Posts

Interview – Die Herausforderungen der Sensor-Datenanalyse für die Automobilindustrie

Interview mit Andreas Festl von VIRTUAL VEHICLE

Andreas Festl ist Data Scientist bei VIRTUAL VEHICLE, ein führendes F&E Zentrum für die Automobil- und Bahnindustrie mit Sitz in Graz, Österreich. Das Zentrum konzentriert sich auf die konsequente Virtualisierung der Fahrzeugentwicklung. Wesentliches Element dabei ist die Verknüpfung von numerischer Simulation und Hardware-Testen, welche ein umfassendes HW-SW Systemdesign sicherstellt. Herr Festl forscht dort an Kontext-basierten Informationssystemen für den Einsatz im Fahrzeug und in der Entwicklung. Er ist ausgebildeter Mathematiker, der sich schon früh dem Thema Data Science verschrieben hat. Zusätzlich ist Herr Festl in der Lehre für Data and Information Science an der Fachhochschule Joanneum tätig.

Data Science Blog: Herr Festl, Sie sind technischer Data Scientist und arbeiten mit Daten, die zum großen Teil von Maschinen generiert werden. Was unterscheidet Ihren Arbeitsalltag vermutlich von den Data Scientists, die sich mit geschäftlichen Daten befassen?

Das wesentliche Merkmal an den Daten, mit denen wir arbeiten, ist die nicht vernachlässigbare zeitliche Komponente. Stellen Sie sich zum Beispiel eine Messung der Fahrzeuggeschwindigkeit vor: Dieses Messsignal kann natürlich nur dann sinnvoll interpretiert und verarbeitet werden, wenn die Zeit mitberücksichtigt wird. Die bloße Kenntnis der einzelnen Geschwindigkeitswerte hilft Ihnen ohne die korrekte Abfolge nicht weiter. Das führt dazu, dass viele Algorithmen aus dem Bereich des maschinellen Lernens nicht direkt auf diesen Daten arbeiten können.

Es existieren hier natürlich dennoch viele Möglichkeiten und Ansätze dafür, Wissen aus den Daten zu gewinnen; diese werden jedoch scheinbar noch nicht so oft verwendet, weshalb die verfügbare Software meist nicht für industrielle, sondern für akademische Nutzer ausgelegt ist. Ein wesentlicher Teil meiner Arbeit besteht deshalb darin, die passenden Libraries zu finden und diese für unsere Use-Cases anzupassen oder die Methode neu zu implementieren. Es gibt durchaus immer wieder Zeiten in denen meine Job-Beschreibung „mathematischer Programmierer“ lauten sollte und nicht “Data Scientist“. Ich denke, das ist im klassischen Bereich, der sich geschäftlichen Daten beschäftigt, vielleicht nicht mehr so häufig, da dort die verfügbare Software schon sehr ausgreift ist.

Außerdem beschreiben unsere Daten oft komplexe technische Prozesse in Fahrzeugkomponenten. Hier ist eine rege Kommunikation mit den jeweiligen Domänenexperten unerlässlich, damit ich auch als fachfremder Data Scientist den Prozess, der die Daten erzeugt, zumindest in Grundzügen verstehen kann. Dieser kommunikative Teil, in dem man sehr viel über verschiedenste Fachbereiche erfährt, ist für mich einer der schönsten Aspekte meiner Arbeit.

Data Science Blog: Wenn Data Science einem Laien erklärt wird, kommen häufig Beispiele von Kaufempfehlungen oder Gesundheitsprognosen von Fitness-Apps zur Sprache. Welches Beispiel würden Sie im Kontext von Automotive verwenden?

Die Möglichkeiten für den Einsatz von Data Science im Automotive Bereich sind extrem vielfältig – sie kann eigentlich über den gesamten Lebenszyklus eines Fahrzeugs gewinnbringend eingesetzt werden. Ein Einsatzbeispiel, das der Fahrer direkt positiv erleben kann, wäre die Predictive Maintenance von Fahrzeugteilen. Ähnlich zu den von Ihnen angesprochenen Fitness-Apps geht es hier darum eine „Gesundheitsprognose“ für die einzelnen Fahrzeugteile anhand von Messwerten zu erstellen. Im Idealfall müssen Sie Ihr Auto dann nicht mehr in fixen Service-Intervallen in die Werkstatt stellen, sondern das Auto meldet sich automatisch kurz bevor ein Teil ausgetauscht werden muss. Diese Meldung erschiene dann deshalb, weil die Messwerte darauf schließen lassen, dass es bald zu einem Defekt kommen wird und nicht einfach nach einem fixen, vorher definierten Zeitraum. Heute werden ja Teile oft einfach deswegen ausgetauscht, weil es der Wartungsplan so vorsieht – unabhängig von ihrer tatsächlichen Abnutzung.

Data Science Blog: Was sind denn gegenwärtig besonders interessante Anwendungsfälle und an welchen arbeiten Sie für die Zukunft?

Aus Sicht der Anwendung finde ich es besonders spannend durch Sensor-Signale auf Eigenschaften des Fahrers zu schließen. Die Methodik dazu entwickeln wir gerade in aktuellen Projekten. Es ist zum Beispiel durchaus denkbar, sicherheitsrelevante Ereignisse und Fahrmanöver zu identifizieren. Diese Informationen können dann vielseitig verwendet werden. Einige Beispiele dazu: Verkehrsplaner könnten damit automatisiert besonders gefährliche Kreuzungen angezeigt bekommen, Versicherer könnten ihren Kunden auf das individuelle Risikoverhalten abgestimmte Produkte anbieten oder Kunden könnten sich Ihren Taxifahrer über eine App nach seinem Fahrstil aussuchen. Denkbar wäre auch eine Diebstahlsicherung: Das Fahrzeug erkennt über den Fahrstil, dass es von einer unbefugten Person benutzt wird und löst daraufhin einen Alarm aus. Hier eröffnen sich viele Möglichkeiten.

Aus Sicht der Datenanalyse finde ich es besonders interessant, Algorithmen, die für ganz andere Aufgabenstellung entwickelt wurden, auf Probleme aus dem Automotive-Bereich anzuwenden. In einem unserer Projekte analysieren wir beispielsweise Software-Logfiles von Prüfständen und verwenden dazu Association Rules (eine Technik aus der Warenkorbanalyse) und Methoden, die normalerweise für das Untersuchen von Interaktionen in sozialen Netzwerken verwendet werden. Dass diese Übertragbarkeit gegeben ist finde ich extrem spannend.

Data Science Blog: Über welche Datenquellen verfügen Sie? Gibt es auch fahrzeugexterne Datenquellen, die sinnvoll sein könnten?

Da sprechen Sie natürlichen einen kritischen Punkt in jedem Data Science Projekt an: Ohne Daten geht nichts. Zusätzlich müssen die verwendeten Daten eine gewisse Qualität aufweisen und natürlich mit dem zu lösenden Problem in möglichst direktem Zusammenhang stehen.

Welche Datenquellen wir genau verwenden, hängt natürlich sehr stark vom konkretem Projekt ab. In industrienahen Projekten werden die Daten in der Regel vom Industriepartner bereitgestellt. Das kann dann alles Mögliche sein: Messungen von Prüfständen, Fertigungs-Protokolle, Wartungsdaten und vieles mehr.

Diese „Industrie-Daten“ unterliegen dann aber üblicherweise einer strengen Geheimhaltung und dürfen nicht in anderen Projekten verwendet werden. Deshalb haben wir im Unternehmen einen eigenen Datenlogger entwickelt, mit dem wir selber Daten aufnehmen können, die dann uns gehören. Diese Daten verwenden wir hauptsächlich in forschungsnahen Projekten, in denen die Ergebnisse publiziert werden sollen.

Fahrzeugexterne Datenquellen sind definitiv sinnvoll und werden immer mehr mit den klassischen Sensor-Daten fusioniert; oft ergibt sich dann durch eine Kombination von proprietären und offen verfügbaren Daten ein großer Mehrwert. In der vorhin angesprochenen Erkennung von sicherheitsrelevanten Ergebnissen spielt zum Beispiel das Wetter eine wesentliche Rolle: Eine zu schnell gefahrene Kurve ist bei Nässe oder Glätte deutlich gefährlicher als auf trockener Fahrbahn. Generell werden Daten über Umwelt und Infrastruktur immer wichtiger. Praktisch jeder fahrerzentrierte Dienst benötigt sie. Denken Sie zum Beispiel an Google Maps, das bereits heute die Bewegungsdaten von vielen Verkehrsteilnehmern gemeinsam analysiert um Vorhersagen über die Verkehrsdichte und damit über die optimale Route zu treffen.

Data Science Blog: Wie aufwändig gestaltet sich das Data Engineering, also die Datenbereitstellung und -zusammenführung?

Das ist definitiv ein schwieriges Unterfangen. Gerade Sensordaten erreichen schnell eine beachtliche Größe, die den Einsatz eines Big Data Technologie-Stacks erforderlich macht. Hier macht uns aber wieder die bereits angesprochene zeitliche Komponente unserer Daten zu schaffen. Die meisten Big Data Technologien skalieren ja, indem sie die Datenpunkte mehr oder weniger zufällig auf mehrere Rechner verteilen. Das ist bei unseren Daten aber nicht zulässig, die Reihenfolge der Daten ist hochrelevant! Hier müssen wir also entweder auf einer anderen Ebene parallelisieren oder Technologie mit spezieller Funktionalität für Zeitreihen verwenden.

Data Science Blog: Welche Technologien setzen Sie für die Datenbereitstellung und -analyse ein? Was halten Sie vom Einsatz von Open Source Software?

Wir implementieren unsere Analysen meist in R oder Python, manchmal kommen auch Matlab oder C# (letzteres meist für User Interfaces) zum Einsatz. Für Big Data Analysen verwenden wir meist Apache Spark über die R und Python APIs. Für die Datenablage und Bereitstellung verwenden wir hauptsächlich PostgreSQL mit Timescale Erweiterung, InfluxDB sowie Apache Hadoop. Grundsätzlich sind wir jedoch nicht auf bestimmte Technologien fixiert, sondern versuchen immer das jeweils beste Tool für den jeweiligen Einsatzzweck zu verwenden.

Ich finde es spricht nichts gegen den Einsatz von Open Source Software – wie Sie ja auch an unserem Technologie-Stack erkennen können. Ich habe aber auch nichts gegen Closed Source Software – es gibt in beiden Bereichen genug gute und schlechte Software. Worauf ich aber achte, ist keine neue Technologie zu verwenden, hinter der ein zu kleines Entwicklerteam oder gar nur ein einzelner Entwickler steht. Hier ist mir die Gefahr zu groß, dass die Entwicklung bald eingestellt wird und die Ergebnisse meiner Analysen nicht mehr nachvollziehbar sind.

Data Science Blog: Zum Abschluss noch eine Frage von jungen Nachwuchskräften, die davon träumen, eine Karriere als Data Scientist im Ingenieurwesen zu machen: Welche Voraussetzungen bzw. Eigenschaften sollte ein Data Scientist in Ihrem Bereich mitbringen?

Neben einer fundierten fachlichen Ausbildung sind Neugier und der Wille, Zusammenhänge zu verstehen, Eigenschaften, die für jeden Data Scientist sehr wichtig sind. Zusätzlich hilft es durchaus eine kommunikative Persönlichkeit zu sein: Es gilt in Workshops die richtigen Informationen über die Daten einzuholen – das ist nicht immer ganz leicht. Zusätzlich müssen natürlich regelmäßig die Resultate der jeweiligen Analysen einem oft fachfremden Publikum präsentiert werden.

Ways AI & ML Are Changing How We Live

From Amazon’s Alexa, a personal assistant that can do anything from making your to-do list to giving a wide range of real-time information about the world around you, to Google’s DeepMind that has very recently made headlines for possibly being able to predict the future, AI and ML are the biggest development in human history.

Machine Learning Used by Hospitals

We hear a lot about Artificial Intelligence (AI) in the realm of insurance Big Data, but there isn’t much buzz around how AI and ML are revolutionising hospitals. The national health expenditures were around $3.4 trillion and estimated to increase from 17.8 percent of GDP to 19.9 percent between 2015 and 2025. By 2021, industry analysts have predicted that the AI health market will reach $6.6 billion. By 2026, such increases in AI technology in the healthcare sector will save the economy around $150 billion annually.

Some of the most popular Artificial Intelligence applications used in hospitals now are:

  • Predictive Health Trackers – Technology that has the ability to monitor patients’ health status using real-time data collection. One such technology is the Health and Environmental Tracker (HET) which can predict if someone is about to have an asthma attack.
  • Chatbots – It isn’t only retail customer service that uses chatbots to deal with consumers. Now hospitals have automated physicians that inquire and route clinicians to the right specialists.
  • Predictive AnalyticsCleveland Clinics have partnered with Microsoft (Cortana) while John Hopkins has partnered up with GE in order to create Machine Learning technology that has the ability to monitor patients and prevent patient emergencies before they happen. It does this by analysing data for primary indicators of potential risks.

Cognitive Marketing – Content Marketing on Steroids

Customer experience and content marketing are terms often tossed around in the world of business and advertising these days. Why do we bring them up now, you ask? Well, things are about to be kicked into sixth gear, thanks to Cognitive Marketing. To explain what that is, let’s go back a bit: remember when Google’s DeepMind AlphaGo bested the top human player at the game? This wasn’t some computer beating a bored office clerk at the game of Solitaire. In order to achieve that victory, Google’s AI had to “actually show its cognitive capability to ‘think’ like humans, because to win the game, ‘intuition’ was needed rather than just ‘logical reasoning’.” Similar algorithm-powered AI’s are enabling machines to learn and grow on their own. Soon, they’ll reach the potential to create content for marketeers at a massive scale. Not only that, but they’ll always deliver the right content, to the right kind of audience, at just the right time.

More Ways Than One: How Retail Is Harnessing AI & ML

  1. Developing Store That Don’t Need Checkout Lines

Tech companies and online retail giants such as Amazon want to create cashier-free stores, at least they are trying to. Last year Amazon launched its Amazon Go which uses sensors and hundreds of cameras to track what customers pick up and then charge the amount to an application on their smart phone, put simply. But only months into the experiment Amazon has said they need to work out some kinks in the system. As of now, Amazon Go’s system can only handle 20 or so customers at a time.

Among other issues, The Guardian, citing an unnamed source, wrote in an article, stated “…if an item has been moved from its specific spot on the shelf.”  Located in Seattle, Washington, Amazon Go is now running in “beta mode” only for Amazon employees as it tests its systems. And these tests are showing that Amazon’s attempt at a cashier-free brick-and-mortar convenience store is far from ready for the real world. A Journal report stated, “For now, the technology functions flawlessly only if there are a small number of customers present, or when their movements are slow.”

  1. Could Drones Be Delivering Goods to Your Home One Day?

Imagine ordering something online from, let’s say, Amazon, and it arrives at your door in 30 minutes or so via drone. Does that sound like something out of the movie The Fifth Element? Maybe, but this technology is already is already here.

Amazon Prime Air made its first delivery to a customer via a GPS-guided flying drone on December 7th, 2016. It only took 13 minutes for the drone to deliver the merchandise to the customer. This sort of technology will be a huge game changer for retail. The supply chain industry is headed for a revolution – drone delivery is coming, and retailers who want to keep up really should adopt such technologies.

Even in 2016, consumers were totally ready to accept drone delivery. The Walk Sands Future of Retail 2016 Study showed that 79 percent of US consumers said they would be “very likely” or “somewhat likely” to choose drone delivery if their product could be delivered within an hour. For me, I’d choose it just to see how cool it was. I think it would be pretty rad to have a drone land in my yard with my package, don’t you? Furthermore, other consumers stated they would pay up to $10 for a drone delivery. Lastly, 26 percent of consumers are already expecting to have their packages delivered to them in the next two years or so.

Driverless Delivery Vehicles Already Here as Well

There was a movie I watched some months ago – you most likely heard of it or even watched it. It was the latest movie about Wolverine titled Logan. There was a certain scene that never left my memory (basically because I found it awesome) where Logan and his companions were driving along a freeway full of driverless tractor trailers that had no tractor.

In an article written for pastemagazine.com, Carlos Alvarez of Getty wrote: “… Logan’s writer and director James Mangold’s inclusion of the self-driving trucking machines make it clear that the filmmaker understands the writing on the wall about the future of shipping. It’s a future without truck drivers.” He continues to explain that the movie takes place a little over 10 years from now in 2029.

“The change may well be here long before 2029. It’s only 2017, and already we’re seeing the beginnings of automated trucking taking over the industry. At the 2017 Consumer Electronics Show this January, Peloton Technology demonstrated “platooning,” where trucks are kept in a row on the highway to reduce wind resistance and save fuel. The trucks are controlled by computers on a “Level One” of autonomous driving,” Alvarez continued in his article.

Now in Germany, Mercedes-Benz is has been developing and testing their Actros truck which is fitted with a ‘highway pilot’ system, which acts like an auto-pilot and includes a radar and stereo camera system. So far, German carmaker Daimler has restricted testing on a German autobahn. The autobahn is generally safer than testing in city conditions since the curves are not as steep. Since the tests have started, this autonomous truck has already driven over 20,000 kilometres.

Did I Say Flying Taxis? Huh, Yeah I Did!

But, if you are still not amazed, then I am about to blow your socks off. Dubai has promised to build a fully autonomous public transportation system by 2030, including autonomous flying drone taxis! Now that is really something. And it isn’t a matter of when they’ll be produced and in use because they already are.

Manufactured in China by the drone-making firm EHang, these really freaking cool quad drones on steroids can carry one person weighing up to 100 kilogrammes (I weigh over that, guess I’m walking) plus maybe a backpack or suitcase. They can fly about 30 kilometres (or 19 miles), at a speed of 60 miles per hour, give or take. And, if that isn’t the cool part, you won’t need any lessons on how to fly it. Simply push a button and it flies you from point A to point B. Whether or not you have to give it directions, don’t know. Either way, this is mostly likely the coolest piece of tech out there right now.

Copyright @ CBS Interactive Inc.