Data Science vs Data Engineering

Das Berufsbild des Data Scientsts ist gerade erst in Deutschland angekommen, da kommen schon wieder neue Jobbezeichnungen auf uns zu. “Ist das wirklich notwendig?”, wird sich so mancher fragen. Aber die Antwort lautet ganz klar: ja!

Welcher Data Scientist kennt das nicht: ein Recruiter ruft an, spricht von einer tollen neuen Herausforderung für einen Data Scientist wie man es sich ja offensichtlich auf seinem LinkedIn-Profil für sich beansprucht, doch bei der Besprechung der Vakanz stellt sich schnell heraus, dass man über fast keine der geforderten Skills verfügt. Dieser Mismatch liegt vor allem daran, dass unter den Job des Data Scientist alle möglichen Tätigkeitsprofile, Methoden- und Tool-Wissen zusammengefasst werden, die ein einzelner Mensch kaum in seinem Leben lernen kann.

Viele offene Jobs, die unter der Bezeichnung Data Science besetzt werden sollen, beschreiben eher das Berufsbild des Data Engineers.


english-flagRead this article in English:
“Data Scientist vs Data Engineer – What is the Difference?”


Was macht ein Data Engineer?

Im Data Engineering geht es vor allem darum, Daten zu sammeln bzw. zu generieren, zu speichern, historisieren, aufzubereiten, anzureichern und nachfolgenden Instanzen zur Verfügung zu stellen. Ein Data Engineer, je nach Rang oft auch als Big Data Engineer oder Big Data Architect bezeichnet, modelliert skalierbare Datenbank- und Datenfluss-Architekturen, entwickelt und verbessert die IT-Infrastruktur hardware- und softwareseitig, befasst sich dabei auch mit Themen wie IT-Security, Datensicherheit und Datenschutz. Ein Data Engineer ist je nach Bedarf teilweise Administrator der IT-Systeme und auch ein Software Entwickler, denn er erweitert die Software-Landschaft bei Bedarf um eigene Komponenten. Neben den Aufgaben im Bereich ETL / Data Warehousing, führt er auch Analysen durch, zum Beispiel solche, um die Datenqualität oder Nutzerzugriffe zu untersuchen.

Ein Data Engineer arbeitet vor allem mit Datenbanken und Data Warehousing Tools.

Ein Data Engineer ist tendenziell ein ausgebildeter Ingenieur/Informatiker und eher weit vom eigentlichen Kerngeschäft des Unternehmens entfernt. Die Karrierestufen des Data Engineers sind in der Regel:

  1. (Big) Data Architect
  2. BI Architect
  3. Senior Data Engineer
  4. Data Engineer

Was macht ein Data Scientist?

Auch wenn es viele Überschneidungspunkte mit dem Tätigkeitsfeld des Data Engineers geben mag, so lässt sich der Data Scientist dadurch abgrenzen, dass er seine Arbeitszeit möglichst dazu nutzt, die zur Verfügung stehenden Daten explorativ und gezielt zu analysieren, die Analyseergebnisse zu visualisieren und in einen roten Faden einzuspannen (Storytelling). Anders als der Data Engineer, bekommt ein Data Scientist ein Rechenzentrum nur selten zu Gesicht, denn er zapft Daten über Schnittstellen an, die ihm der Data Engineer bereitstellt.

Ein Data Scientist befasst sich mit mathematischen Modellen, arbeitet vornehmlich mit statistischen Verfahren und wendet sie auf die Daten an, um Wissen zu generieren. Gängige Methoden des Data Mining, Machine Learning und Predictive Modelling sollten einem Data Scientist bekannt sein, wobei natürlich jeder ganz individuell Schwerpunkte setzt. Data Scientists arbeiten grundsätzlich nahe am Fachbereich und benötigen entsprechendes Fachbereichswissen. Data Scientists arbeiten mit proprietären Tools (z. B. von IBM, SAS oder QlikTech) und programmieren Analysen auch selbst, beispielsweise in Scala, Java, Python, Julia oder R.

Data Scientists können vielfältige akademische Hintergründe haben, einige sind Informatiker oder Ingenieure für Elektrotechnik, andere sind Physiker oder Mathematiker, nicht wenige auch Wirtschaftswissenschaftler.

  1. Chief Data Scientist
  2. Senior Data Scientist
  3. Data Scientist
  4. Data Analyst oder Junior Data Scientist

Data Scientist vs Data Analyst

Oft werde ich gefragt, wo eigentlich der Unterschied zwischen einem Data Scientist und einem Data Analyst läge bzw. ob es dafür überhaupt ein Unterscheidungskriterium gäbe:

Meiner Erfahrung nach, steht die Bezeichnung Data Scientist für die neuen Herausforderungen für den klassischen Begriff des Data Analysten. Ein Data Analyst betreibt Datenanalysen wie ein Data Scientist, komplexere Themen, wie Predictive Analytics und Machine Learning bzw. künstliche Intelligenz, sind aber eher was für den Data Scientist. Ein Data Scientist ist sozusagen ein Data Analyst++.

Und ein Business Analyst?

Business Analysten können (müssen aber nicht) auch Data Analysten sein. In jedem Fall haben sie einen sehr starkem Bezug zum Fachbereich bzw. zum Kerngeschäft des Unternehmens. Im Business Analytics geht es um die Analyse von Geschäftsmodellen und Geschäftserfolgen. Gerade die Analyse von Geschäftserfolgen geschieht in der Regel IT-gestützt und da setzen viele Business Analysten an. Dashboards, KPIs und SQL sind das Handwerkszeug eines guten Business Analysten.

 

Interview – Big Data in der Industrie

Thomas Schott, CIO der Rehau GruppeThomas Schott ist seit den 01. Oktober 2011 als CIO für die REHAU Gruppe tätig. Kompetenz und Innovationsfreude haben REHAU zum führenden System- und Service-Anbieter polymerbasierter Lösungen in den Bereichen Bau, Automotive und Industrie gemacht. Höchste Professionalität von der Materialentwicklung bis zur Ausführung sowie die Leidenschaft für das faszinierende unbegrenzte Nutzenpotenzial polymerer Werkstoffe sind für REHAU Grundvoraussetzung, um als führende Premiummarke weltweit erfolgreich zu sein.
In 2008 wurde Herr Schott mit dem erstmals verliehenen „Green CIO Award“ ausgezeichnet. 2010 wurde er außerdem bei der Wahl zum „CIO des Jahres“ in der Kategorie „Global Exchange Award“ mit dem 3. Platz ausgezeichnet und landete in 2012 in der Kategorie Großunternehmen wieder unter den Top 6.

Data Science Blog: Herr Schott, welcher Weg hat Sie an die Spitze der IT bei REHAU geführt?

Ich hatte ursprünglich Elektrotechnik mit dem Schwerpunkt Datenverarbeitung an der TU München studiert und startete meine Karriere bei REHAU bereits im Jahr 1990. Schnell war ich in leitender Funktion für verschiedene IT-Bereiche zuständig und habe die Standardisierung, Konsolidierung und durchgängige Virtualisierung der IT-Systemlandschaft maßgeblich vorangetrieben. Die IT- und Collaboration-Systeme für weltweit mehr als 170 Niederlassungen der REHAU Gruppe laufen nun in einer konsolidierten Private Cloud, ein sehr wichtiges Ziel für das Unternehmen um schnell und flexibel agieren zu können.

Data Science Blog: Big Data und Industrie 4.0 gelten derzeit als zwei der größten Technologie-Trends, dabei scheint jede Branche diesen Begriff für sich selbst zu interpretieren. Was bedeutet Big Data für Sie? Wie sieht Big Data aus der Perspektive der verarbeiten Industrie aus?

An einer allumfassenden Definition mangelt es noch, unsere Bestrebungen zur Industrie 4.0 liegen unter anderem in den Themengebieten Predictive Maintenance, Qualitätsdatenmanagement, mobile Apps bis hin zur Lieferkette (Kunden und Lieferanten). Big Data ist dabei ein wichtiger Treiber für Industrie 4.0 und auch ein eigenes Thema, welches auch außerhalb der Produktion eine Rolle spielt.
Für die produzierende Industrie erlangt Big Data eine immer größere Bedeutung, denn es fallen immer mehr Produktionsdaten und Daten aus der Qualitätssicherung an. Wir sammeln unternehmensintern bereits Daten in solcher Vielfalt und Masse, Big Data ist bereits Realität, und das obwohl wir externe Daten noch gar nicht thematisiert haben.

Data Science Blog: Der Trend ist also seinem Ende noch nicht nahe?

Nein, denn abgesehen von Unternehmen, deren Kerngeschäft Industrie 4.0 Lösungen selbst sind, steht die traditionelle Industrie und unsere gesamte Branche in Sachen Produktionsdatenanalyse und Big Data Analytics eher noch am Anfang.

Data Science Blog: Sie haben die unternehmensweite Cloud bei REHAU bereits erfolgreich umgesetzt, führt an der Digitalisierung kein Weg um Cloud Computing herum?

Wir haben seit zehn Jahren den Ansatz einer Private Cloud konsequent verfolgt. Ein Unternehmen unserer Größe kommt um eine ausgeklügelte und konsolidierte Could-Sourcing Strategie nicht herum. Dazu gehören jedoch auch festgelegte Standards für die Nutzung.

Data Science Blog: Gerade beim Thema Cloud zucken jedoch viele Entscheider zusammen und verweisen auf Risiken für die Datensicherheit. Wie gehen Sie mit dem Thema um – Und bremsen diese Maßnahmen das Engagement, Daten zusammen zu führen und auszuwerten?

Datensicherheit wird ein immer wichtigeres Thema und wir sensibilisieren unsere internen Kunden und IT-Anwender dafür. Im Zuge der rasanten Entwicklung im Umfeld Industrie 4.0 und Industrialisierung benötigen wir zeitnah valide und zielführende Nutunzgsstandards für Cloud und Big Data Lösungen.

Data Science Blog: Wenn Sie von Analyse sprechen, denken Sie vor allem an die rückblickende Analyse oder eine solche in nahezu Echtzeit?

An beides gleichermaßen, denn je nach Problemstellung oder Optimierungsbestrebungen ist das richtige Analyseverfahren anzuwenden.

Data Science Blog: Kommen die Bestrebungen hin zur Digitalisierung und Nutzung von Big Data gerade eher von oben aus dem Vorstand oder aus der Unternehmensmitte, also aus den Fachbereichen, heraus?

In der traditionellen Industrie kommen die Bemühungen überwiegend vom Vorstand und mir als CIO. Es ist unsere Aufgabe, existierende und kommende Trends rechtzeitig zu erkennen. Big Data und Industrie 4.0 werden immer wichtiger. Es ist wettbewerbsentscheidend, hier am Ball zu bleiben. Und das nicht nur für die eigene Kosten- und Prozessoptimierung, sondern auch, um sich am Markt zu differenzieren. Wir müssen diese Technologien und Methoden in unseren Fachbereichen etablieren und die dafür notwendige Veränderungsbereitschaft anregen.

Data Science Blog: Finden die Analysen in den Fachbereichen oder in einer zentralen Stelle statt?

Das hängt sehr von den einzelnen Analysen und dem damit verbundenen Aufwand ab. Die Einrichtung eines zentralen Datenlabors mit der entsprechenden Kompetenz und ausgebildeten Daten Scientists ist allerdings ein guter Weg, um komplexe Analysen, für die die Fachbereiche keine Kapazitäten / Skills haben, experimentell umsetzen zu können.

Data Science Blog: Für die Data Scientists, die Sie für Ihre zukünftigen Umsetzungen von Big Data Analysen suchen, welche Kenntnisse setzen Sie voraus? Und suchen Sie eher den introvertierten Nerd oder den kommunikationsstarken Beratertyp?

Ein Data Scientist sollte meines Erachtens sehr gute Kenntnisse über moderne Datenbanken sowie Erfahrung in der Auswertung von unstrukturierte Daten haben, aber auch viel Kreativität für die Darstellung von Sachverhalten mitbringen und auch mal „querdenken können“.
Wir suchen eher Experten aus der Informatik und Mathematik, aber auch kommunikative, kreative Spezies und neugierige Menschen, die jedoch auch eine ausgeprägte analytische Denkweise aufweisen sollten.