Interview – Process Mining ist ein wichtiger Treiber der Prozessautomatisierung

Interview mit Prof. Scheer, Erfinder des etablierten ARIS-Konzepts, über die Bedeutung von Big Data für die Prozessoptimierung

Prof. Dr. Dr. h.c. mult. August-Wilhelm Scheer

Copyright – Scheer GmbH

Prof. Dr. Dr. h.c. mult. August-Wilhelm Scheer war Gründer der IDS Scheer AG und Direktor des von ihm gegründeten Instituts für Wirtschaftsinformatik an der Universität des Saarlandes in Saarbrücken. Es ist der Erfinder des bekannten ARIS-Konzeptes und heute Alleingesellschafter und Beiratsvorsitzender der Scheer GmbH (www.scheer-group.com), einem Consulting- und Software-Haus in Saarbrücken. Daneben gehören zur Scheer Gruppe  Beteiligungen an Start- up Unternehmen.

Data Science Blog: Herr Prof. Scheer, Sie sind der Erfinder des ARIS-Konzepts in den 90er-Jahren, mit dem viele Unternehmen in den darauffolgenden Jahren ihr betriebliches Informationssystem überarbeiten konnten. Auch heute arbeiten viele Unternehmen an der Umsetzung dieses Konzepts. Was hat sich heute verändert?

Prof. Scheer: Auch heute noch bilden Prozessmodelle die Grundlage der digitalen Prozessautomatisierung, indem sie menschliche Arbeitsleistung innerhalb der Modelle durch IT ­Systeme unterstützen oder ersetzen. Die Scheer GmbH setzt diesen modellgetriebenen Ansatz erfolgreich in großen BPM und SAP ­Einführungsprojekten ein. Hierfür wurden in den vergangenen Jahren industriespezifische Referenzmodelle entwickelt, die unter der Bezeichnung „Performance Ready“ eine beachtliche Beschleunigung hervorbringen.

Weitere Treiber der Automatisierung sind die technische Weiterentwicklung der IT, insbesondere durch prozessorientierte Architekturen der Anwendungssoftware, sowie Big Data, Data Mining, Cloud Computing und Hardware ­Infrastruktur. Gleichzeitig werden neuere Forschungsergebnisse zu Modellierungsmethoden, der Künstlichen Intelligenz und Data Mining zunehmend in der Praxis der digitalen Geschäftsprozessorganisation umgesetzt.

Data Science Blog: Zu Zeiten der ARIS-Einführung steckte die Geschäftswelt, insbesondere die Industrie, gerade im Trend zum Lean Management. Heute ist es ähnlich mit dem Trend zu Big Data und Analytics. Welche Synergien gibt es hier im Kontext von Data Analytics?

Prof. Scheer: Mit der Implementierung einer lauffähigen Prozesslösung ist der enge BPM ­Ansatz von der  Problemerkennung bis zum lauffertigen Anwendungssystem abgeschlossen. In der Realität können jedoch auch unvorhergesehenen Abweichungen auftreten oder Störungen entstehen. Derartige Abweichungen begründen das Interesse an der Auswertung realer Prozessinstanzen. Die automatische Suche in Datenbeständen, um unerwartete Muster und Zusammenhänge zu erkennen und diese in gut verständlicher, häufig grafischer Form aufzubereiten, wird generell als Datamining bezeichnet und gehört zum Gebiet der Data Analytics. Wird dieses Vorgehen auf Geschäftsprozesse angewendet, so wird es als Process Mining bezeichnet. Es geht also  darum, die Spuren der Geschäftsprozesse während ihrer Ausführung in einer Logdatei zu erfassen und ihr Verhalten zu beobachten (Monitoring).

Data Science Blog: Welche Anwendungsfälle sind mit Process Mining zu bewältigen? Und welche Mehrwerte werden Ihrer Erfahrung nach daraus generiert?

Prof. Scheer: Beim Process Mining generiert ein komplexer Algorithmus aus den Datenspuren der Logdatei von Anwendungssystemen automatisch ein Ist-­Prozessmodell. Aus den Vergleichen des bestehenden Soll-­Modells mit den Datenspuren der Logdatei und des generierten Ist-Modells werden Abweichungen ermittelt. Diese werden analysiert, um das Soll-Modell an die Realität anzupassen und organisatorische Verbesserungsvorschläge zu entwickeln. Process Mining kann Auskunft geben, ob bei der Prozessausführung Compliance ­Regeln eingehalten oder verletzt werden, an welchen Stellen Kapazitätsengpässe entstehen, ob von vorgesehenen Kapazitätszuordnungen abgewichen wurde, wie sich Durchlaufzeiten und Qualität verhalten usw.. Die Ergänzung des BPM ­Ansatzes um das Process Mining, insbesondere auch durch den Einsatz von KI ­Techniken, führt zu einer neuen Qualität des Prozessmanagements und wird deshalb als intelligentes BPM (iBPM) bezeichnet.

Data Science Blog: Welche analytischen Methoden kommen zum Einsatz und auf welche Software-Technologien setzen Sie dabei?

Prof. Scheer: Das Process Mining wird gegenwärtig wissenschaftlich intensiv mit formalen Methoden bearbeitet. Ziel dieser Forschungen ist es, das Process Mining durch Entwicklung komplexer Algorithmen nahezu vollständig zu automatisieren. Der Verzicht auf den Einsatz menschlichen Fachwissens führt aber z. T. zu einer überhöhten Komplexität der Algorithmen für Aufgaben, die ein erfahrener Prozessmanager intuitiv leicht und besser erledigen kann. Hier ist eine Kombination aus Automatik und Fachwissen sinnvoller. Die Unternehmen der Scheer Gruppe legen den Fokus auf die Modellierung und das mehr strategische BPM und sehen Process Mining als Ergänzung dieses Ansatzes. Die Software „Scheer Process Mining“ folgt diesem Ansatz und sieht sie als Ergänzung ihrer modellbasierten BPMS ­Software „Scheer BPaaS“ und „Scheer E2EBridge“. Weiterhin unterstützen unsere Berater in vielen Projekten das Produkt „ARIS PPM“ der Software AG.

Data Science Blog: Sind die datengetriebenen Prozessanalysen vorerst abgeschlossen, geht es an die Umsetzung der Verbesserungen. Wie unterstützen Sie Unternehmen dabei, diese herbei zu führen? Und in wie weit können datengetriebene Entscheidungssysteme realisiert werden, die die Vision des autonomen Unternehmens im Sinne der Industrie 4.0 einen Schritt näher bringen?

Prof. Scheer: Sowohl langfristige strategische BPM Projekte als auch kurzfristig taktische Umsetzungen aus Process Mining Aktivitäten werden von der Scheer Gruppe unterstützt. Aber wir schauen auch in die Zukunft. Im Rahmen von Machine Learning werden Algorithmen entwickelt, die aus Beobachtungen ein Systemverhalten erkennen (lernen), um es dann für Prognosen auszuwerten. Als bekannteste Verfahren sind künstliche neuronale Netze zu nennen. Diese bilden Funktionen des menschlichen Gehirns ab. Interessante Anwendungsfälle gibt es bereits in der Fertigung. An Produktionsanlagen werden heute zahlreiche Sensoren angebracht, die Temperatur, Schwingungen, Energieverbrauch usw. kontinuierlich messen. Diese Datenströme können als Input ­Größen von neuronalen Netzen ausgewertet und zu Prognosen genutzt werden. Das Unternehmen IS ­Predict, das zur Scheer Gruppe gehört, hat dazu eigene Algorithmen auf Basis von KI entwickelt und führt seit Jahren erfolgreich Projekte zu Predictive Maintenance und zur vorausschauenden Qualitätssteuerung durch. 

Data Science Blog: Process Mining ist somit ein spannendes Zukunftsthema. Unter welchen Rahmenbedingungen sollten derartige Projekte durchgeführt werden? Was sind Ihrer Erfahrung nach die Kriterien zum Erfolg?

Prof. Scheer: Zunächst ist es sehr wichtig, das Thema aus der Business-Perspektive anzugehen und sich nicht zu früh mit technologischen Fragen auseinanderzusetzen: Welche Fragen sollen durch Process Mining beantwortet werden? Welche Informationsquellen werden hierfür benötigt?

Zu Beginn des Projekts sollte zunächst eine konkrete Aufgabenstellung angegangen werden, die auch von ihrer Größenordnung gut zu bewältigen ist. Je konkreter die Aufgabenstellung gewählt wird, desto größer ist die Erfolgswahrscheinlichkeit und umso schneller kann ein ROI erzielt werden. Natürlich bedeutet dies nicht, das „große Ganze“ zu vernachlässigen. Auch bei der Einführung von Process Mining gilt der Grundsatz „think big, start small“.

Data Science Blog: Datengetriebene Prozessanalysen bedingen interdisziplinäres Wissen. Welche Tipps würden Sie einem Prozessmanager geben, der sich in die Thematik einarbeiten möchte?

Prof. Scheer: Die Grundvoraussetzung für die Einführung von Process Mining ist ein gutes Verständnis aller Aspekte des Geschäftsmodells.  Darauf aufbauend sollte ein guter Überblick der Unternehmensprozesse und ihrer Ausprägung in den verschiedenen Unternehmensbereichen vorhanden sein. Immer wichtiger wird in diesem Zusammenhang das Thema der verschiedenen Arten von Daten und wie sie entlang der Prozesse entstehen bzw. angewendet werden. Hierbei sind für Process Mining insbesondere zwei Arten von Daten relevant:  Kennzahlen, die bei der Ausführung der Prozesse entstehen, die sog. Prozesskennzahlen oder Process KPIs. Neben den Process KPIs können mit Process Mining fachliche Daten, die während der Ausführung der Prozesse erfasst oder manipuliert werden, betrachtet werden. Mit den Process Mining Produkten von Scheer können beide Arten von Daten analysiert werden. Der Einstieg in die Datenanalyse erfolgt über das Process Analytics Dashboard. Weitergehende Informationen zu den Details der Prozesse liefert dann das Modul Process Explorer.

Benjamin Aunkofer

Benjamin Aunkofer ist Lead Data Scientist bei DATANOMIQ und Hochschul-Dozent für Data Science und Data Strategy. Darüber hinaus arbeitet er als Interim Head of Business Intelligence und gibt Seminare/Workshops zu den Themen BI, Data Science und Machine Learning für Unternehmen.

0 replies

Leave a Reply

Want to join the discussion?
Feel free to contribute!

Leave a Reply

Your email address will not be published. Required fields are marked *

16885 Views