Interview – Advanced Data Science in der Finanz- und Versicherungsbranche
Dr. Andreas Braun von der Allianz SE spricht exklusiv mit dem Data Science Blog über die Bedeutung von Data Science in der Finanz- und Versicherungsindustrie und was er von einem guten Data Scientist erwartet.
Dr. Andreas Braun ist Head of Global Data & Analytics bei der Allianz SE in München. Der promovierte Informatiker von der TU München begann seine Karriere als Berater bei Accenture, leitete danach verschiedene Abteilungen für Analyse und Digitalisierung und zuletzt den globalen Geschäftsbereich Business Applications bei der GfK SE. Er gilt heute als eine der erfahrensten Führungskräfte mit explizitem Know How in der Nutzung von Data & Analytics.
Data Science Blog: Herr Dr. Braun, welcher Weg hat Sie bis an die Analytics-Spitze der Allianz SE geführt?
Als Informatiker kam ich über Software-Entwicklung und Verteilte Systeme zur Datenanalyse. Schon während des Studiums war ich Mitbegründer einer Software-Firma, die Bildverarbeitungs- und Analyse-Software entwickelte. Der Schwenk hin zur Entwicklung von Systemen künstlicher Intelligenz kam während der Promotion an der TUM, insbesondere, da mein Doktorvater erst kürzlich von der Carnegie Mellon University (CMU) dorthin gewechselt hatte. (An der CMU wurde der Begriff Künstliche Intelligenz ja ursprünglich geprägt.) Dadurch hatte ich mir Schwerpunkte auf global verteilte Systeme und Künstliche Intelligenz gesetzt. Nach meinem akademischen Ausbildungsweg war ich dann in der Unternehmensberatung und später in der Marktforschung tätig. Als Global Head für Business Applications bei der GfK SE, der Gesellschaft für Konsumforschung, haben wir bereits 2011 auf Big Data Technologien, wie Hadoop und NoSQL, gesetzt.
Als die Allianz sich auf Gruppenebene verstärkt im Bereich Digitalisierung und somit auch Data Analytics und Data Science aufstellte und konsequent ein eigenes Data & Analytics Team aufbaute, kam für mich die Gelegenheit zum Wechsel nach München. Seit Mai 2014 leite ich nun Global Data & Analytics (GD&A) bei der Allianz SE und setze vor allem auf Leute, die bereits Data Analytics und Data Science Expertise mitbringen, oft auch von außerhalb der Finanz- und Versicherungsindustrie.
Data Science Blog: Welche Rolle sehen Sie für Big Data Analytics in der Finanz- und Versicherungsbranche?
Aus meiner Sicht ist sogenannte „Big Data“ Technologie, also verteilte Systeme, neue Datenbanken usw., die eigentliche Maschinerie hinter der Digitalisierung. Es gibt zunehmend viele „Frontends“, also z. B. Benutzeroberflächen, (mobile) Geräte und Sensoren, für Anwender, mit denen Daten generiert werden. Webseiten, Apps, Smartphones und Connected Cars sind für sich gesehen jedoch noch nicht besonders intelligent und somit eingeschränkt nützlich. Die wirklich nutzbringende Intelligenz basiert auf Kontext, Daten und Analytics und ergibt sich erst durch die Vernetzung unzähliger Einzelkomponenten über Data Analytics Systeme. Auf dieser Basis lassen sich dann neue und digitale Geschäftsmodelle fördern.
Viele der heute gängigen Anwendungsfälle sind vielleicht von der Grundidee her manchmal ein alter Hut, lassen sich durch die jetzt verfügbare Technologie aber deutlich besser oder gar erstmalig lösen. Beispielsweise betreibt die Allianz Betrugserkennung schon sehr lange. Mittlerweile lassen sich jedoch komplexe oder gar organisierte Betrugsnetzwerke mit Ansätzen wie maschinellem Lernen (Machine Learning) und Graphen-Datenbanken sehr viel schneller, deutlich zuverlässiger und auch noch kostengünstiger aufdecken. Dadurch entstand bereits ein erheblich messbarer Vorteil für die Versichertengemeinschaft!