vorhergesagt, dass in den nächsten 5 Jahren, weltweit 1.3 Millionen Stellen/Berufe durch K.I. wegfallen werden. Dafür aber in den gleichen Zeitnahmen 1.7 Millionen neue Stellen und Berufe entstehen werden. Hier gehen die Meinungen aber ganz klar auseinander. Die Einen sehen die Chancen, die Möglichkeiten und die Anderen sehen die Angst oder das Ungewisse. Eins steht fest, der Arbeitsmarkt wird sich in den nächsten 5 bis 10 Jahren komplett verändern und anpassen. Viele Berufe werden wegfallen, dafür werden aber viele neue Berufe hinzukommen. Vor einigen Jahren gab es noch keinen „Data Scientist“ Beruf und jetzt ist es einer der best bezahltesten IT Stellen in Unternehmen. Allein das zeigt doch auch, welche Chancen es in der Zukunft geben wird.

Data Science Blog: Wie sieht der Arbeitsmarkt in den Bereichen Data Science, Machine Learning und Künstliche Intelligenz aus?

Der Markt ist sehr intransparent. Jeder definiert einen Data Scientist anders. Zudem wird sich der Beruf und seine Anforderungen aufgrund des technischen Fortschritts stetig verändern. Der heutige Data Scientist wird sicher nicht der gleiche Data Scientist in 5 oder 10 Jahren sein. Die Anforderungen sind enorm hoch und die Konkurrenz, der sogenannte „War of Talents“ ist auch in Deutschland angekommen. Der Anspruch an Veränderungsbereitschaft und technisch stets up to date und versiert zu sein, ist extrem hoch. Das gleiche gilt auch für die anderen K.I. Berufe von heute, wie z.B. den Computer Vision Engineer, der Robotics Spezialist oder den DevOps Engineer.

Data Science Blog: Worauf sollten Unternehmen vor, während und nach der Einstellung von Data Scientists achten?

Das Allerwichtigste ist der Anfang. Es sollte ganz klar definiert sein, warum die Person gesucht wird, was die Aufgaben sind und welche Ergebnisse sich das Unternehmen mit der Einstellung erwartet bzw. erhofft. Oftmals hören wir von Unternehmen, dass sie Spezialisten in dem Bereich Data Science / Machine Learning suchen und große Anforderungen haben, aber diese gar nicht umgesetzt werden können, weil z.B. die Datengrundlage im Unternehmen fehlt. Nur 5% der Data Scientists in unserem Netzwerk sind der Ansicht, dass vorhandene Daten in ihrem Unternehmen bereits optimal verwertet werden. Der Data Scientist sollte schnell ins Unternehmen integriert werde um schnellstmöglich Ergebnisse erzielen zu können. Um die wirklich guten Leute für sich zu gewinnen, muss ein Unternehmen aber auch bereit sein finanziell tiefer in die Tasche zu greifen. Außerdem müssen die Unternehmen den top Experten ein technisch attraktives Umfeld bieten, daher sollte auch die Unternehmen stets up-to-date sein mit der heutigen Technologie.

Data Science Blog: Was macht einen guten Data Scientist eigentlich aus?

Ein guter Data Scientist sollte in folgenden Bereichen sehr gut aufgestellt sein: Präsentations- und Kommunikationsfähigkeiten, Machine Learning Kenntnisse, Programmiersprachen und ein allgemeines Business-Verständnis. Er sollte sich stets weiterentwickeln und von den Trends up to date sein. Auf relevanten Blogs, wie dieser Data Science Blog, aktiv sein und sich auf Messen/Meetups etc bekannt machen.

Außerdem sollte er sich mit uns in Verbindung setzen. Denn ein weiterer, wie wir finden, sehr wichtiger Punkt, ist es sich gut verkaufen zu können. Hierzu haben wir uns in dem letzten Jahr sehr viel Gedanken gemacht und auch Studien durchgeführt. Wir wollen es jedem K.I. -Experten ermöglichen einen eigenen Fingerabdruck zu haben. Bei uns ist dies als der SkillPrint bekannt. Hierfür haben wir eine holistische Darstellung entwickelt, die jeden Kandidaten einen individuellen Fingerabdruck seiner Kompetenzen abbildet. Hierfür durchlaufen die Kandidaten einen Online-Test, der von uns mit top K.I. Experten entwickelt wurde. Dieser bildet folgendes ab: Methoden Expertise, Applied Data Science Erfahrung, Branchen know-how, Technology & Tools und Business knowledge. Und die immer im Detail in 3 Ebenen.

Der darauf entstehende SkillPrint/Fingerprint ist ein Qualitätssigel für den Experten und damit auch für das Unternehmen, das den Experten einstellt.

Interesse an einem Austausch zu verschiedenen Karriereperspektiven im Bereich Data Science/ Machine Learning? Dann registrieren Sie sich direkt auf dem lexoro Talent Check-In und ein lexoro-Berater wird sich bei Ihnen melden.

Interview – Von der Utopie zur Realität der KI: Möglichkeiten und Grenzen

Interview mit Prof. Dr. Sven Buchholz über die Evolution von der Utopie zur Realität der KI – Möglichkeiten und Grenzen

Prof. Sven Buchholz hat eine Professur für die Fachgebiete Data Management und Data Mining am Fachbereich Informatik und Medien an der TH Brandenburg inne. Er ist wissenschaftlicher Leiter des an der Agentur für wissenschaftliche Weiterbildung und Wissenstransfer – AWW e. V. angesiedelten Projektes „Datenkompetenz 4.0 für eine digitale Arbeitswelt“ und Dozent des Vertiefungskurses „Machine Learning mit Python“, der seit 2018 von der AWW e. V. in Kooperation mit der TH Brandenburg angeboten wird.

Data Science Blog: Herr Prof. Buchholz, künstliche Intelligenz ist selbst für viele datenaffine Fachkräfte als Begriff noch zu abstrakt und wird mit Filmen wir A.I. von Steven Spielberg oder Terminator assoziiert. Gibt es möglicherweise unterscheidbare Stufen bzw. Reifegrade einer KI?

Für den Reifegrad einer KI könnte man, groß gedacht, ihre kognitiven Leistungen bewerten. Was Kognition angeht, dürfte Hollywood zurzeit aber noch meilenweit führen.  Man kann natürlich KIs im selben Einsatzgebiet vergleichen. Wenn von zwei Robotern einer lernt irgendwann problemlos durch die Tür zu fahren und der andere nicht, dann gibt es da schon einen Sieger. Wesentlich ist hier das Lernen, und da geht es dann auch weiter. Kommt er auch durch andere Türen, auch wenn ein Sensor
ausfällt?

Data Science Blog: Künstliche Intelligenz, Machine Learning und Deep Learning sind sicherlich die Trendbegriffe dieser Jahre. Wie stehen sie zueinander?

Deep Learning ist ein Teilgebiet von Machine Learning und das ist wiederum ein Teil von KI. Deep Learning meint eigentlich nur tiefe neuronale Netze (NN). Das sind Netze, die einfach viele Schichten von Neuronen haben und folglich als tief bezeichnet werden. Viele Architekturen, insbesondere auch die oft synonym mit Deep Learning assoziierten sogenannten Convolutional NNs gibt es seit Ewigkeiten. Solche Netze heute einsetzen zu können verdanken wir der Möglichkeit auf Grafikkarten rechnen zu können. Ohne Daten würde das uns aber auch nichts nützen. Netze lernen aus Daten (Beispielen) und es braucht für erfolgreiches Deep Learning sehr viele davon. Was wir oft gerade sehen ist also, was man mit genug vorhandenen Daten „erschlagen“ kann. Machine Learning sind alle Algorithmen, die ein Modell als Ouput liefern. Die Performanz von Modellen ist messbar, womit ich quasi auch noch eine Antwort zur ersten Frage nachreichen will.

Data Science Blog: Sie befassen sich beruflich seit Jahren mit künstlicher Intelligenz. Derzeitige Showcases handeln meistens über die Bild- oder Spracherkennung. Zweifelsohne wichtige Anwendungen, doch für Wirtschaftsunternehmen meistens zu abstrakt und zu weit weg vom Kerngeschäft. Was kann KI für Unternehmen noch leisten?

Scherzhaft oder vielleicht boshaft könnte man sagen, alles was Digitalisierung ihnen versprochen hat.
Wenn sie einen Chat-Bot einsetzen, sollte der durch KI besser werden. Offensichtlich ist das jetzt kein Anwendungsfall, der jedes Unternehmen betrifft. Mit anderen Worten, es hängt vom Kerngeschäft ab. Das klingt jetzt etwas ausweichend, meint aber auch ganz konkret die Ist-Situation.
Welche Prozesse sind jetzt schon datengetrieben, welche Infrastruktur ist vorhanden. Wo ist schon wie optimiert worden? Im Einkauf, im Kundenmanagement und so weiter.

Data Science Blog: Es scheint sich also zu lohnen, in das Thema fachlich einzusteigen. Was braucht man dazu? Welches Wissen sollte als Grundlage vorhanden sein? Und: Braucht man dazu einen Mindest-IQ?

Gewisse mathematische und informatorische Grundlagen braucht man sicher relativ schnell. Zum Beispiel: Wie kann man Daten statistisch beschreiben, was darf man daraus folgern? Wann ist etwas signifikant? Einfache Algorithmen für Standardprobleme sollte man formal hinschreiben können und implementieren können. Welche Komplexität hat der Algorithmus, wo genau versteckt sie sich? Im Prinzip geht es aber erst einmal darum, dass man mit keinem Aspekt von Data Science Bauchschmerzen hat. Einen Mindest-IQ braucht es also nur insofern, um diese Frage für sich selbst beantworten zu können.

Data Science Blog: Gibt es aus Ihrer Sicht eine spezielle Programmiersprache, die sich für das Programmieren einer KI besonders eignet?

Das dürfte für viele Informatiker fast eine Glaubensfrage sein, auch weil es natürlich davon abhängt,
was für eine KI das sein soll. Für Machine Learning und Deep Learning lautet meine Antwort aber ganz klar Python. Ein Blick auf die bestimmenden Frameworks und Programmierschnittstellen ist da
ziemlich eindeutig.

Data Science Blog: Welche Trends im Bereich Machine Learning bzw. Deep Learning werden Ihrer Meinung nach im kommenden Jahr 2019 von Bedeutung werden?

Bei den Deep Learning Anwendungen interessiert mich, wie es mit Sprache weitergeht. Im Bereich Machine Learning denke ich, dass Reinforcement Learning weiter an Bedeutung gewinnt. KI-Chips halte ich für einen der kommenden Trends.

Data Science Blog: Es heißt, dass Data Scientist gerade an ihrer eigenen Arbeitslosigkeit arbeiten, da zukünftige Verfahren des maschinellen Lernens Data Mining selbstständig durchführen können. Werden Tools Data Scientists bald ersetzen?

Die Prognosen für das jährliche Datenwachstum liegen ja momentan so bei 30%. Wichtiger als diese Zahl alleine ist aber, dass dieses Wachstum von Daten kommt, die von Unternehmen generiert werden. Dieser Anteil wird über die nächsten Jahre ständig und rasant weiter wachsen. Nach den einfachen Problemen kommen also erst einmal mehr einfache Probleme und/oder mehr anspruchsvollere Probleme statt Arbeitslosigkeit. Richtig ist aber natürlich, dass Data Scientists zukünftig methodisch mehr oder speziellere Kompetenzen abdecken müssen. Deswegen haben die AWW e. V. und die TH Brandenburg ihr Weiterbildungsangebot um das Modul ‚Machine Learning mit Python‘ ergänzt.

Data Science Blog: Für alle Studenten, die demnächst ihren Bachelor, beispielsweise in Informatik, Mathematik, Ingenieurwesen oder Wirtschaftswissenschaften, abgeschlossen haben, was würden Sie diesen jungen Damen und Herren raten, wie sie gute Data Scientists mit gutem Verständnis für Machine Learning werden können?

Neugierig sein wäre ein Tipp von mir. Im Bereich Deep Learning gibt es ja ständig neue Ideen, neue Netze. Die Implementierungen sind meist verfügbar, also kann und sollte man die Sachen ausprobieren. Je mehr Netze sie selbst zum Laufen gebracht und angewendet haben, umso besser werden sie.  Und auch nur so  verlieren sie nicht den Anschluss.

Modelling Data – Case Study: Importance of domain knowledge

What´s the relation between earnings and happiness? I saw this chart and was strongly irritated – why is there a linear regression, it´s clearly a logarithmic relationship.
Linear relationship between GDP and happiness.

So I got angry and wanted to know, which model is the better fit. I started to work immediatly, because it´s a huge difference for man kind. Think about it: you give a poor person money and he gets as happy as a rich person with the same amount added – that´s against common sense and propaganda to get rich. Like an cultural desease.

So I gathered the data and did a first comparation, and this logarithmic model was the better fit:
Logarithmic relationship between GDP and happiness.

I was right and seriously willing to clear the mess up – so posted the “correct” model on facebook, to explain things to my friends.

Once I came down…

I asked myself: “What´s the model that fits the data best – that would be more correct?”

So I started to write an algorithm to check polynominal regression levels for fit using a random train and test data split. Finally, I got to this result and was amazed:
Best polynominal relationship between GDP and happiness.

This seriously hit me: “What the f***! There seems to be maximum happiness reachable with a certain amount of income / GDP.” Can you understand, what this result would mean for our world and economy? Think about all economies growing continiously, but well happiest was there or will come there. What would you do? Send income to less developed countries, because you don´t need it? Stop invention and progress, because it´s of no use? Seriously, I felt like a socialist: Stop progress at this point and share.

So I thought a while and concluded: “F***ing statistics, we need a profound econometric model.”

I started modelling: Well, the first amount of money in a market based on money leverages a huge amount of happiness, because you can participate and feed yourself. We can approximate that by infinit marginal utility. Then the more you have, the less utility should be provided by the additional same amount added. Finally, more income is more options, so more should be always better. I concluded, that this is catched by a Cobb Douglas production function. Here´s the graph:
Cobb Douglas relationship between GDP and happiness.

That´s it, that´s the final model. Here I feel home, this looks like a normal world – for an economist.

The Relevance of Domain Knowledge

As this short case study shows, we get completly wrong information and conclusions, if we don´t do it right. If you were the most important decision making algorithm in global economic politics, imagine what desasterous outcomes it would have produced to automatically find an optimum of income.

This is a serious border of AI. If you want to analyse Big Data with algorithms, you may produce seriously wrong information and conclusions. Statistical analysis is allways about using the right model. And modelling is about the assumptions of the model. As long as you can not create the right assumtions for the statistical model automatically, Big Data analysis is near to crazy. So out of this point of view, Big Data analysis is either about very simplistic tendencies (like linear trends) or it´s bound to Data Scientists with domain knowledge checking each model – that´s slow.

Discussion

I´m quite new to the field of Data Science, but this case study shows very though limitations, clearly. It´s not about flexible fitting of data, it´s about right models. And right models don´t scale into the Big Data domain. What do you think is the solution for this issue?

Countries of Happiness – the Full Article

If you are interested in my final article on my personal blog, explaining the final results: Please feel welcome to read the article here. There is a translation widget in the menu, to read in your favorite language. The original article is german.