Posts

KNN: Was sind künstliche neuronale Netze?

Ein künstliches neuronales Netzwerk (KNN) besteht aus vielen miteinander verbundenen künstlichen Neuronen. Die einzelnen Neuronen haben unterschiedliche Aufgaben und sind innerhalb von Schichten (layer) angeordnet. Sogenannte Netzwerk Topologien geben vor, wie viele Neuronen sich auf einer Schicht befinden und welche Neuronen miteinander vernetzt sind. Neuronale Netze werden im Bereich der künstlichen Intelligenz eingesetzt und sind ein Ansatz im Machine Learning, haben hier jedoch besondere Vor- und Nachteile.

Es gibt drei Schicht- und vier grundlegende Neuronen-Arten. Bei den Schichten wird unterschieden zwischen Eingabe-, Ausgabe- und verborgener Schicht (Visible, Output & Hidden Layer). Alle eingehenden Daten werden an den Eingabe-Neuronen (Visible Unit) in der Eingabeschicht angelegt. Diese wiederum geben die Daten weiter an die verbundenen Ausgabe- oder verborgenen Neuronen (Output, Hidden Unit). Zusätzlich kann in jeder Schicht noch ein Bias Neuron (Bias Unit) zum Einsatz kommen. Read more