Data Leader Guide – Call for Papers

Connected Industry e. V., der Verband für Digitalisierung und Vernetzung, sammelt wegweisende Anwendungsfälle rund um Digitalisierung und Data Science und fasst diese in einem Leitfaden zusammen, dem Data Leader Guide 2016.

data-leader-guide-cover

Welche Inhalte kommen in den Data Leader Guide?

Der Data Leader Guide konzentriert sich auf Anwendungsfälle aus dem deutschsprachigen Wirtschaftsraum D/A/CH. In diesem Data Leader Guide werden vornehmlich die praktisch umgesetzten Use Cases / Business Cases von Anwender-Unternehmen aus den Branchen Industrie/Produktion, Dienstleistungen, Finanzen und Handel praxisorientiert beschrieben.

Was ist das Ziel des Data Leader Guide?

Anhand greifbarer Erfahrungswerte soll Entscheidern, Entwicklern und sonstigen Interessenten eine Orientierung und der Zugang zu dieser komplexen Materie erleichtert werden. Von besonderem Nutzen ist dabei der branchenübergreifende Blickwinkel des Leitfadens, da der Wissenstransfer von anderen Industrien gerade bei Big Data nicht hoch genug eingeschätzt werden kann.

Wann wird der Data Leader Guide 2016 erscheinen?

Pünktlich zum Data Leader Day am 17. November 2016. Die Ausgaben werden als Druckversion sowie als digitale Version erscheinen.

Warum sollte Ihre Anwendungsfall bzw. Projekt nicht fehlen?

Ihr Projekt wird zum Aushängeschild für die Innovationskraft und des Fortschritts Ihres Unternehmens. Darüber hinaus unterstreicht es die Attraktivität Ihres Unternehmens für qualifizierten Nachwuchs aus dem IT- und ingenieurswissenschaftlichen Bereich. Schließlich ist die Aufnahme Ihres Anwendungsfalles in den Data Leader Guide eine der seltenen Möglichkeiten, diesen auch öffentlich zu präsentieren und somit die Leistung des gesamten Projekt-Teams zu würdigen.

Call for Papers

So bringen Sie Ihren Anwendungsfall in den Data Leader Guide:

Sie sind Geschäftsführer, CIO oder ein Mitarbeiter mit Verantwortung für ein Projekt mit starkem Bezug zur Digitalisierung, Big Data, Data Science oder Industrie 4.0? Dann sollten Sie Ihr Projekt für einen Eintrag in den Data Leader Guide von Connected Industry bewerben. Genauere Informationen, wie Sie Ihren Anwendungsfall (Use Case / Business Case) in den Data Leader Guide 2016 bringen, finden Sie über diesen Direktlink zum Connected Industry e.V.

Data Leader Day

Unser Event für Big Data Anwender – Data Leader Day

Mit Stolz und Freude darf ich verkünden, dass wir ausgehend von unserer Data Science Blog Community den Data Leader Day am 17. November in Berlin maßgeblich mitorganisieren werden!

Der große DataLeaderDay am 17. November 2016 in Berlin bringt das Silicon Valley nach Deutschland. Die Konferenz fokussiert dabei auf die beiden Megatrends in der Digitalwirtschaft: Data Science und Industrie 4.0. Erleben Sie auf dem Data Leader Day was jetzt möglich ist – von Pionieren und hochrangigen Anwendern.
dataleaderday-teilnehmer-logos

www.dataleaderday.com

Ein vielfältiges Programm mit Keynote, Präsentationen sowie Use & Business Cases zeigt Ihnen aus der Praxis, wie Sie die Digitalisierung im Unternehmen umsetzen und als neues Wertschöpfungsinstrument einsetzen können. Und das Wichtigste: Sie erleben, welche Wettbewerbsvorteile Sie mit diesen Technologien verwirklichen können. Der Networking-Hub bietet zudem viele Möglichkeiten um Spitzenkräfte zu treffen und um sich über neueste Technologien, Methoden und Entwicklungen auszutauschen.

Zielgruppe – und was Euch erwartet

Auf dem Event werden Entscheider in Führungsposition ihre erfolgreichen Big Data & Data Science Anwendungen präsentieren. Es wird für unterschiedliche Branchen und Fachbereiche viele Erfolgsstories geben, die Mut machen, selbst solche oder ähnliche Anwendungsfälle anzugehen. Ihr werdet mit den Entscheidern networken können!

– Persönliche Vermittlung für ein Karrieregespräch gesucht? Sprecht mich einfach an! –

Unser Data Leader Day richtet sich an Führungskräfte, die von der Digitalisierung bereits profitieren oder demnächst profitieren wollen, aber auch an technische Entwickler, die neue Impulse für erfolgreiche Big Data bzw. Smart Data Projekte mitnehmen möchten. Das Event ist exklusiv und nicht – wie sonst üblich – von Vertrieblern zum Verkauf designed, sondern von Anwendern für Anwender gemacht.

Ort, Programm und Agenda

Aktuelle Informationen zum Event finden sich auf der Event-Seite: www.dataleaderday.com

 

 

Interview – Erfolgreiche Big Data Projekte mit DataLab

dr-susan-wegnerDr. Susan Wegner ist seit 2011 Vice President für den Bereich Smart Data Analytics & Communication und Leiterin des DataLabs bei den T-Labs in Berlin (Telekom Innovation Laboratories), einer eigenen Abteilung für Research & Development für Big Data Projekte. Die promovierte Informatikerin war zuvor Leiterin bei der T-Systems für Services and Platforms und ist auch in der universitären Welt der Datenwissenschaften international sehr gut vernetzt.

Data Science Blog: Frau Dr. Wegner, welcher Weg hat Sie bis an die Analytics-Spitze der Deutschen Telekom geführt?

Ich studierte Informatik an der TU-Berlin und schrieb meine Doktorarbeit im Bereich des maschinellen Lernens (Machine Learning) für die digitale Bildsegmentierung. Dabei werden Mustererkennungsalgorithmen (Pattern Recognition) eingesetzt, um Bilderkennung zu ermöglichen, ein Thema, dass u.a. durch Augmented Reality immer bedeutender wird.

Ich bin daher recht früh an dem Thema der Datenverarbeitung und Mustererkennung dran gewesen. Vor etwa drei Jahren hatte unser Vorstand zwar noch kein klares Bild von Big Data, aber der Konzern suchte neue Speerspitzen, die die Themen vorantreiben. Mein Einstieg zu dieser Position gelang mir über die ersten Projekte mit Big Data Analytics: Algorithmen für datengetriebene Empfehlungssysteme (Recommendation Systems).

Für mich war mein Weg bis hierher tatsächlich auch eine Lebenslektion, die besagt, dass es sich lohnen kann, früh in neue Themen einzusteigen und dann auch dabei zu bleiben, um sich permanent verbessern zu können.

Data Science Blog: Als Leiterin des DataLabs, ein Datenlabor der Telekom, setzen Sie Big Data Projekte nachweisbar erfolgreich um. Was ist eigentlich ein DataLab?

Ein DataLab ist ein eigener physischer Unternehmensbereich, indem Datenbestände verknüpft, explorativ analysiert und neue Anwendungsfälle (Use Cases) gefahrlos erprobt werden können. Gefahrlos bedeutet in diesem Kontext, dass erstens die Sicherheit der Daten und die legitime Nutzung der Daten gewährleistet ist. Es bedeutet aber auch, dass wir raus aus dem meist engeren Horizont der Fachbereiche kommen, so dass die Daten und Möglichkeiten in einem neuen Licht betrachtet werden können.

In einem DataLab kombinieren wir die IT-technische Sicht mit der Kunden- und Business-Sicht. Die meisten Big Data Projekte sind äußerst interdisziplinär und das dafür nötige interdisziplinäre Team können wir so kompromisslos nur als DataLab aufstellen.

Data Science Blog: Könnten die Projekte nicht einfach in den jeweiligen Fachbereichen direkt umgesetzt werden? Oder in der zentralen Unternehmens-IT-Abteilung?

Jeden Anwendungsfall betrachten wir im DataLab im interdisziplinären Team aus der Kunden-, Business- und IT-Perspektive.

Wir möchten in einem DataLab Anwendungsfälle schnell auf ihre Machbarkeit hin prüfen und auch in die Praxis umsetzen. Dafür brauchen wir nicht nur technische Lösungen. Zu Beginn arbeiten wir viel mit Design Thinking und im engen Austausch mit unseren Kunden bzw. deren Fachbereichen. Ist der Anwendungsfall entwickelt, geht die Entwicklung schnell in die IT-technische Phase.

Die Unternehmens-IT hat in der Regel eher eine administrative Sicht und kann die IT-Ressourcen nicht flexibel genug bereitstellen. Gerade die Prototypen-Entwicklung bedarf einer gewissen Flexibilität der IT-Infrastruktur und eine gesicherten Umgebung. In einem externen DataLab, entkoppelt von den Produktivsystemen können wir mit der IT-Infrastruktur und auch mit den Analyseverfahren experimentieren. Die schwierig zu findenden Fachkräfte dafür sind meistens begeistert von den abwechslungsreichen Arbeitsplätzen, denn sie können hier ihre Kenntnisse und Kreativität voll einbringen. Dadurch können wir jedes Proof of Concept einer Analysemethodik oder eines Anwendungsfalls binnen weniger Wochen realisieren.

Und nicht zu vergessen: In einem DataLab gibt es keine Denkverbote. Ich beobachtete häufig, dass gerade junge Wissenschaftler und kreative Köpfe den etablierten Fachkollegen relativ kritische Fragen gestellt haben, die im Fachbereich niemals gestellt werden. In einem Datenlabor können wir hinterfragen und Betriebsblindheit entkräften.

Nur in einem DataLab können wir die Kreativität erbringen, die für die vielen Erfolge notwendig ist. Mit meinen Teams habe ich bereits mehr als 20 Big Data Projekte erfolgreich umgesetzt, allerdings bezeichnen wir uns auch deshalb als ein „Lab“, weil wir viele Experimente wagen und da muss im Sinne von „Fail fast“ auch mal ein Fehlschlag erlaubt sein.

Data Science Blog: Warum sollten Unternehmen auf unternehmensexterne Datenlabore wie die der T-Labs setzen?

In unseren T-Labs verfügen wir über viel Erfahrung aus unterschiedlichsten Projekten. Darüber hinaus verfügen wir über die Data Science Ressourcen und die IT-Infrastruktur, die von unseren Kunden genutzt werden kann.

Data Science Blog: Sie bearbeiten Anwendungsfälle unterschiedlicher Branchen. Können sich Branchen die Anwendungsfälle gegenseitig abschauen oder sollte jede Branche auf sich selbst fokussiert bleiben?

Meistens bleiben beispielsweise Maschinenbauer, Händler und Banker gerne unter sich und suchen ihre branchenspezifischen Lösungen. Einige Branchen entdecken bestimmte Analysemethoden gerade erst, die in anderen längst gängig sind.

Tritt man jedoch einen Schritt zurück, wird oft sichtbar, dass viele Branchen die gleichen Analysemethoden für ihre jeweiligen Zwecke nutzen und schon früher für sich entdeckt haben könnten, hätten sie nur mal den Blick zu anderen Branchen gewagt.

Data Science Blog: Aus den unüberschaubar vielen Anwendungsfällen herausgegriffen, was sind ihre aktuellen Top-Projekte?

Als wir vor etwa 6 Jahren angefangen haben, behandelten wir vor allem Recommendation Systeme im Bereich Customer Analytics, seitdem sind viele Anwendungsfälle hinzugekommen.

Es gibt sehr viele interessante Projekte. Eines unserer Top-Projekte liegt im Bereich Predictive Maintenance, wo Vorhersagen von Maschinenausfällen bzw. die Optimierung von Wartungsintervallen durch Analyse der Maschinendatenhistorie erreicht werden.  Ein anderes Projekt ist eines aus dem Energiemanagement. Dabei geht es darum, dass wir die Ausfallwahrscheinlichkeit für bestimmte elektrische Leitungen prognostizieren. Durch Analyse der  Auslastungsverläufe des Stromnetzes können wir die Auslastungsgefährdung berechnen und dabei helfen, das Konzept des Smart Grid zu realisieren.

Data Science Blog: Führen Sie auch Telekom-interne Projekte durch?

Ja, wir nutzen unsere internen Projekte auch zur Erprobung unserer eigenen Leistungen, so dass wir unseren Kunden ausgereifte Leistungen anbieten können. Interne Projekte sind u.a. Fraud-Detection und unser eigenes Customer Analytics, um unseren Kunden stets ein sicheres und attraktives Angebot machen zu können.

Ein zurzeit wichtiges internes Projekt ist die Synthetisierung von Daten, das ist ein datenschutzrelevantes Thema. Die Anonymisierung von Daten ist ein essenzielles Thema, denn  unter bestimmten Umständen könnten selbst in anonymen Datenbeständen durch Kombination von gewissen Merkmalen einzelne Personen  wieder identifiziert werden. Deshalb haben wir Algorithmen entwickelt, die statistische Zwillinge aus den Realdaten bilden, aber absolut keinen Bezug mehr zu den Ursprungsdaten ermöglichen.

Data Science Blog: Der Datenschutz scheint den kreativen Umgang mit Daten also ziemlich einzuschränken?

Unser deutscher Datenschutz ist sicherlich nicht übertrieben. Als Telekommunikationsunternehmen müssen wir unsere Kunden vor Datenmissbrauch schützen. Wir haben 60 feste Mitarbeiter, die nur für den Datenschutz zuständig sind und diese sind bei jedem Projekt von Anfang an mit eingebunden.

Aber selbst wenn der Datenschutz eingeräumt ist, müssen die Analysen nicht zwangsweise gut sein. Wir möchten Daten nur dann nutzen, wenn die Kunden auch einen Vorteil davon haben.

Als Deutsche Telekom haben wir darüber hinaus den Vorteil, dass unsere Daten nachweislich ausschließlich in unseren eigenen deutschen Rechenzentren  verbleiben, das heißt sie unterliegen ununterbrochen dem strengen deutschen Datenschutz.

Data Science Blog: Welche Algorithmen und Tools verwenden Sie für Ihre Anwendungsfälle?

Das hängt natürlich ganz von den Anwendungsfällen ab. Selten deckt ein Tool alleine den kompletten Bedarf ab, daher kombinieren wir in der Regel viele Tools miteinander. Als Programmiersprache setzen wir vor allem auf Scala, R und Python. Für die Infrastruktur nutzen wir aktuell die Hadoop Distributionen von Cloudera und Hortonworks, sowie z.B. Storm, Spark, Datameer, KNIME, Flink und als Cloud-Plattform Pivotal, sowie Tableau zur Datenvisualisierung. Wir versuchen uns stets auf wenige Toolanbieter zu einigen, müssen jedoch auch Kompromisse eingehen, da wir in mehreren unterschiedlichen Ländern arbeiten.

Stellen wir fest, dass notwendige Lösungen noch nicht vorhanden sind, realisieren wir diese selber. Daher können wir auch als eigene Lösungsentwickler betrachtet werden.

Data Science Blog: Woher beziehen Sie Ihr technisches Know-How?

Unser DataLab in Berlin besteht aus 12 Mitarbeitern. Wir arbeiten jedoch eng mit unseren Kollegen von T-Systems zusammen und sind selbst ein An-Institut der Technischen Universität Berlin, aus der wir einen Großteil unserer Kompetenz für Machine Learning schöpfen. Wie entwickeln aber auch Systeme mit der Ben-Gurion-University in Israel und der Berkeley University of California.

Außerdem arbeiten wir bei einigen Anwendungen mit Motionlogic zusammen, einer 100%-Tochter der Deutschen Telekom, die in den T-Labs entstanden ist und sich auf fundierte Analysen von Verkehrs- und Bewegungsströmen spezialisiert hat, die auf anonymen Signalisierungsdaten aus dem Mobilfunk- und WiFi-Netz basieren.

Data Science Blog: Wie stellen Sie ein Data Science Team auf? Und suchen Sie für dieses Team eher Nerds oder extrovertierte Beratertypen?

Ich selbst stehe ganz hinter den Nerds, aber für ein gutes Team braucht es eine Kombination. Neben der analytischen Denkweise ist vor allem die Flexibilität, sich auf neue Themen und Teamarbeit einzulassen, sehr wichtig. Nerds bilden sowas wie einen Kern der Data Science Teams und bringen gute Ideen ein, auf die etablierte Geschäftsleute nicht so leicht kommen. Schafft man es, diese Nerds mit den Kollegen aus den Fachbereichen, beim Customer Analytics also die Marketing-Experten, zusammen zu bringen und dass sie sich gegenseitig anerkennen, dann steht dem Erfolg nichts mehr im Wege.

Fortbildungsangebote für Data Science und Data Engineering

Der Artikel “Was macht ein Data Scientist? Und was ein Data Engineer?” ist einer der beliebtesten dieser Plattform und immer wieder werde ich gefragt, wo man sich denn zum Data Scientist oder zum Data Engineer ausbilden lassen kann. Meine Antwort lautet meistens: Mit Selbststudium und Learning-by-Doing kann man sehr viel erreichen!

Es gibt jedoch viele Fortbildungsangebote, die einem Lerner das Lernen zwar nicht abnehmen, dieses jedoch didaktisch aufbereiten und modulweise vermitteln. Diejenigen Angebote, von denen wir von Teilnehmern hören, dass sie tatsächlich ihr Geld oder die Mühe wert sein sein sollen, nehmen wir von nun an in unseren Fortbildungskatalog auf.

[button link=”https://www.data-science-blog.com/ausbildung-fortbildung-studium-data-science/” icon=”link” color=”silver” text=”dark” window=”yes”]Zum Fortbildungskatalog![/button]

Master-Studium

Die beste Möglichkeit, Data Scientist oder Data Engineer zu werden, ist von Anfang an das richtige Studium auszuwählen, am besten bereits den Bachelor-Studiengang darauf ausgerichtet zu haben. Soweit mit bekannt, gibt es aber noch keinen Bachelor-Studiengang direkt für Data Science und das ist auch gut so, denn Data Science würde ich eher als Spezialisierung sehen, im Bachelor-Studium geht es aber um Grundwissen und das lernen von akademischer Methodik. Es gibt jedoch bereits ein breites Angebot an Master-Studiengängen, die direkt auf Data Science oder (Big) Data Engineering abzielen und die gute Nachricht: Diese Master-Studiengänge sind zugänglich für sehr viele Bachelor-Studiengänge, meistens mindestens für Bachelor-Absolventen der Mathematik, Informatik oder Ingenieurwissenschaften und sehr häufig auch für Absolventen der Wirtschafts- und Geisteswissenschaften. Voraussetzung sind meistens nur nachgewiesene Kenntnisse über die Grundlagen der Programmierung und der Statistik. Der diese Master-Studiengänge gerade erst angelaufen sind, der Trend jedoch viele Studierende verspricht, könnte für den Zugang jedoch eine sehr gute Bachelor-Abschlussnote Pflicht werden!

Ein Master-Studium mit Spezialisierung auf Data Science oder Big Data ist mit Sicherheit ein Aushängeschild für den eigenen Lebenslauf und ein Gewinn für die Glaubwürdigkeit, wenn man seine Karriere in der angewandten Datenwissenschaft plant.

Zertifikate – Frontalunterricht und Online-Kurse

Für wen ein Master-Studium irgendwie zu spät oder aus anderen Gründen nicht infrage kommt, reine Selbststudium mit einem guten Buch aber auch nicht reicht, kann eines der vielen Fortbildungsangebote mit Aussicht auf ein Zertifikat nutzen. Es gibt diverse Anbieter von Zertifizierungen zum Data Scientist oder Data Engineer.

Einige Angebote finden überwiegend vor Ort beim Anbieter statt, was von vielen Lernern bevorzugt wird, um dem Lernen und den Prüfungen nicht ausweichen zu können. Ein solches Beispiel ist das Zertifikatsprogramm der Fraunhofer ACADEMY.
Es gibt aber weit mehr Angebote, die rein online stattfinden. Meistens wird hier frontal über eine Sammlung von Videos gelehrt. Das wohl bekannteste Angebot an Video-Lehrgängen hat sicherlich Coursera.org.
Einige Anbieter gehen jedoch noch weiter, setzen daher nicht nur auf Videos, sondern vor allem auf richtig gute interaktive Online-Kurse, bei der jede Lektion eine praktische Übung bzw. kleine Prüfung über eine Entwicklungsumgebung in der Cloud darstellt. Solch ein Angebot bietet beispielsweise der interaktive Lehrgang von DataQuest.io.

SMART DATA Developer Conference

SMART DATA Developer Conference macht Softwareentwickler und IT-Professionals fit für Big Data

Nahezu alle befragten Unternehmen geben in der aktuellen Studie „Big Data Use Cases 2015“ der Business Application Research Center – BARC GmbH an, dass strategische Entscheidungen von Daten gestützt sind oder sogar alleinig auf Grundlage von Ergebnissen aus Big-Data-Analysen getroffen werden. Der Studie zufolge ist die größte Herausforderung für Unternehmen derzeit das fehlende fachliche oder technische Know-how. Genau hier setzt die SMART DATA Developer Conference an.

Big Data & Smart Analytics – Durchblick im Markt

Das gesamte Programm der Veranstaltung finden Sie unter smart-data-developer-conference.de/#program

„Nicht die Technik ist heute die Hürde für erfolgreiche Geschäftsmodelle, sondern das Kundenverständnis. Das erreicht man nur mit Smart Data“, so Michael Nolting, Sevenval Technologies GmbH und Keynotesprecher der SMART DATA Developer Conference.

[box type=”tick”]15% Rabatt bei Eingabe des Werbe-Codes: SMART16science[/box]

In seiner eröffnenden Session entwickelt er eine Matrix, die den Teilnehmer befähigt, verfügbare Technologie-Stacks zu bewerten: Welche Technologie und welcher Anbieter sind für den speziellen Anwendungsfall am besten geeignet? Mit dieser Entscheidungshilfe lassen sich Verfahren schnell vergleichen, damit das passende zuverlässig ermittelt wird.

Weitere Themen im Programm sind:

  • Batch & Stream Processing mit Google Dataflow
  • Datenanalysen mit Python und ApacheSpark
  • Datenqualität und –visualisierung
  • uvm

Die SMART DATA Developer Conference vom 18. – 19. April 2016 in München macht Softwareentwickler mit den Herausforderungen von Big Data vertraut. Im Konferenzprogramm erlangen sie Wissen zu Speicherung, Analyse, Plattformen und Tools. In kleinen Gruppen können sie am Workshoptag diese Technologien intensiv trainieren.

Leser des Data Science Blog erhalten mit dem Code SMART16science einen Rabatt von 15 % bei Anmeldung. Damit ist die Teilnahme an der Konferenz ab EUR 425 zzgl. MwSt. möglich oder an beiden Tagen ab EUR 935. Programm und Anmeldung unter smart-data-developer.de.

Mobilgeräte-Sicherheit

Safety first! Testen Sie Ihr Wissen rund um Mobile Device Management!

Mobile Device Management (MDM) unterstützt nicht nur der Verwaltung von mobilen Endgeräten und die Software- und Datenverteilung. Es ermöglicht vor allem, die nötige Sicherheit, Transparenz und Kontrolle beim Einsatz von Smartphones und Tablets zu schaffen.

Sicherheit ist das A und O bei der unternehmensinternen Nutzung von Mobilgeräten. Neben der klassischen Geräteverwaltung bilden deshalb Security-Funktionen wie Datenverschlüsselung, Remote-Recovery, App Blacklists und ein Malware-Schutz die Hauptpfeiler von MDM-Lösungen.

Zuverlässige Schutzfunktionen sollen vor allem verhindern, dass interne Daten unkontrolliert das Unternehmen verlassen. Zu diesem Zweck sorgt ein MDM-Client auf dem mobilen Device für die Einhaltung der Corporate-Regeln. Solche Regeln könnten beispielsweise die Nutzung von Kamera oder Bluetooth verbieten oder die Installation bestimmter Apps und Browser. Auch Jailbreak und Rooten stehen oft auf der Verbotsliste.

Neben Unterlassungen lassen sich auch Gebote vorschreiben, etwa, dass die Geräte beim Einschalten durch eine PIN-Eingabe entsperrt werden müssen, dass Daten auf den Devices per Backup vor Verlusten geschützt und gestohlene oder verlorene Geräte bereinigt werden müssen.

Solche Policy-Vorgaben werden per Echtzeitüberwachung kontrolliert – gerade beim Arbeiten mit kritischen Datensätzen wie personenbezogenen Daten, Kontodaten und anderen vertraulichen Informationen eine absolute Notwendigkeit. Verstößt ein Nutzer gegen eine oder mehrere dieser Regeln wird der Zugriff auf die geschäftskritischen Ressourcen blockiert. Als letzte Konsequenz und bei Verlust oder Diebstahl kann das Smartphone oder Tablet auch gesperrt oder dessen Inhalte kontrolliert gelöscht werden. Die Lokalisierung, das Sperren und Löschen der mobilen Devices sollte deshalb auch über die Luftschnittstelle möglich sein.

Herausforderung BYOD

Eine weitere Sicherheitshürde ist zu bewältigen, wenn das Unternehmen seinen Mitarbeitern die berufliche Nutzung ihrer privaten Geräte erlaubt: In solchen BYOD-Szenarien (BYOD = Bring Your Own Device) ist die strikte Trennung privater und geschäftlicher Daten ein Muss. Während Unternehmen stets im Auge behalten müssen, welche geschäftskritischen Daten ihre Mitarbeiter erheben, verarbeiten und nutzen, müssen deren private Daten privat bleiben. Hier haben sich Container-Lösungen etabliert. Diese stellen sicher, dass die Anwendungen und ihre Daten in einem abgeschotteten Umfeld (Container) – sauber getrennt voneinander – laufen.

Mit einer Container-Lösung lässt sich beispielsweise verhindern, dass Firmeninformationen per Copy & Paste auf Facebook oder Twitter landen. Ein Zugriff aus dem Firmenkontext auf die private Facebook- oder Twitter-App wäre damit schlichtweg nicht möglich. Durch Container lassen sich somit viele Schwachstellen eliminieren.

Für einen absolut sicheren, rollenbasierten Datenaustausch hochsensibler Dokumente empfiehlt sich die Einrichtung eines Secure Data Rooms. Dieser ist vollständig isoliert und durch multiple Sicherheitsstandards vor unbefugten Zugriffen gesichert. Dem Secure Data Room sind Rollenrechte hinterlegt, so dass nur bestimmte, authentifizierte Nutzergruppen auf diesen Raum zugreifen können. So lässt sich zum Beispiel für die Vorstandsebene ein Secure Data Room anlegen, in dem Geschäftsberichte und Verträge abgelegt und – je nach erlaubten Bearbeitungsstufen – eingesehen oder auch bearbeitet werden können.

In Zusammenarbeit mit IBM

 

Hyperkonvergenz: Mehr Intelligenz für das Rechenzentrum

Wer heute dafür verantwortlich ist, die IT-Infrastruktur seines Unternehmens oder einer Organisation zu steuern, der steht vor einer ganzen Reihe Herausforderungen: Skalierbar, beliebig flexibel und mit möglichst kurzer „time-to-market“ für neue Services – so sollte es sein. Die Anforderungen an Kapazität und Rechenpower können sich schnell ändern. Mit steigenden Nutzerzahlen oder neuen Anwendungen, die geliefert werden sollen. Weder Kunden noch Management haben Zeit oder Verständnis dafür, dass neue Dienste wegen neuer Hardwareanforderungen nur langsam oder mit langem Vorlauf ausgerollt werden können.

Unternehmen wollen deshalb schnell und flexibel auf neue Anforderungen und Produkterweiterungen reagieren können. Dabei kommt in der Praxis häufig sehr heterogene Infrastruktur zum Einsatz: On-Premise-Systeme vor Ort, externe Data Center und Cloud-Lösungen müssen zuverlässig, nahtlos und insbesondere auch sicher die Services bereit stellen, die Kunden oder Mitarbeiter nutzen. Wichtig dabei: die Storage- und Computing-Kapazität sollte flexibel skalierbar sein und sich auch kurzfristig geänderten Anforderungen und Prioritäten anpassen können. Zum Beispiel: Innerhalb von kurzer Zeit deutlich mehr virtuelle Desktopsysteme für User bereit stellen.

Smarte Software für Rechenzentren

Der beste Weg für den CIO und die IT-Abteilung, diese neuen Herausforderungen zu lösen, sind „Hyperkonvergenz“-Systeme. Dabei handelt es sich um kombinierte Knoten für Storage und Computing-Leistung im Rechenzentrum, die dank smarter Software beliebig erweitert oder ausgetauscht werden können. Hierbei handelt es sich um SDS-Systeme („Software defined Storage“) – die Speicherkapazität und Rechenleistung der einzelnen Systeme wird von der Software smart abstrahiert und gebündelt.

Das Unternehmen Cisco zeigt, wie die Zukunft im Rechenzentrum aussehen wird: die neue Plattform HyperFlex setzt genau hier an. Wie der Name andeutet, bietet HyperFlex eine Hyperkonvergenz-Plattform für das Rechenzentrum auf Basis von Intel® Xeon® Prozessoren*. Der Kern ist hier die Software, die auf dem eigenen Filesystem „HX Data Platform“ aufsetzt. Damit erweitern Kunden ihr bestehendes System schnell und einfach. Diese Hyperkonvergenz-Lösung ist darauf ausgelegt, nicht als Silo parallel zu bereits bestehender Infrastruktur zu stehen, sondern zu einem Teil der bestehenden Hard- und Software zu werden.

Denn die Verwaltung von HyperFlex-Knoten ist in Ciscos bestehendem UCS Management integriert. So dauert es nur wenige Minuten, bis neue Nodes zu einem System hinzugefügt sind. Nach wenigen Klicks sind die zusätzlichen Knoten installiert, konfiguriert, provisioniert und somit live in Betrieb. Besonders hilfreich für dynamische Unternehmen: HyperFlex macht es sehr einfach möglich, im Betrieb selektiv Storage-, RAM-c oder Computing-Kapazität zu erweitern – unabhängig voneinander.  Sollten Knoten ausfallen, verkraftet das System dies ohne Ausfall oder Datenverlust.

Weiterführende Informationen zu den Cisco HyperFlex Systemen finden Sie mit einem Klick hier.

Dieser Sponsored Post entstand in Zusammenarbeit mit Cisco & Intel.

*Intel, the Intel logo, Xeon, and Xeon Inside are trademarks or registered trademarks of Intel Corporation in the U.S. and/or other countries.

Mobilgeräte-Administration – Testen Sie Ihr Wissen zum Mobile Device Management!

Ordnung im Chaos

Der Wildwuchs an Mobilgeräten und Betriebssystemen erschwert in vielen Unternehmen deren Administration – und die Integration in die bestehende IT-Landschaft. Doch wie lässt sich Ordnung ins Chaos bringen?

Smartphones, Tablets, Notebooks, dazu IOS, Android, Blackberry und Windows – angesichts der Vielfalt an Geräten und Betriebssystemen wird deren Administration und Sicherheit für die IT zunehmend zum Problem. Kaum ein Unternehmen kommt daher heute um das Thema “Mobile Device Management” (MDM) herum, denn all diese Mobilgeräte mit ihren diversen Betriebssystemen “von Hand” zu administrieren und auf demselben Sicherheitsniveau zu halten ist so gut wie unmöglich.

Moderne MDM-Lösungen helfen, die heterogene Geräteflotte in den Griff zu bekommen und sie wie die klassischen stationären IT-Geräte zentral zu konfigurieren und zu verwalten. Sie bieten Unterstützung auf drei Ebenen: Auf der untersten Ebene geht es um die reine Verwaltung der Devices, darüber folgt das Management der Daten und oben ist die Überwachung und Sicherheit der Gerätenutzung angesiedelt.

In der Regel ist die Durchsetzung der unternehmens- und branchenspezifischen Sicherheitsrichtlinien für sämtliche mobilen Endgeräte, die im und für das Unternehmen im Einsatz sind, das wichtigste Motiv für die Anschaffung einer MDM-Lösung. Aber nicht für jedes Unternehmen sind alle Ebenen wichtig. So spielt bei manchen beispielsweise das Thema Sicherheit nur eine untergeordnete Rolle – etwa, weil keinerlei Anschluss an die Infrastruktur zugelassen wird und die Geräte einfach nur verwaltet werden sollen. Doch auch für diesen Fall hat eine MDM-Lösung einen erheblichen Nutzwert.

Einfach und sicher verwalten

Auf Administrationsebene geht es bei MDM darum, bekannte Funktionen aus dem stationären Umfeld auch für mobile Devices anzubieten. Die Mobilgeräteflotte sollte sich ebenso einfach und sicher verwalten lassen wie die klassische IT. Zu diesen Grundfunktionen gehören das Erfassen und Anlegen eines neuen Mobilgeräts, die automatische Verteilung von Software und die Umsetzung von Unternehmensrichtlinien. Idealerweise lässt sich ein MDM-System mit bestehenden Verzeichnissen wie dem Active Directory und anderen Unternehmensressourcen verbinden, was Vieles vereinfacht.

Verschiedene Nutzerrollen, zum Beispiel für Geschäftsführung, Marketing und Vertrieb, Controlling oder IT, können angelegt und die entsprechenden Zugriffsrechte individuell angepasst werden. Auch sollte ein MDM-System mit Personalzugängen wie -abgängen umgehen und das erforderliche Aufspielen beziehungsweise Löschen von Unternehmensdaten und -software auf den Geräten automatisch ausführen können.

Das alles erfolgt idealerweise über eine zentrale Konsole. Über diese wird das Device auch mit den definierten Richtlinien (Policies) verknüpft und im Anschluss mit der darauf basierenden Grundkonfiguration, Zertifikaten und Ähnlichem beschickt. Im laufenden Betrieb sorgt dann ein MDM-Client auf dem Device für Sicherheit und die Einhaltung der Regeln.

In Zusammenarbeit mit IBM.

Interview – Data Science in der FinTech-Branche

Christian Rebernik ist CTO bei Number 26 und zuständig für die technische Entwicklung dieses FinTech-Unternehmens. Er studierte Informatik und Wirtschaftsinformatik und kann auf langjährige Erfahrung als Software-Entwickler zurückgreifen. Seit etwa 2010 war er als CTO und CIO bei diversen eCommerce-christian-rebernikUnternehmen, u.a. bei Immobilien.net (heute ImmobilienScout24), PARSHIP und Zanox, tätig und gilt daher als ein etablierter IT-Manager, der seine Kenntnisse als Mentor des Axel Springer Plug and Play Accelerators weitergibt.

Data Science Blog: Herr Rebernik, wie sind Sie als CTO zum FinTech Number26 gekommen?

Ich durfte die Gründer im Accelerator 2013 als Mentor begleiten. Damals war das Produkt ausgelegt auf Teenager als Zielgruppe. 2014 änderten die Gründer Valentin und Maximilian das Produkt auf Number26, ein mobile-first Gehaltskonto mit Mastercard und der Vision das weltbeste Bankerlebnis zu bieten. Damit hatten sie aus meiner Sicht den richtigen Nerv der Zeit getroffen. Mein Erfahrung mit Banken war nicht positiv bis dato. Number26 hat aus meiner Sicht das Potential Bankwesen zu verändern.

Data Science Blog: Die FinTech-Szene möchte vieles besser machen als traditionelle Banken. Welche Rolle spielt Data Science dabei?

Beim Online-Banking etablierter Banken erhält man meistens nur eine reine Ansicht des Bankkontos, quasi eine statische und nicht kundenorientierte Darstellung des Kontostandes und der Kontotransaktionen. Wir glauben, diese Auflistung ohne Intelligenz ist nicht ausreichend und wenig auf den Kundenutzen fokussiert, mit der heutigen Technik kann man deutlich mehr bieten.
Unser Ziel ist es, eine der besten Customer Experience zu schaffen. Dank moderner Technologien haben wir viele unterschiedliche Möglichkeiten, um das zu erreichen. Eine davon ist es Smart Banking anzubieten, hier kommt Data Science ins Spiel.

Data Science Blog: Wofür nutzt Number26 Data Science genau?

Wir starten in Sachen Data Science jetzt erst voll durch. Unser erster Data Scientist wurde letztes Jahr im Oktober eingestellt. Unser Team ist also noch im Aufbau. Aktuell steht die sichere und number26appautomatisierte Kategorisierung von Finanztransaktionen bei uns im Fokus. Damit bieten wir den Nutzern leicht verständliche und genaue Auswertungen ihrer finanziellen Situation sowie eine Übersicht ihrer Einnahmen und Ausgaben. Interessanterweise gibt es unseres Wissens nach noch keine Bank, die Transaktionen direkt für den Kundennutzen kategorisiert.
Abhängig von der Transaktionsart nutzen wir unterschiedliche Methoden des maschinellen Lernens, die wir für die Erkennung der übergeordneten Kategorie verwenden.

Data Science Blog: Welche Machine Learning Methoden kommen zum Einsatz? Und wo finden die Analysen statt?

Wir haben mehrere ML-Methoden ausprobiert und durch eine Prototyping-Phase hinsichtlich ihrer Treffgenauigkeit bewertet. Wir setzen auf Amazon Webservices (AWS) und nutzen das Amazon Machine Learning Framework, auf dem wir auch unsere Modelle testen und Algorithmen erstellen. Der Input ist beispielsweise eine Kontotransaktion.
Unsere Algorithmen versuchen dieses dann zu kategorisieren. Daraus gewinnen wir zusätzliche Informationen, die wir unseren Kunden als Mehrwert anbieten.
Handelt es sich um eine Peer-to-Peer-Transaktion, wenn beispielsweise ich einem Freund Geld überweise, parsen wir den Verwendungszweck und nutzen Textmustererkennung zur Kategorisierung der Überweisung. Dazu splitten wir den Überweisungstext in einzelne Wörter auf, deren Bedeutung über Wörterbücher erkannt werden. Dadurch entstehen Kategorien, die vom Nutzer auch manuell nachträglich geändert werden können. Dieses Nutzerfeedback fließt in den Algorithmus zurück und wird in zukünftige Kategorisierungen mit einbezogen. Wir arbeiten nach mehreren Experimenten nun vermehrt mit Vector Spacing Modellen, wie dem k-Nearest-Neighbour-Algorithmus, über zurzeit 12 Achsen (Vektordimensionen). Jeder Vektor stellt eine Eigenschaft einer Transaktion dar, beispielsweise Geldbetrag, Verwendungszweck, Empfänger oder Währung. Je näher die Eigenschaften, die im Vektorraum als Punkte dargestellt werden, an den Eigenschaften anderer Finanztransaktion im selben Vektorraum liegen, desto wahrscheinlicher ist die Gemeinsamkeit als Kategorie.
Natürlich gibt es immer wieder False-Positives, die die eigentliche Herausforderung in Data Science darstellen. Beispielsweise lassen sich seltene Transaktionen wie die Zahnarztrechnung nur schwer trainieren. Wir trainieren unsere Kategorisierung der Banktransaktionen unter Einbeziehung der MasterCard-Kreditkartentransaktionen. Alle Vertragspartner bei MasterCard müssen einige Angaben mahcen, z.B. welche Art von Händler sie sind, Das hilft natürlich bei der Kategorisierung.

Data Science Blog: Der Beruf des Data Scientist wurde schon öfter als„Sexiest Job des 21. Jahrhunderts“ zitiert, gilt das auch in der Finanzindustrie?

Wir als FinTech-Unternehmen sind technologiegetrieben und in unserer Branche macht es wirklich Spaß, Probleme des Finanzalltags zu lösen. Neue Lösungen anzubieten, auf die vorher noch niemand gekommen ist, ist zwar nicht jedermanns Sache, unser Schlag Menschen entwickelt aber genau dafür die größte Leidenschaft.

Data Science Blog: Was sind Ihrer Meinung nach die alltäglichen Aufgaben eines Data Scientists und welche Skills sollte ein Data Scientist dafür mitbringen?

Die Arbeit als Data Scientist ist meines Erachtens dreigeteilt: ein Drittel Datenaufbereitung, ein Drittel Software-Entwicklung und ein Drittel Analyse.
Zum ersten Drittel gehört die Sichtung der Daten und Identifikation der Datenqualität. Ein Data Scientist muss aber auch Software-Entwickler sein und ein Verständnis für Software-Architekturen mitbringen. Große Datenmengen lassen sich nur über skalierbare Anwendungen auswerten. Wichtige Hilfsmittel und Testumgebungen müssen dafür selbst entwickelt werden.
Für die Analyse ist ein gutes Verständnis von Mathematik unumgänglich. Hinzu kommt ein ausgezeichnetes Verständnis für das Kerngeschäft des Unternehmens, in unserem Fall das Finanzwesen, um dementsprechend relevante Analysen durchzuführen.

Intelligence Gathering

Beispiele für Data Science stehen häufig im Kontext von innovativen Internet-StartUps, die mit entsprechenden Methoden individuelle Kundenbedürfnisse in Erfahrung bringen. Es gibt jedoch auch eine Dunkle Seite der Macht, auf die ich nachfolgend über ein Brainstorming eingehen möchte.

Was ist Intelligence Gathering?

Unter Intelligence Gathering wird jegliche legale und illegale Beschaffung von wettbewerbsentscheidenden Informationen verstanden, von traditioneller Marktforschung bis hin zur Wirtschaftsspionage. Unter Intelligence Gathering fallen die Informationsbeschaffung und die Auswertung, wobei nicht zwangsläufig elektronische Beschaffungs- und Auswertungsszenarien gemeint sind, auch wenn diese den Großteil der relevanten Informationsbeschaffung ausmachen dürften.

Welche Data Science Methoden kommen zum Einsatz?

Alle. Unter dem Oberbegriff von Intelligence Gathering fallen die vielfältigsten Motive der Informationsgewinnung um Wettbewerbsvorteile zu erzielen. Genutzt werden statistische Datenanalysen, Process Mining, Predictive Analytics bis hin zu Deep Learning Netzen. Viele Einsatzzwecke bedingen ein gutes Data Engineering vorab, da Daten erstmal gesammelt, häufig in großen Mengen gespeichert und verknüpft werden müssen. Data Scraping, das Absammeln von Daten aus Dokumenten und von Internetseiten, kommt dabei häufig zum Einsatz. Dabei werden manchmal auch Grenzen nationaler Gesetze überschritten, wenn z. B. über die Umgehung von Sicherheitsmaßnahmen (z. B. IP-Sperren, CAPTCHA, bis hin zum Passwortschutz) unberechtigte Zugriffe auf Daten erfolgen.

Welche Daten werden beispielsweise analysiert?

  • Social-Media-Daten
  • Freie und kommerzielle Kontaktdatenbanken
  • Internationale Finanzdaten (Stichwort: SWIFT)
  • Import-Export-Daten (Stichworte: PIERS, AMS)
  • Daten über Telefonie und Internetverkehr (Sitchwort: Vorratsdatenspeicherung)
  • Positionsdaten (z. B. via GPS, IPs, Funkzellen, WLAN-Mapping)
  • Daten über den weltweiten Reiseverkehr (Stichworte: CRS, GDS, PNR, APIS)

Das volle Potenzial der Daten entfaltet sich – wie jeder Data Scientist weiß – erst durch sinnvolle Verknüpfung.

Welche Insights sind beispielsweise üblich? Und welche darüber hinaus möglich?

Übliche Einblicke sind beispielsweise die Beziehungsnetze eines Unternehmens, aus denen sich wiederum alle wichtigen Kunden, Lieferanten, Mitarbeiter und sonstigen Stakeholder ableiten lassen. Es können tatsächliche Verkaufs- und Einkaufskonditionen der fremden Unternehmen ermittelt werden. Im Sinne von Wissen ist Macht können solche Informationen für eigene Verhandlungen mit Kunden, Lieferanten oder Investoren zum Vorteil genutzt werden. Häufiges Erkenntnisziel ist ferner, welche Mitarbeiter im Unternehmen tatsächliche Entscheider sind, welche beruflichen und persönlichen Vorlieben diese haben. Dies ist auch für das gezielte Abwerben von Technologieexperten möglich.

Darüber hinaus können dolose Handlungen wie etwa Bestechung oder Unterschlagung identifiziert werden. Beispielsweise gab es mehrere öffentlich bekannt gewordene Aufdeckungen von Bestechungsfällen bei der Vergabe von Großprojekten, die US-amerikanische Nachrichtendienste auf anderen Kontinenten aufgedeckt haben (z. B. der Thomson-Alcatel-Konzern Korruptionsfall in Brasilien). Die US-Politik konnte dadurch eine Neuvergabe der Projekte an US-amerikanische Unternehmen erreichen.

Welche Akteure nutzen diese Methoden der Informationsgewinnung?

Die Spitzenakteure sind Nachrichtendienste wie beispielsweise der BND (Deutschland), die CIA (USA) und die NSA (USA).  In öffentlichen Diskussionen und Skandalen ebenfalls im Rampenlicht stehende Geheimdienste sind solche aus Frankreich, Großbritanien, Russland und China. Diese und andere nationale Nachrichtendienste analysieren Daten aus öffentlich zugänglichen Systemen, infiltrieren aber auch gezielt oder ungezielt fremde Computernetzwerke. Die Nachrichtendienste analysieren Daten in unterschiedlichsten Formen, neben Metadaten von z. B. Telefonaten und E-Mails auch umfangreiche Textinformationen, Bild-/Videomaterial sowie IT-Netzwerkverkehr. Der weltweit eingeschlagene Weg zur vernetzten Welt (Internet of Things) wird Intelligence Gathering weiter beflügeln.

[box]Anmerkung: Open Data Analytics

Eine Informationsquelle, die selbst von Experten häufig unterschätzt wird, ist die Möglichkeit der Gewinnung von Erkenntnissen über Märkte, Branchen und Unternehmen durch die Auswertung von öffentlich zugänglichen Informationen, die in gedruckter oder elektronischer Form in frei zugänglichen Open-Data-Datenbanken und Internetplattformen verfügbar gemacht werden, aber beispielsweise auch über Radio, Zeitungen, Journalen oder über teilweise frei zugängliche kommerzielle Datenbanken.[/box]

Die Nachrichtendienste analysieren Daten, um nationale Gefahren möglichst frühzeitig erkennen zu können. Längst ist jedoch bekannt, dass alle Nachrichtendienste zumindest auf internationaler Ebene auch der Wirtschaftsspionage dienen, ja sogar von Regierungen und Konzernen direkt dazu beauftragt werden.

Internet-Giganten wie Google, Baidu, Microsoft (Bing.com) oder Facebook haben Intelligence Gathering, häufig aber einfach als Big Data oder als Datenkrake bezeichnet, zu einem Hauptgeschäftszweck gemacht und sind nicht weit von der Mächtigkeit der Nachrichtendienste entfernt, in einigen Bereichen diesen vermutlich sogar deutlich überlegen (und zur Kooperation mit diesen gezwungen).

Finanzdienstleister wie Versicherungen und Investmentbanker nutzen Intelligence Gathering zur Reduzierung ihrer Geschäftsrisiken. Weitere Akteure sind traditionelle Industrieunternehmen, die auf einen Wettbewerbsvorteil durch Intelligence Methoden abzielen.

Nachfolgend beschränke ich mich weitgehend auf Intelligence Gathering für traditionelle Industrieunternehmen:

competitive-intelligence-wirtschaftsspionage

Industrielle Marktforschung

Die Industrielle Marktforschung ist eine auf bestimmte Branchen, Produkt- oder Kundengruppen spezialisierte Marktforschung die vor allem auf die Analyse des Kundenverhaltens abzielt. Diese kann auf vielen Wegen, beispielsweise durch gezielte Marktbeobachtung oder statistische Analyse der durch Kundenbefragung erhobenen Daten erfolgen. Customer Analytics und Procurement Analytics sind zwei Anwendungsgebiete für Data Science in der industriellen Marktforschung.

Business Intelligence und Competitive Intelligence

Der Begriff Business Intelligence ist aus der modernen Geschäftswelt nicht mehr wegzudenken. Business Intelligence bezeichnet die Analyse von unternehmensinternen und auch -externen Daten, um das eigene Unternehmen benchmarken zu können, eine Transparenz über die Prozesse und die Leistungsfähigkeit des Unternehmens zu erreichen. Das Unternehmen reflektiert sich mit Business Intelligence selbst.

Competitive Intelligence nutzt sehr ähnliche, in den überwiegenden Fällen genau dieselben Methoden, jedoch nicht mit dem Ziel, ein Abbild des eigenen, sondern ein Abbild von anderen Unternehmen zu erstellen, nämlich von direkten Konkurrenten des eigenen Unternehmens oder auch von strategischen Lieferanten oder Zielkunden.

Motivationen für Competitive Intelligence

Die Motivationen für die genaue Analyse von Konkurrenzunternehmen können sehr vielfältig sein, beispielsweise:

  • Ermittlung der eigenen Wettbewerbsposition für ein Benchmarking oder zur Wettbewerberprofilierung
  • (Strategische) Frühwarnung/-aufklärung
  • Due Diligence bei Unternehmenskauf oder Bewertung von Marktzugangschancen
  • Chancen-/Risikoanalyse für neue Angebote/Absatzregionen
  • Issues Monitoring (für das eigene Unternehmen relevante Themen)
  • Analyse von Kundenanforderungen
  • Satisfaction Surveys (eigene und Wettbewerberkunden bzw. -zulieferer)
  • Bewertung von Zulieferern (Loyalität, Preisgestaltung, Überlebensfähigkeit)

Viele dieser Anwendungsszenarien sind nicht weit weg von aktuellen Business Intelligence bzw. Data Science Projekten, die öffentlich kommuniziert werden. Beispielsweise arbeiten Data Scientists mit aller Selbstverständlichkeit im Rahmen von Procurement Analytics daran, Lieferantennetzwerke hinsichtlich der Ausfallrisiken zu analysieren oder auch in Abhängigkeit von Marktdaten ideale Bestellzeitpunkte zu berechnen. Im Customer Analytics ist es bereits Normalität, Kundenausfallrisiken zu berechnen, Kundenbedürfnisse und Kundenverhalten vorherzusagen. Die viel diskutierte Churn Prediction, also die Vorhersage der Loyalität des Kunden gegenüber dem Unternehmen, grenzt an Competetitve Intelligence mindestens an.

Wirtschaftsspionage

Während Competititve Intelligence noch mit grundsätzlich legalen Methoden der Datenbeschaffung und -auswertung auskommt, ist die Wirtschaftsspionage eine Form der Wirtschaftskriminalität, also eine illegale Handlung darstellt, die strafrechtliche Konsequenzen haben kann. Zur Wirtschaftsspionage steigern sich die Handlungen dann, wenn beispielsweise auch interne Dokumente oder der Datenverkehr ohne Genehmigung der Eigentümer abgegriffen werden.

Beispiele für Wirtschaftsspionage mit Unterstützung durch Data Science Methoden ist die Analyse von internen Finanztransaktionsdaten, des Datenverkehrs (über Leitungen oder Funknetze) oder des E-Mail-Verkehrs. Neue Methoden aus den Bereichen Machine Learning / Deep Learning werden auch die Möglichkeiten der Wirtschaftsspionage weiter beflügeln, beispielsweise durch Einsatz von gezielter Schrift-/Spracherkennung in Abhör-Szenarien.

Strafrechtliche Bewertung und Verfolgung

Die strafrechtliche Verfolgung von datengetriebener Wirtschaftsspionage ist in der Regel schwierig bis praktisch unmöglich. Zu Bedenken gilt zudem, dass Datenabgriffe und -analysen mit Leichtigkeit in anderen Nationen außerhalb der lokalen Gesetzgebung durchgeführt werden können.

Nicht zu vergessen: Data Science ist stets wertfrei zu betrachten, denn diese angewandte Wissenschaft kann zur Wirtschaftsspionage dienen, jedoch genauso gut auch bei der Aufdeckung von Wirtschaftsspionage helfen.

Literaturempfehlungen

Folgende Bücher sind Quellen für einen tieferen Einblick in Intelligence Gathering und die Möglichkeiten von Data Science zur Informationsbeschaffung.


Wirtschaftsspionage und Intelligence Gathering: Neue Trends der wirtschaftlichen Vorteilsbeschaffung

Data Mining and Predictive Analysis: Intelligence Gathering and Crime Analysis