Posts

Interview: Operationalisierung von Data Science

Interview mit Herrn Dr. Frank Block von Roche Diagnostics über Operationalisierung von Data Science

Herr Dr. Frank Block ist Head of IT Data Science bei Roche Diagnostics mit Sitz in der Schweiz. Zuvor war er Chief Data Scientist bei der Ricardo AG nachdem er für andere Unternehmen die Datenanalytik verantwortet hatte und auch 20 Jahre mit mehreren eigenen Data Science Consulting Startups am Markt war. Heute tragen ca. 50 Mitarbeiter bei Roche Diagnostics zu Data Science Projekten bei, die in sein Aktivitätsportfolio fallen: 

Data Science Blog: Herr Dr. Block, Sie sind Leiter der IT Data Science bei Roche Diagnostics? Warum das „IT“ im Namen dieser Abteilung?

Roche ist ein großes Unternehmen mit einer großen Anzahl von Data Scientists in ganz verschiedenen Bereichen mit jeweils sehr verschiedenen Zielsetzungen und Themen, die sie bearbeiten. Ich selber befinde mich mit meinem Team im Bereich „Diagnostics“, d.h. der Teil von Roche, in dem Produkte auf den Markt gebracht werden, die die korrekte Diagnose von Krankheiten und Krankheitsrisiken ermöglichen. Innerhalb von Roche Diagnostics gibt es wiederum verschiedene Bereiche, die Data Science für ihre Zwecke nutzen. Mit meinem Team sind wir in der globalen IT-Organisation angesiedelt und kümmern uns dort insbesondere um Anwendungen von Data Science für die Optimierung der internen Wertschöpfungskette.

Data Science Blog: Sie sind längst über die ersten Data Science Experimente hinaus. Die Operationalisierung von Analysen bzw. analytischen Applikationen ist für Sie besonders wichtig. Welche Rolle spielt das Datenmanagement dabei? Und wo liegen die Knackpunkte?

Ja, richtig. Die Zeiten, in denen sich Data Science erlauben konnte „auf Vorrat“ an interessanten Themen zu arbeiten, weil sie eben super interessant sind, aber ohne jemals konkrete Wertschöpfung zu liefern, sind definitiv und ganz allgemein vorbei. Wir sind seit einigen Jahren dabei, den Übergang von Data Science Experimenten (wir nennen es auch gerne „proof-of-value“) in die Produktion voranzutreiben und zu optimieren. Ein ganz essentielles Element dabei stellen die Daten dar; diese werden oft auch als der „Treibstoff“ für Data Science basierte Prozesse bezeichnet. Der große Unterschied kommt jedoch daher, dass oft statt „Benzin“ nur „Rohöl“ zur Verfügung steht, das zunächst einmal aufwändig behandelt und vorprozessiert werden muss, bevor es derart veredelt ist, dass es für Data Science Anwendungen geeignet ist. In diesem Veredelungsprozess wird heute noch sehr viel Zeit aufgewendet. Je besser die Datenplattformen des Unternehmens, umso größer die Produktivität von Data Science (und vielen anderen Abnehmern dieser Daten im Unternehmen). Ein anderes zentrales Thema stellt der Übergang von Data Science Experiment zu Operationalisierung dar. Hier muss dafür gesorgt werden, dass eine reibungslose Übergabe von Data Science an das IT-Entwicklungsteam erfolgt. Die Teamzusammensetzung verändert sich an dieser Stelle und bei uns tritt der Data Scientist von einer anfänglich führenden Rolle in eine Beraterrolle ein, wenn das System in die produktive Entwicklung geht. Auch die Unterstützung der Operationalisierung durch eine durchgehende Data Science Plattform kann an dieser Stelle helfen.

Data Science Blog: Es heißt häufig, dass Data Scientists kaum zu finden sind. Ist Recruiting für Sie tatsächlich noch ein Thema?

Generell schon, obwohl mir scheint, dass dies nicht unser größtes Problem ist. Glücklicherweise übt Roche eine große Anziehung auf Talente aus, weil im Zentrum unseres Denkens und Handelns der Patient steht und wir somit durch unsere Arbeit einen sehr erstrebenswerten Zweck verfolgen. Ein zweiter Aspekt beim Aufbau eines Data Science Teams ist übrigens das Halten der Talente im Team oder Unternehmen. Data Scientists suchen vor allem spannenden und abwechselnden Herausforderungen. Und hier sind wir gut bedient, da die Palette an Data Science Anwendungen derart breit ist, dass es den Kollegen im Team niemals langweilig wird.

Data Science Blog: Sie haben bereits einige Analysen erfolgreich produktiv gebracht. Welche Herausforderungen mussten dabei überwunden werden? Und welche haben Sie heute noch vor sich?

Wir konnten bereits eine wachsende Zahl an Data Science Experimenten in die Produktion überführen und sind sehr stolz darauf, da dies der beste Weg ist, nachhaltig Geschäftsmehrwert zu generieren. Die gleichzeitige Einbettung von Data Science in IT und Business ist uns bislang gut gelungen, wir werden aber noch weiter daran arbeiten, denn je näher wir mit unseren Kollegen in den Geschäftsabteilungen arbeiten, umso besser wird sichergestellt, das Data Science sich auf die wirklich relevanten Themen fokussiert. Wir sehen auch guten Fortschritt aus der Datenperspektive, wo zunehmend Daten über „Silos“ hinweg integriert werden und so einfacher nutzbar sind.

Data Science Blog: Data Driven Thinking wird heute sowohl von Mitarbeitern in den Fachbereichen als auch vom Management verlangt. Sind wir schon so weit? Wie könnten wir diese Denkweise im Unternehmen fördern?

Ich glaube wir stecken mitten im Wandel, Data-Driven Decisions sind im Kommen, aber das braucht auch seine Zeit. Indem wir zeigen, welches Potenzial ganz konkrete Daten und Advanced Analytics basierte Entscheidungsprozesse innehaben, helfen wir, diesen Wandel voranzutreiben. Spezifische Weiterbildungsangebote stellen eine andere Komponente dar, die diesen Transformationszrozess unterstützt. Ich bin überzeugt, dass wenn wir in 10-20 Jahren zurückblicken, wir uns fragen, wie wir überhaupt ohne Data-Driven Thinking leben konnten…

Seeing the Big Picture: Combining Enterprise Architecture with Process Management

Ever tried watching a 3D movie without those cool glasses people like to take home? Two hours of blurred flashing images is no-one’s idea of fun. But with the right equipment, you get an immersive experience, with realistic, clear, and focused images popping out of the screen. In the same way, the right enterprise architecture brings the complex structure of an organization into focus.

We know that IT environments in today’s modern businesses consist of a growing number of highly complex, interconnected, and often difficult-to-manage IT systems. Balancing customer service and efficiency imperatives associated with social, mobile, cloud, and big data technologies, along with effective day-to-day IT functions and support, can often feel like an insurmountable challenge.

Enterprise architecture can help organizations achieve this balance, all while managing risk, optimizing costs, and implementing innovations. Its main aim is to support reform and transformation programs. To do this, enterprise architecture relies on the accuracy of an enterprise’s complex data systems, and takes into account changing standards, regulations, and strategic business demands.

Components of effective enterprise architecture

In general, most widely accepted enterprise architecture frameworks consist of four interdependent domains:

  • Business Architecture

A blueprint of the enterprise that provides a common understanding of the organization, and used to align strategic objectives and tactical demands. An example would be representing business processes using business process management notation.

  • Data Architecture

The domain that shows the dependencies and connections between an organization’s data, rules, models, and standards.

  • Applications Architecture

The layer that shows a company’s complete set of software solutions and their relationships with each other.

  • Infrastructure Architecture

Positioned at the lowest level, this component shows the relationships and connections of an organization’s existing hardware solutions.

Effective EA implementation means employees within a business can build a clear understanding of the way their company’s IT systems execute their specific work processes, as well as how they interact and relate to each other. It allows users to identify and analyze application and business performance, with the goal of enabling underperforming IT systems to be promptly and efficiently managed.

In short, EA helps businesses answer questions like:

  • Which IT systems are in use, and where, and by whom?
  • Which business processes relate to which IT systems?
  • Who is responsible for which IT systems?
  • How well are privacy protection requirements upheld?
  • Which server is each application run on?

The same questions, shifted slightly to refer to business processes rather than IT systems, are what drive enterprise-level business process management as well. Is it any wonder the two disciplines go together like popcorn and a good movie?

Combining enterprise architecture with process management

Successful business/IT alignment involves effectively leveraging an organization’s IT to achieve company goals and requirements. Standardized language and images (like flow charts and graphs) are often helpful in fostering mutual understanding between highly technical IT services and the business side of an organization.

In the same way, combining EA with collaborative business process management establishes a common language throughout a company. Once this common ground is established, misunderstandings can be avoided, and the business then has the freedom to pursue organizational or technical transformation goals effectively.

At this point, strengthened links between management, IT specialists, and a process-aware workforce mean more informed decisions become the norm. A successful pairing of process management, enterprise architecture, and IT gives insight into how changes in any one area impact the others, ultimately resulting in a clearer understanding of how the organization actually functions. This translates into an easier path to optimized business processes, and therefore a corresponding improvement in customer satisfaction.

Effective enterprise architecture provides greater transparency inside IT teams, and allows for efficient management of IT systems and their respective interfaces. Along with planning continual IT landscape development, EA supports strategic development of an organization’s structure, just as process management does.

Combining the two leads to a quantum leap in the efficiency and effectiveness of IT systems and business processes, and locks them into a mutually-reinforcing cycle of optimization, meaning improvements will continue over time. Both user communities can contribute to creating a better understanding using a common tool, and the synergy created from joining EA and business process management adds immediate value by driving positive changes company-wide.

Want to find out more? Put on your 3D glasses, and test your EA initiatives with Signavio! Sign up for your free 30-day trial of the Signavio Business Transformation Suite today.

Das Gesamtbild im Fokus: Enterprise Architecture und Prozessmanagement verbinden

Haben Sie jemals versucht, einen 3D-Film ohne 3D-Brille zu schauen? Zwei Stunden undeutliche Bilder zu sehen, ist alles andere als ein Vergnügen. Doch mit der richtigen Ausrüstung genießen Sie ein beeindruckendes Erlebnis mit realistischen, klaren und scharfen Aufnahmen. Auf die gleiche Weise rückt die richtige Enterprise Architecture die komplexe Struktur einer Organisation in den Mittelpunkt des Geschehens.

Die IT-Umgebungen moderner Unternehmen bestehen aus einer wachsenden Anzahl hochkomplexer, miteinander verbundener und oft schwierig zu verwaltender IT-Systeme. Und so scheint es häufig eine unüberwindliche Herausforderung zu sein, eine Balance zwischen Kundenservice und Effizienzanforderungen herzustellen. Dies gilt insbesondere im Zusammenhang mit Social-, Mobile-, Cloud- und Big-Data-Technologien und effektiven täglichen IT-Funktionen und -Support.

Die Unternehmensarchitektur kann Organisationen dabei helfen, dieses Gleichgewicht herzustellen und zugleich Risiken zu handhaben, Kosten zu optimieren und Innovationen einzuführen. Hier steht vor allem die erfolgreiche Umsetzung von Reform- und Transformationsprogrammen im Fokus. Dabei stützt sich die Unternehmensarchitektur auf die Genauigkeit der komplexen Datensysteme eines Unternehmens. Zugleich berücksichtigt sie      die sich ändernden Standards, Vorschriften und strategischen Geschäftsanforderungen.

Komponenten einer effektiven Enterprise Architecture

Im Allgemeinen bestehen Unternehmensarchitektur-Frameworks aus vier voneinander abhängigen Disziplinen:

  • Geschäftsarchitektur

Der Blueprint des Unternehmens, der ein allgemeines Verständnis der Organisation vermittelt und dazu dient, strategische Ziele und taktische Anforderungen aufeinander abzustimmen. Ein Beispiel hierfür ist die Abbildung von Geschäftsprozessen mithilfe von Business Process Management Notation.

  • Datenarchitektur

Die Domäne, die die Abhängigkeiten und Verbindungen zwischen den Daten, Richtlinien, Modellen und Standards einer Organisation aufzeigt.

  • Anwendungsarchitektur

Die Ebene, die alle Softwarelösungen eines Unternehmens und ihre Beziehungen untereinander aufzeigt.

  • Infrastrukturarchitektur

Diese Komponente befindet sich auf der untersten Architekturebene und zeigt die Beziehungen und Verbindungen der vorhandenen Hardwarelösungen eines Unternehmens auf.

Eine effektive EA-Implementierung bedeutet, dass Unternehmensmitarbeiter ein klares Verständnis dafür entwickeln, wie die IT-Systeme ihres Unternehmens die spezifischen Arbeitsprozesse ausführen und in welcher Verbindung sie zueinanderstehen. Sie ermöglicht Benutzern, die Anwendungs- und Business-Leistung zu analysieren und leistungsschwache IT-Systeme schnell und effizient in Angriff zu nehmen.

Kurz gesagt: EA hilft Unternehmen bei der Beantwortung von Fragen wie:

  • Welche IT-Systeme werden von wem wo genutzt?
  • Welche Geschäftsprozesse stehen mit welchem IT-System in Verbindung?
  • Wer ist für welche IT-Systeme verantwortlich?
  • Wie gut werden die Datenschutzanforderungen eingehalten?
  • Auf welchem ​​Server werden die jeweiligen Anwendungen ausgeführt?

Dieselben Fragen können auch auf die Geschäftsprozesse angewandt werden und bestimmen in diesem Fall das Business Process Management auf Unternehmensebene. Kein Wunder also, dass die beiden Disziplinen zusammenpassen wie Popcorn und ein guter Film, oder?

Enterprise Architecture und Prozessmanagement verbinden

Für die erfolgreiche Ausrichtung von Business und IT müssen die IT-Lösungen eines Unternehmens effektiv genutzt werden. So können sie die Unternehmensziele und -Anforderungen erfüllen. Standardisierte Sprache und Bilder (wie Flussdiagramme und Grafiken) sind oftmals hilfreich, um eine gemeinsame Brücke zwischen dem Fachbereich und der IT zu schaffen.

Auf die gleiche Weise sorgt die Kombination aus EA und kollaborativem Business Process Management für eine gemeinsame Sprache im gesamten Unternehmen. Eine solche Basis ermöglicht es, Missverständnisse zu vermeiden und organisatorische oder technische Transformationsziele effektiv zu verfolgen.

Eine stärkere Verknüpfung von Management, IT und einer prozessorientierten Belegschaft führt dazu, dass fundiertere Entscheidungen zur Norm werden. Eine erfolgreiche Kombination aus Prozessmanagement, Unternehmensarchitektur und IT gibt nicht nur Aufschluss darüber, wie sich Änderungen in einem Bereich auf die anderen Gebiete auswirken, sondern sorgt letztendlich auch für ein besseres Verständnis der tatsächlichen Funktionsweise des Unternehmens. Dies führt wiederum zu einer leichteren Optimierung der Geschäftsprozesse und einer damit einhergehenden höheren Kundenzufriedenheit.

Eine effektive Unternehmensarchitektur bietet IT-Teams mehr Transparenz und ermöglicht eine effiziente Verwaltung der IT-Systeme und ihrer jeweiligen Schnittstellen. Neben der Planung der kontinuierlichen Entwicklung der IT-Landschaft unterstützt EA – ebenso wie das Process Management – auch die strategische Entwicklung der Organisationsstruktur.

Mit der Kombination aus Enterprise Architecture und Process Management profitieren Sie von neuen Maßstäben in den Bereichen effiziente  IT-Systeme und Geschäftsprozesse sowie synchrone Optimierung und kontinuierliche Verbesserungen. Die Nutzung eines Tools für Enterprise Architecture und Business Process Management bringt Business und IT näher zusammen und erzeugt Synergien, die unmittelbaren Mehrwert schaffen und positive Veränderungen im gesamten Unternehmen vorantreiben.

Möchten Sie mehr erfahren? Setzen Sie auf 3-D-Ansichten und verleihen Sie Ihren EA-Initiativen mehr Tiefe mit Signavio! Registrieren Sie sich noch heute für eine kostenlose 30-Tage-Testversion der Business Transformation Suite.