Interview – Erfolgreicher Aufbau einer Data Science Kompetenz

Kompetenzen mit erfahrenen Partnern aufbauen

Data Science Blog: Könnten Unternehmen die Projekte nicht einfach in den jeweiligen Fachbereichen direkt selbst umsetzen? Oder in der zentralen Unternehmens-IT-Abteilung?

Für die Datenanalyse braucht man Experten, also Data Scientists. Die gibt es in vielen Fachabteilungen zunächst nicht, und oft auch noch nicht in der zentralen IT. Da ist es ein guter Weg, die Kompetenzen beim eigenen Personal in Kooperationsprojekten mit erfahrenen Partnern aufzubauen.

Data Science Blog: Sie bieten bei Fraunhofer ein sogenanntes „Data Science Starter Toolkit“ an, wofür brauchen Unternehmen ein weiteres Toolkit?

Bevor sie in eine Big-Data-Plattform investieren und sich damit längerfristig binden, können Unternehmen in diesem Toolkit eine breite Palette aktueller Big Data- und In-Memory-Technologien  erproben und sich hier beraten lassen. Außerdem erleichtert das Toolkit die nicht-kommerzielle Kooperation mit akademischen Partnern. Das ist besonders in der Anfangsphase interessant, wenn überhaupt erst das Potenzial in den eigenen Daten exploriert werden soll.

Data Science Blog: Sie bearbeiten Anwendungsfälle unterschiedlicher Branchen. Können sich Branchen die Anwendungsfälle gegenseitig abschauen oder sollte jede Branche auf sich selbst fokussiert bleiben?

Gute Branchenkenntnis ist für uns unerlässlich, denn jede Branche hat ihre Besonderheiten, etwa was die Prozesse oder auch die Datenquellen anbelangt. Dennoch können sich Unternehmen an Best-Practice-Beispielen aus anderen Branchen orientieren. Darum arbeiten wir auch in der Fraunhofer-Allianz Big Data instituts- und branchenübergreifend zusammen. Unsere Kunden schätzen es gerade in der Bratungs- und Ideenfindungsphase, wenn sie über den Tellerrand schauen können und Beispiele aus anderen Branchen vorgestellt bekommen. Außerdem lassen sich externe Datenquellen in verschiedenen Branchen nutzen: Social Media, Mobilfunkdaten, Wikipedia, Nachrichtenkanäle.  Schließlich erwarten wir im Bereich des Deep Learning, dass man bild-, sprach- und textverarbeitende Module in Zukunft vortrainieren und dann mit weniger Aufwand auf die Anwendung spezialisieren kann.

Data Science Blog: Welche Trends im Bereich Machine Learning bzw. Deep Learning werden Ihrer Meinung nach im kommenden Jahr 2017 von Bedeutung sein?

Schon heute ist das maschinelle Lernen die Schlüsseltechnik für die Echtzeitanalyse von Big Data, also die Überwachung und Automatisierung von Prozessen jeglicher Art. Deep Learning erschließt aktuell insbesondere unstrukturierte Datenmengen, also die bekannte Dimension „Variety“. Die Technik rund um Deep Learning ist aktuell verantwortlich für die jüngsten Erfolge im Bereich der Künstlichen Intelligenz: maschinelles Sehen, Text- und Sprachverstehen, Text- und Sprachproduktion, maschinelle Übersetzung. Damit werden zunehmend intelligente Geräte gebaut und Systeme entwickelt, die uns einerseits Routine-Sacharbeiten und -Entscheidungen abnehmen und uns andererseits als Assistenten begleiten und beraten. In Zukunft werden wir immer weniger auf graphische Benutzeroberflächen angewiesen sein, sondern sprechen oder chatten mit smarten Geräten, Umgebungen und Assistenzsystemen.

Data Science Blog: Es heißt, dass Data Scientists gerade an ihrer eigenen Arbeitslosigkeit arbeiten, da zukünftige Verfahren des maschinellen Lernens Data Mining selbstständig durchführen können. Werden die Tools Data Scientists bald ersetzen?

Auf keinen Fall. In industriellen Datenanalyseprojekten gehen ja bis zu 80% des Aufwands in die Erarbeitung der Aufgabenstellung, in Datenexploration und -vorverarbeitung. Und die Digitalisierung und das Internet der Dinge werden uns noch auf viele Jahre hinaus mit neuen Fragestellungen versorgen. Methoden des Reinforcement-Lernens, die Feedback nutzen, um selbstständig weiter zu lernen, sind Gegenstand aktiver Forschung.  Praktisch stellt sich da auch die Frage, wie Reaktionen der Umwelt überhaupt als Feedback zu interpretieren sind. Und schließlich stellt sich das Problem der Haftung. In einigen Anwendungsbereichen werden wir selbstlernende Systeme vorerst ausschließen, bis sichergestellt werden kann, dass sie sich kein unerwünschtes Verhalten aneignen.  Solche Systeme zu bauen wird eine neue Kompetenz von Data Scientists sein.

Benjamin Aunkofer

Benjamin Aunkofer ist Lead Data Scientist bei DATANOMIQ und Hochschul-Dozent für Data Science und Data Strategy. Darüber hinaus arbeitet er als Interim Head of Business Intelligence und gibt Seminare/Workshops zu den Themen BI, Data Science und Machine Learning für Unternehmen.

0 replies

Leave a Reply

Want to join the discussion?
Feel free to contribute!

Leave a Reply

Your email address will not be published. Required fields are marked *

12405 Views