DS-GVO: Wie das moderne Data-Warehouse Unternehmen entlastet
Artikel des Blog-Sponsors: Snowflake
Viele Aktivitäten, die zur Einhaltung der DS-GVO-Anforderungen beitragen, liegen in den Händen der Unternehmen selbst. Deren IT-Anbieter sollten dazu beitragen, die Compliance-Anforderungen dieser Unternehmen zu erfüllen. Die SaaS-Anbieter eines Unternehmens sollten zumindest die IT-Sicherheitsanforderungen erfüllen, die sich vollständig in ihrem Bereich befinden und sich auf die Geschäfts- und Datensicherheit ihrer Kunden auswirken.
Snowflake wurde von Grund auf so gestaltet, dass die Einhaltung der DS-GVO erleichtert wird – und von Beginn darauf ausgelegt, enorme Mengen strukturierter und semistrukturierter Daten mit der Leichtigkeit von Standard-SQL zu verarbeiten. Die Zugänglichkeit und Einfachheit von SQL gibt Organisationen die Flexibilität, alle unter der DS-GVO erforderlichen Aktualisierungen, Änderungen oder Löschungen nahtlos vorzunehmen. Snowflakes Unterstützung für semistrukturierte Daten kann die Anpassung an neue Felder und andere Änderungen der Datensätze erleichtern. Darüber hinaus war die Sicherheit von Anfang an von grundlegender Bedeutung für Architektur, Implementierung und Betrieb von Snowflakes Data-Warehouse-as-a-Service.
Ein Grundprinzip der DS-GVO
Ein wichtiger Faktor für die Einhaltung der DS-GVO ist, zu verstehen, welche Daten eine Organisation besitzt und auf wen sie sich beziehen. Diese Anforderung macht es nötig, dass Daten strukturiert, organisiert und einfach zu suchen sind.
Die relationale SQL-Datenbankarchitektur von Snowflake bietet eine erheblich vereinfachte Struktur und Organisation, was sicherstellt, dass jeder Datensatz einen eindeutigen und leicht identifizierbaren Speicherort innerhalb der Datenbank besitzt. Snowflake-Kunden können auch relationalen Speicher mit dem Variant-Spaltentyp von Snowflake für semistrukturierte Daten kombinieren. Dieser Ansatz erweitert die Einfachheit des relationalen Formats auf die Schema-Flexibilität semistrukturierter Daten.
Snowflake ist noch leistungsfähiger durch seine Fähigkeit, massive Nebenläufigkeit zu unterstützen. Bei größeren Organisationen können Dutzende oder sogar Hunderte nebenläufiger Datenänderungen, -abfragen und -suchvorgänge zu einem bestimmten Zeitpunkt auftreten. Herkömmliche Data-Warehouses können nicht zu einem bestimmten Zeitpunkt über einen einzelnen Rechen-Cluster hinaus skaliert werden, was zu langen Warteschlangen und verzögerter Compliance führt. Snowflakes Multi-Cluster-Architektur für gemeinsam genutzte Daten löst dieses Problem, indem sie so viele einzigartige Rechen-Cluster bereitstellen kann, wie für einen beliebigen Zweck nötig sind, was zu einer effizienteren Workload-Isolierung und höherem Abfragedurchsatz führt. Jeder Mitarbeiter kann sehr große Datenmengen mit so vielen nebenläufigen Benutzern oder Operationen wie nötig speichern, organisieren, ändern, suchen und abfragen.
Rechte von Personen, deren Daten verarbeitet werden („Datensubjekte“)
Organisationen, die von der DS-GVO betroffen sind, müssen sicherstellen, dass sie Anfragen betroffener Personen nachkommen können. Einzelpersonen haben jetzt erheblich erweiterte Rechte, um zu erfahren, welche Art von Daten eine Organisation über sie besitzt, und das Recht, den Zugriff und/oder die Korrektur ihrer Daten anzufordern, die Daten zu löschen und/oder die Daten an einen neuen Provider zu übertragen. Bei der Bereitstellung dieser Dienste müssen Organisationen ziemlich schnell reagieren, in der Regel innerhalb von 30 Tagen. Daher müssen sie ihre Geschäftssysteme und ihr Data-Warehouse schnell durchsuchen können, um alle personenbezogenen Daten zu finden, die mit einer Person in Verbindung stehen, und entsprechende Maßnahmen ergreifen.
Organisationen können in großem Umfang von der Speicherung aller Daten in einem Data-Warehouse-as-a-Service mit vollen DML- und SQL-Fähigkeiten profitieren. Dies erleichtert das (mühevolle) Durchsuchen getrennter Geschäftssysteme und Datenspeicher, um die relevanten Daten zu finden. Und das wiederum hilft sicherzustellen, dass einzelne Datensätze durchsucht, gelöscht, eingeschränkt, aktualisiert, aufgeteilt und auf andere Weise manipuliert werden können, um sie an entsprechende Anfragen betroffener Personen anzupassen. Außerdem können Daten so verschoben werden, dass sie der Anforderung einer Anfrage zum „Recht auf Datenübertragbarkeit“ entsprechen. Von Anfang an wurde Snowflake mit ANSI-Standard-SQL und vollständiger DML-Unterstützung entwickelt, um sicherzustellen, dass diese Arten von Operationen möglich sind.
Sicherheit
Leider erfordern es viele herkömmliche Data-Warehouses, dass sich Unternehmen selbst um die IT-Sicherheit kümmern und diese mit anderen Services außerhalb des Kernangebots kombiniert wird. Außerdem bieten sie manchmal noch nicht einmal standardmäßige Verschlüsselung.
Als Data-Warehouse, das speziell für die Cloud entwickelt wurde und das Sicherheit als zentrales Element bietet, umfasst Snowflake unter anderem folgende integrierte Schutzfunktionen:
- Minimaler Betriebsaufwand: Weniger Komplexität durch automatische Performance, Sicherheit und Hochverfügbarkeit, sodass die Infrastruktur nicht optimiert werden muss und kein Tuning nötig ist.
- Durchgängige Verschlüsselung: Automatische Verschlüsselung aller Daten jederzeit (in ruhendem und bewegtem Zustand).
- Umfassender Schutz: Zu den Sicherheitsfunktionen zählen Multi-Faktor-Authentifizierung, rollenbasierte Zugriffskontrolle, IP-Adressen-Whitelisting, zentralisierte Authentifizierung und jährliche Neuverschlüsselung verschlüsselter Daten.
- Tri-Secret Secure: Kundenkontrolle und Datenschutz durch die Kombination aus einem vom Kunden, einem von Snowflake bereitgestellten Verschlüsselungsschlüssel und Benutzerzugangsdaten.
- Unterstützung für AWS Private Link: Kunden können Daten zwischen ihrem virtuellen privaten Netzwerk und Snowflake übertragen, ohne über das Internet gehen zu müssen. Dadurch ist die Konnektivität zwischen den Netzwerken sicher und einfacher zu verwalten.
- Stärkere unternehmensinterne Datenabgrenzung dank Snowflake Data Sharing: Organisationen können die Datenfreigabefunktionen von Snowflake nutzen, um nicht personenbezogene Daten mit anderen Abteilungen zu teilen, die keinen Zugriff benötigen – indem sie strengere Sicherheits- und DS-GVO-Kontrollen durchsetzen.
- Private Umgebung: Unternehmen können eine dedizierte, verwaltete Snowflake- Instanz in einer separaten AWS Virtual Private Cloud (VPC) abrufen.
Rechenschaftspflicht
Was die Komplexität weiter erhöht: Organisationen müssen auch sicherstellen, dass sie und die Organisationen und Tools, mit denen sie arbeiten, Compliance nachweisen können. Snowflake prüft und verfeinert seine IT-Sicherheitspraxis regelmäßig mit peniblen Penetrationstests. Snowflakes Data-Warehouse-as-a-Service ist zertifiziert nach SOC 2 Type II, ist PCI-DSS-konform und unterstützt HIPAA-Compliance. Um Anfragen von Personen, deren Daten verarbeitet werden („Datensubjekte“), zu entsprechen, können Kunden genutzte Daten überprüfen.
Zusätzlich zu diesen Standardfunktionen und -validierungen schützt Snowflake seine Kunden auch durch den Datenschutznachtrag („Data Protection Addendum“), der genau auf die Anforderungen der DS-GVO abgestimmt ist. Snowflake hält sich außerdem an penibel vertraglich festgelegte Sicherheitsverpflichtungen („contractual security commitments“), um effizientere Transaktionen und eine vereinfachte Sorgfaltspflicht zu ermöglichen.
Fazit
Im Rahmen der Europäischen Datenschutz-Grundverordnung müssen Unternehmen technische Maßnahmen ergreifen, mit deren Hilfe sie den Anforderungen ihrer Kunden in Bezug auf Datenschutz und Schutz der Privatsphäre gerecht werden können. Snowflake bietet hier nicht nur den Vorteil, alle wichtigen Kundendaten an einem einzigen Ort zu speichern, sondern ermöglicht auch das schnelle Auffinden und Abrufen dieser Daten, sodass Unternehmen im Bedarfsfall schnell aktiv werden können.