Geschriebene Artikel über Big Data Analytics

Wie Wirtschaftsprüfer mit auditbee die Nadel im Heuhaufen finden – Teil 1/2

ERP, CRM, FiBu – täglich durchlaufen unzählige Geschäftsprozesse die IT-Systeme von Unternehmen. Es entstehen Ströme aus Massendaten, die am Ende in der Finanzbuchhaltung münden und dort automatisch auf Konten erfasst werden.

Mit auditbee können Wirtschaftsprüfer diese Datenströme wirtschaftlich und einfach analysieren. auditbee integriert die Datenanalyse in den gesamten Prüfungsverlauf und macht Schluss mit ausgedruckten Kontenblättern, komplizierten Datenabfragen sowie dem Zufall bei der Fehlersuche.

Wirtschaftsprüfer und die Nadel im Heuhaufen

Die Finanzdaten von Unternehmen sind wichtig für viele Adressaten – Gesellschafter, Banken, Kunden, etc. Deswegen ist es die gesetzliche Aufgabe des Wirtschaftsprüfers, wesentliche Fehler in der Buchhaltung und dem Jahresabschluss aufzudecken. Dazu überprüft er einzelne Sachverhalte mit hohem Fehlerrisiko und Prozesse, bei denen systematische Fehler in Summe von Bedeutung für den Abschluss sein können (IDW PS 261 n.F.).

Die Prüfung gleicht jedoch der Suche nach der Nadel im Heuhaufen!

Fehler sind menschlich und können passieren. Das Problem ist, dass sie im gesamten Datenhaufen gut verborgen sein können – und je größer dieser ist, desto schwieriger wird die Suche. Neben Irrtümern können Fehler auch durch absichtliche Falschdarstellungen und bewusste Täuschungen entstehen. Um solche dolosen Handlungen festzustellen, hat der Prüfer häufig tief im Datenhaufen zu graben, weil sie gut versteckt sind. Deswegen sind auch nach international anerkannten Prüfungsgrundsätzen die Journalbuchungen zu analysieren (ISA 240.32).

Die Suche nach dem Fehler

Noch vor einigen Jahren bestand die Prüfung hauptsächlich darin, eine Vielzahl an bewusst ausgewählten Belegen als Stichprobe in Papier einzusehen und mit den Angaben in der Buchhaltung abzustimmen – analog mit Stift und Textmarker auf ausgedruckten Kontenblättern. Dafür mussten Unmengen Belege kopiert und Kontenblätter ausgedruckt werden. Das hat nicht nur Papier verschwendet, sondern auch sehr viel der begrenzten Zeit gekostet. Zu allen Übels mussten die so entstandenen Prüfungsakten noch Kistenweise zum Mandanten hin- und wieder zurück transportiert werden. Es gab keine digitale Alternative.

Heute haben viele Unternehmen ihre Belege digitalisiert und setzen Dokumentenmanagement-systeme ein. Eine enorme Arbeitserleichterung für den Prüfer, der jetzt alle Belege digital einsehen kann. Weil der Datenhaufen jedoch gleichzeitig immer weiter wächst, entstehen neue Herausforderungen. Die Datenmenge als Grundgesamtheit wirkt sich beispielsweise auf den Umfang einer Stichprobe aus. Um Massendaten aus automatisierten Geschäftsprozessen wirtschaftlich überprüfen zu können, sind daher Datenanalysen unerlässlich.

Mit dem BMF-Schreiben „Grundsätze zum Datenzugriff und zur Prüfbarkeit digitaler Unterlagen – GDPdU“ wurde im Jahr 2001 der Grundstein für die Datenanalyse in der Prüfung gelegt. Der Nachfolger „Grundsätze zur ordnungsmäßigen Führung und Aufbewahrung von Büchern, Aufzeichnungen und Unterlagen in elektronischer Form sowie zum Datenzugriff – GoBD“ wurde 2014 veröffentlicht. Mit den BMF-Schreiben hat eine gewisse Normierung der steuerlich relevanten Daten (GDPdU/GoBD-Daten) durch die Finanzverwaltung stattgefunden. Diese lassen sich aus jeder Buchhaltungssoftware extrahieren und umfassen sämtliche Journalbuchungen.

Mit Datenanalysen kann der Prüfer nicht nur das Unternehmen und dessen Entwicklung besser verstehen. Dank der GDPdU/GoBD-Daten können Fehler mit auditbee viel leichter gefunden werden, weil sich der Prüfer jeden Halm im Datenhaufen ganz genau ansehen, Auffälligkeiten erkennen und hinterfragen kann. Mit der Analyse und Risikobeurteilung wird zudem die Belegprüfung deutlich reduziert, weil sich der Prüfer bei der Auswahl auf auffällige und risikobehaftete Daten beschränken kann.

Integration der Datenanalyse in die Prüfung – Spezialisten oder Self-Service

Das Tagesgeschäft des Wirtschaftsprüfers ist sehr vielfältig – Prüfung, Unternehmensbewertung, Steuerberatung. Deshalb erfolgt die Datenanalyse regelmäßig durch Spezialisten. Das sind IT-affine Mitarbeiter innerhalb der Kanzlei, die sich im Rahmen von Projekten selbständig weitergebildet oder eine Qualifikation als CISA bzw. IT Auditor haben.

Der Spezialist überprüft die Journalbuchungen (Journal Entry Tests) mit Excel oder einer Analysesoftware für Prüfer (DATEV Datenanalyse, IDEA, ACL). Oft ist er aber nicht mehr an der weiteren Prüfung beteiligt. Stattdessen führt der Prüfer mit seinen Assistenten als Team vor Ort die Hauptprüfung durch. Dabei werden häufig Konten erneut für die Belegauswahl in Excel gezogen. Das führt nicht nur zu Medienbrüchen, sondern erhöht auch die Wahrscheinlichkeit für Doppelarbeit, Fehler und Missverständnisse.

Neben alten Gewohnheiten und Zeitdruck ist die Analysesoftware oft selbst ein Grund, weshalb die Datenanalyse in der Praxis selten in die Prüfung integriert ist. Schließlich erfordern die Softwarelösungen einiges an IT-Kenntnis in der Einrichtung und Bedienung. Zudem ist die Interpretation von überwiegend in Tabellen dargestellten Daten schwierig und umständlich.

Mit auditbee als vorbereitete Dashboard Lösung auf Basis von Qlik Sense kann jeder im Team seine Daten selbst analysieren. Damit wird die Datenanalyse in die Prüfung integriert und kann ihr volles Potential entfalten.

auditbee als Self-Service BI-Lösung lässt sich so einfach bedienen, dass das Prüfungsteam nicht mehr von einzelnen Spezialisten abhängig ist. Damit aber nicht jeder bei 0 anfängt, werden die Daten bereits vom auditbee Team als Service in die BI-Software Qlik Sense geladen und abgestimmt. Zudem sind bereits verschiedene Dashboards zur Analyse eingerichtet. Der einzelne Anwender kann sich mit auditbee Daten und Kennzahlen ansehen, ohne eine einzige Formel eingeben zu müssen. Die Navigation und das dynamische Filtern der Daten im gesamten Dashboard erfolgt mit der Maus und das nahezu in Echtzeit. Anstatt von Abfragen mit langen Ladezeiten und Duplizierung der Daten können diese sofort im gesamten auditbee Modell nach unterschiedlichen Dimensionen (mehrdimensional) analysiert werden.

Mit auditbee zur strukturierten Belegauswahl

Bei der traditionellen bewussten Auswahl sucht sich der Prüfer Belege nach eigenem Ermessen anhand der Informationen auf dem Kontoblatt aus. Das sind regelmäßig Betrag, Buchungsdatum oder Buchungstext. Diese Methode ist relativ einseitig, eindimensional und vorhersehbar, weil vom Prüfer eher größere Beträge oder auffällige Texte ausgewählt werden. Dadurch kann es sein, dass absichtliche Falschdarstellungen und Irrtümer bei betragsmäßig kleineren Belegen nicht in die Stichprobe einbezogen werden und somit ungeprüft bleiben.

Zufalls- sowie statistische Auswahlverfahren (u.a. Monetary Unit Sampling) können wegen der Schwächen der traditionellen Methode eine Alternative sein. Doch auch sie haben einen relevanten Nachteil. Der Umfang der Stichprobe ist oftmals sehr hoch, um ein hinreichendes Signifikanzniveau (Alpha 0,05) zu erreichen. Ein Grund für den Prüfer, sich möglicherweise doch für die bewusste Auswahl zu entscheiden, um die Zeit für Belegabstimmungen zu verkürzen.

Durch die Verbindung sämtlicher FiBu-Daten und der Darstellung weiterer Dimensionen – Referenz, Beleg Art, Erfassungsdatum, Debitor, etc. – ermöglicht auditbee dem Prüfer eine dritte Methode. Bei der strukturierten Belegauswahl fokussiert sich der Prüfer auf Auffälligkeiten und wählt seine Stichprobe aus einer deutlich kleineren Zahl an Belegen bewusst oder per Zufall aus.

Der Prüfer analysiert nicht alles auf einmal, sondern betrachtet nur solche Daten, die aus Sicht des Themas und der zu prüfenden Frage relevant sind. Beispiel: Es werden nur die Daten im Umsatzbereich betrachtet, die das Merkmal „nicht zeitnah erfasst“ aufweisen. Ausgehend von der Frage kategorisiert der Prüfer die Daten nach der Höhe des Fehlerrisikos (Risikobeurteilung nach IDW PS 261 n.F.). Beispielsweise können automatisierte Buchungen ein geringes Fehlerrisiko aufweisen, Sachbuchungen oder Buchungen bestimmter Mitarbeiter dagegen ein höheres. Nur noch Belege mit höherem Risiko sowie andere Auffälligkeiten ergründet der Prüfer weiter im Detail. Hierzu filtert er die Daten anhand der auffälligen Dimensionen (Erfasser, Debitor, Monat, etc.). Am Ende bleiben nur noch wenige auffällige Datensätze übrig, aus der der Prüfer seine Stichprobe auswählt.

Bezogen auf die Nadel im Heuhaufen zeigen die 3 Methoden folgendes Bild.

Methode 1: Der Prüfer trägt nur die großen Strohalme von der Oberfläche ab, um zu sehen, ob darunter die Nadel verborgen ist (traditionelle Belegauswahl anhand des Kontoblattes).

Methode 2: Der Prüfer greift an verschiedenen Stellen in den Heuhaufen hinein, um per Zufall die Nadel zu finden (statistische Zufallsauswahlverfahren).

Methode 3: Der Prüfer sieht sich den Heuhaufen erst genau an, ob irgendwelche Stellen durchgewühlt aussehen (Auffälligkeiten), hier trägt er den Teil ab (Filtern der auffälligen Daten) und durchsucht systematisch den kleinen Haufen (strukturierte Auswahl).

Dies ist Teil 2/2 des Artikels, lesen Sie hier den zweiten Artikel Wie Wirtschaftsprüfer mit auditbee die Nadel im Heuhaufen finden – Teil 2/2.

Process Paradise by the Dashboard Light

The right questions drive business success. Questions like, “How can I make sure my product is the best of its kind?” “How can I get the edge over my competitors?” and “How can I keep growing my organization?” Modern businesses take their questions further, focusing on the details of how they actually function. At this level, the questions become, “How can I make my business as efficient as possible?” “How can I improve the way my company does business?” and even, “Why aren’t my company’s processes working as they should?”


Read this article in German:

Mit Dashboards zur Prozessoptimierung


To discover the answers to these questions (and many others!), more and more businesses are turning to process mining. Process mining helps organizations unlock hidden value by automatically collecting information on process models from across the different IT systems operating within a business. This allows for continuous monitoring of an organization’s end-to-end process landscape, meaning managers and staff gain specific operational insights into potential risks—as well as ongoing improvement opportunities.

However, process mining is not a silver bullet that turns data into insights at the push of a button. Process mining software is simply a tool that produces information, which then must be analyzed and acted upon by real people. For this to happen, the information produced must be available to decision-makers in an understandable format.

For most process mining tools, the emphasis remains on the sophistication of analysis capabilities, with the resulting data needing to be interpreted by a select group of experts or specialists within an organization. This necessarily creates a delay between the data being produced, the analysis completed, and actions taken in response.

Process mining software that supports a more collaborative approach by reducing the need for specific expertise can help bridge this gap. Only if hypotheses, analysis, and discoveries are shared, discussed, and agreed upon with a wide range of people can really meaningful insights be generated.

Of course, process mining software is currently capable of generating standardized reports and readouts, but in a business environment where the pace of change is constantly increasing, this may not be sufficient for very much longer. For truly effective process mining, the secret to success will be anticipating challenges and opportunities, then dealing with them as they arise in real time.

Dashboards of the future

To think about how process mining could improve, let’s consider an analog example. Technology evolves to make things easier—think of the difference between keeping track of expenditure using a written ledger vs. an electronic spreadsheet. Now imagine the spreadsheet could tell you exactly when you needed to read it, and where to start, as well as alerting you to errors and omissions before you were even aware you’d made them.

Advances in process mining make this sort of enhanced assistance possible for businesses seeking to improve the way they work. With the right process mining software, companies can build tailored operational cockpits that unite real-time operational data with process management. This allows for the usual continuous monitoring of individual processes and outcomes, but it also offers even clearer insights into an organization’s overall process health.

Combining process mining with an organization’s existing process models in the right way turns these models from static representations of the way a particular process operates, into dynamic dashboards that inform, guide and warn managers and staff about problems in real time. And remember, dynamic doesn’t have to mean distracting—the right process mining software cuts into your processes to reveal an all-new analytical layer of process transparency, making things easier to understand, not harder.

As a result, business transformation initiatives and other improvement plans and can be adapted and restructured on the go, while decision-makers can create automated messages to immediately be advised of problems and guided to where the issues are occurring, allowing corrective action to be completed faster than ever. This rapid evaluation and response across any process inefficiencies will help organizations save time and money by improving wasted cycle times, locating bottlenecks, and uncovering non-compliance across their entire process landscape.

Dynamic dashboards with Signavio

To see for yourself how the most modern and advanced process mining software can help you reveal actionable insights into the way your business works, give Signavio Process Intelligence a try. With Signavio’s Live Insights, all your process information can be visualized in one place, represented through a traffic light system. Simply decide which processes and which activities within them you want to monitor or understand, place the indicators, choose the thresholds, and let Signavio Process Intelligence connect your process models to the data.

Banish multiple tabs and confusing layouts, amaze your colleagues and managers with fact-based insights to support your business transformation, and reduce the time it takes to deliver value from your process management initiatives. To find out more about Signavio Process Intelligence, or sign up for a free 30-day trial, visit www.signavio.com/try.

Process mining is a powerful analysis tool, giving you the visibility, quantifiable numbers, and information you need to improve your business processes. Would you like to read more? With this guide to managing successful process mining initiatives, you will learn that how to get started, how to get the right people on board, and the right project approach.

The importance of being Data Scientist

Header-Image by Clint Adair on Unsplash.

The incredible results of Machine Learning and Artificial Intelligence, Deep Learning in particular, could give the impression that Data Scientist are like magician. Just think of it. Recognising faces of people, translating from one language to another, diagnosing diseases from images, computing which product should be shown for us next to buy and so on from numbers only. Numbers which existed for centuries. What a perfect illusion. But it is only an illusion, as Data Scientist existed as well for centuries. However, there is a difference between the one from today compared to the one from the past: evolution.

The main activity of Data Scientist is to work with information also called data. Records of data are as old as mankind, but only within the 16 century did it include also numeric forms — as numbers started to gain more and more ground developing their own symbols. Numerical data, from a given phenomenon — being an experiment or the counts of sheep sold by week over the year –, was from early on saved in tabular form. Such a way to record data is interlinked with the supposition that information can be extracted from it, that knowledge — in form of functions — is hidden and awaits to be discovered. Collecting data and determining the function best fitting them let scientist to new insight into the law of nature right away: Galileo’s velocity law, Kepler’s planetary law, Newton theory of gravity etc.

Such incredible results where not possible without the data. In the past, one was able to collect data only as a scientist, an academic. In many instances, one needed to perform the experiment by himself. Gathering data was tiresome and very time consuming. No sensor which automatically measures the temperature or humidity, no computer on which all the data are written with the corresponding time stamp and are immediately available to be analysed. No, everything was performed manually: from the collection of the data to the tiresome computation.

More then that. Just think of Michael Faraday and Hermann Hertz and there experiments. Such endeavour where what we will call today an one-man-show. Both of them developed parts of the needed physics and tools, detailed the needed experiment settings, conducting the experiment and collect the data and, finally, computing the results. The same is true for many other experiments of their time. In biology Charles Darwin makes its case regarding evolution from the data collected in his expeditions on board of the Beagle over a period of 5 years, or Gregor Mendel which carry out a study of pea regarding the inherence of traits. In physics Blaise Pascal used the barometer to determine the atmospheric pressure or in chemistry Antoine Lavoisier discovers from many reaction in closed container that the total mass does not change over time. In that age, one person was enough to perform everything and was the reason why the last part, of a data scientist, could not be thought of without the rest. It was inseparable from the rest of the phenomenon.

With the advance of technology, theory and experimental tools was a specialisation gradually inescapable. As the experiments grow more and more complex, the background and condition in which the experiments were performed grow more and more complex. Newton managed to make first observation on light with a simple prism, but observing the line and bands from the light of the sun more than a century and half later by Joseph von Fraunhofer was a different matter. The small improvements over the centuries culminated in experiments like CERN or the Human Genome Project which would be impossible to be carried out by one person alone. Not only was it necessary to assign a different person with special skills for a separate task or subtask, but entire teams. CERN employs today around 17 500 people. Only in such a line of specialisation can one concentrate only on one task alone. Thus, some will have just the knowledge about the theory, some just of the tools of the experiment, other just how to collect the data and, again, some other just how to analyse best the recorded data.

If there is a specialisation regarding every part of the experiment, what makes Data Scientist so special? It is impossible to validate a theory, deciding which market strategy is best without the work of the Data Scientist. It is the reason why one starts today recording data in the first place. Not only the size of the experiment has grown in the past centuries, but also the size of the data. Gauss manage to determine the orbit of Ceres with less than 20 measurements, whereas the new picture about the black hole took 5 petabytes of recorded data. To put this in perspective, 1.5 petabytes corresponds to 33 billion photos or 66.5 years of HD-TV videos. If one includes also the time to eat and sleep, than 5 petabytes would be enough for a life time.

For Faraday and Hertz, and all the other scientist of their time, the goal was to find some relationship in the scarce data they painstakingly recorded. Due to time limitations, no special skills could be developed regarding only the part of analysing data. Not only are Data Scientist better equipped as the scientist of the past in analysing data, but they managed to develop new methods like Deep Learning, which have no mathematical foundation yet in spate of their success. Data Scientist developed over the centuries to the seldom branch of science which bring together what the scientific specialisation was forced to split.

What was impossible to conceive in the 19 century, became more and more a reality at the end of the 20 century and developed to a stand alone discipline at the beginning of the 21 century. Such a development is not only natural, but also the ground for the development of A.I. in general. The mathematical tools needed for such an endeavour where already developed by the half of the 20 century in the period when computing power was scars. Although the mathematical methods were present for everyone, to understand them and learn how to apply them developed quite differently within every individual field in which Machine Learning/A.I. was applied. The way the same method would be applied by a physicist, a chemist, a biologist or an economist would differ so radical, that different words emerged which lead to different langues for similar algorithms. Even today, when Data Science has became a independent branch, two different Data Scientists from different application background could find it difficult to understand each other only from a language point of view. The moment they look at the methods and code the differences will slowly melt away.

Finding a universal language for Data Science is one of the next important steps in the development of A.I. Then it would be possible for a Data Scientist to successfully finish a project in industry, turn to a new one in physics, then biology and returning to industry without much need to learn special new languages in order to be able to perform each tasks. It would be possible to concentrate on that what a Data Scientist does best: find the best algorithm. In other words, a Data Scientist could resolve problems independent of the background the problem was stated.

This is the most important aspect that distinguish the Data Scientist. A mathematician is limited to solve problems in mathematics alone, a physicist is able to solve problems only in physics, a biologist problems only in biology. With a unique language regarding the methods and strategies to solve Machine Learning/A.I. problems, a Data Scientist can solve a problem independent of the field. Specialisation put different branches of science at drift from each other, but it is the evolution of the role of the Data Scientist to synthesize from all of them and find the quintessence in a language which transpire beyond all the field of science. The emerging language of Data Science is a new building block, a new mathematical language of nature.

Although such a perspective does not yet exists, the principal component of Machine Learning/A.I. already have such proprieties partially in form of data. Because predicting for example the numbers of eggs sold by a company or the numbers of patients which developed immune bacteria to a specific antibiotic in all hospital in a country can be performed by the same prediction method. The data do not carry any information about the entities which are being predicted. It does not matter anymore if the data are from Faraday’s experiment, CERN of Human Genome. The same data set and its corresponding prediction could stand literary for anything. Thus, the result of the prediction — what we would call for a human being intuition and/or estimation — would be independent of the domain, the area of knowledge it originated.

It also lies at the very heart of A.I., the dream of researcher to create self acting entities, that is machines with consciousness. This implies that the algorithms must be able to determine which task, model is relevant at a given moment. It would be to cumbersome to have a model for every task and and every field and then try to connect them all in one. The independence of scientific language, like of data, is thus a mandatory step. It also means that developing A.I. is not only connected to develop a new consciousness, but, and most important, to the development of our one.

Mit Dashboards zur Prozessoptimierung

Geschäftlicher Erfolg ergibt sich oft aus den richtigen Fragen – zum Beispiel: „Wie kann ich sicherstellen, dass mein Produkt das beste ist?“, „Wie hebe ich mich von meinen Mitbewerbern ab?“ und „Wie baue ich mein Unternehmen weiter aus?“ Moderne Unternehmen gehen über derartige Fragen hinaus und stellen vielmehr die Funktionsweise ihrer Organisation in den Fokus. Fragen auf dieser Ebene lauten dann: „Wie kann ich meine Geschäftsprozesse so effizient wie möglich gestalten?“, „Wie kann ich Zusammenarbeit meiner Mitarbeiter verbessern?“ oder auch „Warum funktionieren die Prozesse meines Unternehmens nicht so, wie sie sollten?“


Read this article in English: 
“Process Paradise by the Dashboard Light”


Um die Antworten auf diese (und viele andere!) Fragen zu erhalten, setzen immer mehr Unternehmen auf Process Mining. Process Mining hilft Unternehmen dabei, den versteckten Mehrwert in ihren Prozessen aufzudecken, indem Informationen zu Prozessmodellen aus den verschiedenen IT-Systemen eines Unternehmens automatisch erfasst werden. Auf diese Weise kann die End-to-End-Prozesslandschaft eines Unternehmens kontinuierlich überwacht werden. Manager und Mitarbeiter profitieren so von operativen Erkenntnissen und können potenzielle Risiken ebenso erkennen wie Möglichkeiten zur Verbesserung.

Process Mining ist jedoch keine „Wunderwaffe“, die Daten auf Knopfdruck in Erkenntnisse umwandelt. Eine Process-Mining-Software ist vielmehr als Werkzeug zu betrachten, das Informationen erzeugt, die anschließend analysiert und in Maßnahmen umgesetzt werden. Hierfür müssen die generierten Informationen den Entscheidungsträgern jedoch auch in einem verständlichen Format zur Verfügung stehen.

Bei den meisten Process-Mining-Tools steht nach wie vor die Verbesserung der Analysefunktionen im Fokus und die generierten Daten müssen von Experten oder Spezialisten innerhalb einer Organisation bewertet werden. Dies führt zwangsläufig dazu, dass es zwischen den einzelnen Schritten zu Verzögerungen kommt und die Abläufe bis zur Ergreifung von Maßnahmen ins Stocken geraten.

Process-Mining-Software, die einen kooperativeren Ansatz verfolgt und dadurch das erforderliche spezifische Fachwissen verringert, kann diese Lücke schließen. Denn nur wenn Informationen, Hypothesen und Analysen mit einer Vielzahl von Personen geteilt und erörtert werden, können am Ende aussagekräftige Erkenntnisse gewonnen werden.

Aktuelle Process-Mining-Software kann natürlich standardisierte Berichte und Informationen generieren. In einem sich immer schneller ändernden Geschäftsumfeld reicht dies jedoch möglicherweise nicht mehr aus. Das Erfolgsgeheimnis eines wirklich effektiven Process Minings besteht darin, Herausforderungen und geschäftliche Möglichkeiten vorherzusehen und dann in Echtzeit auf sie zu reagieren.

Dashboards der Zukunft

Nehmen wir ein analoges Beispiel, um aufzuzeigen, wie sich das Process Mining verbessern lässt. Der technologische Fortschritt soll die Dinge einfacher machen: Denken Sie beispielsweise an den Unterschied zwischen der handschriftlichen Erfassung von Ausgaben und einem Tabellenkalkulator. Stellen Sie sich nun vor, die Tabelle könnte Ihnen genau sagen, wann Sie sie lesen und wo Sie beginnen müssen, und würde Sie auf Fehler und Auslassungen aufmerksam machen, bevor Sie überhaupt bemerkt haben, dass sie Ihnen passiert sind.

Fortschrittliche Process-Mining-Tools bieten Unternehmen, die ihre Arbeitsweise optimieren möchten, genau diese Art der Unterstützung. Denn mit der richtigen Process-Mining-Software können individuelle operative Cockpits erstellt werden, die geschäftliche Daten in Echtzeit mit dem Prozessmanagement verbinden. Der Vorteil: Es werden nicht nur einzelne Prozesse und Ergebnisse kontinuierlich überwacht, sondern auch klare Einblicke in den Gesamtzustand eines Unternehmens geboten.

Durch die richtige Kombination von Process Mining mit den vorhandenen Prozessmodellen eines Unternehmens werden statisch dargestellte Funktionsweisen eines bestimmten Prozesses in dynamische Dashboards umgewandelt. Manager und Mitarbeiter erhalten so Warnungen über potenzielle Probleme und Schwachstellen in Ihren Prozessen. Und denken Sie daran, dynamisch heißt nicht zwingend störend: Die richtige Process-Mining-Software setzt an der richtigen Stelle in Ihren Prozessen an und bietet ein völlig neues Maß an Prozesstransparenz und damit an Prozessverständnis.

Infolgedessen können Transformationsinitiativen und andere Verbesserungspläne jederzeit angepasst und umstrukturiert werden und Entscheidungsträger mittels automatisierter Nachrichten sofort über Probleme informiert werden, sodass sich Korrekturmaßnahmen schneller als je zuvor umsetzen lassen. Der Vorteil: Unternehmen sparen Zeit und Geld, da Zykluszeiten verkürzt, Engpässe lokalisiert und nicht konforme Prozesse in der Prozesslandschaft der Organisation aufgedeckt werden.

Dynamische Dashboards von Signavio

 Testen Sie Signavio Process Intelligence und erleben Sie selbst, wie die modernste und fortschrittlichste Process-Mining-Software Ihnen dabei hilft, umsetzbare Einblicke in die Funktionsweise Ihres Unternehmens zu erhalten. Mit Signavios Live Insights profitieren Sie von einer zentralen Ansicht Ihrer Prozesse und Informationen, die in Form eines Ampelsystems dargestellt werden. Entscheiden Sie einfach, welche Prozesse und Aktivitäten Sie innerhalb eines Prozesses überwachen möchten, platzieren Sie Indikatoren und wählen Sie Grenzwerte aus. Alles Weitere übernimmt Signavio Process Intelligence, das Ihre Prozessmodelle mit den Daten verbindet.

Lassen Sie veraltete Arbeitsweisen hinter sich. Setzen Sie stattdessen auf faktenbasierte Erkenntnisse, um Ihre Geschäftstransformation zu unterstützen und Ihre Prozessmanagementinitiativen schneller zum Erfolg zu führen. Erfahren Sie mehr über Signavio Process Intelligence oder registrieren Sie sich für eine kostenlose 30-Tage-Testversion über www.signavio.com/try.

Erfahren Sie in unserem kostenlosen Whitepaper mehr über erfolgreiches Process Mining mit Signavio Process Intelligence.

AI Experts: The Next Frontier in AI After the 2020 Job Crisis

Beware the perils of AI boom!

Isn’t this something that should ring alarm bells to upgrade your AI skills.

Artificial intelligence has grown smarter putting people in awe with a question, “Is my job safe?” Should we be afraid? It is but a simple question with a rather perplexing answer, I’m not skilled ready. Your view will depend on whether you’ll be able to develop skills that will surpass the redundant skills you possess today.No doubt, the AI domain is thriving and humans are scared. 

Even organizations such as McKinsey predicts the doom and gloom scenario where one-third of the workers’ jobs will be taken over due to automation by 2030.

In the next decade, AI and automation could banish 54 million Americans out of their workspace. With rapid technological growth, machines are now outperforming the number of tasks traditionally done by manpower.

What’s more?

  • Walmart has the fastest automated truck unloader that helps scan unloaded items on a priority basis. 
  • McDonald replaces drive-thru workers with order-taking AI and cashiers along with self-checkout kiosks. 
  • While farms in California hire robots to harvest lettuce. 

Fear facts appearing real

Near about 670,000 U.S. jobs were replaced between 1990 to 2007, mostly in the manufacturing sector. But this trend is already accelerating as it advances in mobile technology, data transfer, AI, and computing speed. 

On its face, jobs that involve physical tasks in predictable environments will be at higher risk. For instance, The Palm Beach County Court recently made use of four robots (Rosie Tobor, Kitt Robbie, Speedy, and Wally Bishop) to read out the court filings, input data into the case management system, and fill out docket sheets. Also, at certain places in China, waiters were being replaced with robots.

On the contrary, jobs that include creative thinking, social interaction, and managing people will barely involve automation.

Though you think your job is safe, it isn’t. 

History has warned us of the apocalyptic happenings about technology replacing our jobs. There has always been a difficult transition to jobs that require newer skillsets. McKinsey, in its study, mentioned 8-9% of 2030’s labor demand will be in newer job roles that did not exist before. 

AI to take over the world – or is it? 

There is still but a grim prognostic about the robot apocalypse. But it’s not the time to celebrate.

As warned by Russian president Vladimir Putin, “The nation that leads in AI will be the ruler of the world.”

Artificial intelligence is yet to replace the human workforce, but it is still considered an invaluable tool today.

According to Forrester, firms will now address the pragmatic side of AI about having a better understanding of the challenges faced, to embrace the idea which is, no pain means no AI gain. The AI reality is here, right now. Organizations have now realized what they can do and what they cannot. Their focus is now projected toward taking proactive measures to produce more AI talents like AI experts and AI specialists, etc. 

Is there a timeframe where AI will overtake the human race?

It is only a matter of time when artificial intelligence will become smarter than its human creators.

Experts have already started to build a world that is brimming with AI. But sadly, in the present, most individuals are yet to know what AI even is. By the next decade, AI is predicted to outperform human in multiple activities such as,

  • Translating languages – 2024
  • Writing high-school essays – 2025
  • Driving a truck – 2027
  • Working in the retail sector – 2031
  • Or writing a best-selling book – 2049
  • Work as a surgeon – 2053

Beyond the shadow of a doubt, as artificial intelligence continues to grow, some experts say we’ll eventually hit the plateau. On the research side, there will be a snowball of AI challenges. Therefore, to tackle these challenges, the demand for AI experts will dramatically upsurge.

In addition to the dearth of AI talent, the transition may bring new challenges both for policymakers as well as AI professionals. 

“High-level machine intelligence will start performing any task better than the humans by 2060, and will take away human jobs by 2136, predicted a study done by multiple researchers from Yale and Oxford University.”

To stay prepared for the upcoming challenges, upskilling is the right way to reshape and overcome the AI jobs crisis. 

Upskilling in AI is the new mandate

Notably, as AI takes on to become the next technology revolution, certifications in artificial intelligence will keep you one step ahead. 

The advent of artificial intelligence has advanced at a level where there is a dire need for AI engineers. Now is the right time to pursue a career in artificial intelligence.

The current job market is flooded with multiple AI career options, but there’s a significant dearth of talent in the AI field. Professionals like software engineers have an upper hand in the AI industry. Additional certification programs have the capability of boosting the credibility of such individuals. 

Just like any other technology predictions, it’s an ideal decision to take up AI certifications. Staying up-to-date will prevent you from unnecessary panic – where AI could help you and not hurt you.

An economist Yale Brozen from the University of Chicago found out about technology destroying approximately 12 million jobs in the 1950s. But consecutively it also created over 20 million jobs as vast productivity leading toward the demand for more workers to keep up the pace with the rising demand.

Do you still need a reason not to adopt AI?

The AI catastrophe that dooms us is a threat to humans today. The pronouncement has retreated into a grim future where ignorance is not the solution. 

The pervasive answer is, only individuals that can make progress in their AI career will make it through the job crisis. 

Do you think your job is safe? Think again!

Interview: Data Science im Einzelhandel

Interview mit Dr. Andreas Warntjen über den Weg zum daten-getriebenen Unternehmen – Data Science im Einzelhandel

Zur Einführung der Person:

Dr. Andreas Warntjen arbeitet seit Juli 2016 bei der Thalia Bücher GmbH, aktuell als Senior Manager Advanced and Predictive Analytics. Davor hat Herr Dr. Warntjen viele Jahre als Sozialwissenschaftler an ausländischen Universitäten geforscht. Er hat selbst langjährige Erfahrung in der statistischen Datenanalyse mit Stata, SPSS und R und arbeitet im Moment mit der in-memory Datenbank SAP HANA sowie Python und SAP’s Automated Predictive Library (APL).


Data Science Blog: Herr Dr. Warntjen, welche Bedeutung hat die Data Science für Sie und Ihren Bereich bei Thalia? Und wie ordnen Sie die verwandten Begriffe wie Predictive Analytics und Advanced Analytics im Kontext der geschäftlichen Entscheidungsfindung ein?

Data Science spielt bei Thalia in unterschiedlichsten Bereichen eine zunehmend größer werdende Rolle. Neben den klassischen Themen wie Betrugserkennung und Absatzprognosen ist für Thalia als Buchhändler Text Mining von zentraler Bedeutung. Das größte Potential liegt aus meiner Sicht darin, besser auf die Wünsche unserer  Kunden eingehen zu können.

Bei Thalia werden in schneller Taktung Innovationen eingeführt. Sei es die Filialabholung, bei der online bestellte Bücher innerhalb von 2 Stunden in einer Buchhandlung abgeholt werden können. Oder das Beratungs- und Bezahl-Tablet für die Mitarbeiter vor Ort. Oder Innovationen im Webshop. Bei der Beurteilung, ob diese Neuerungen tatsächlich Kundenwünsche effektiv und effizient erfüllen, kann Advanced Analytics helfen. Im Gegensatz zur klassischen Business Intelligence – die weiterhin eine wichtige Rolle bei der Entscheidungsfindung im Unternehmen spielen wird – berücksichtigt Advanced Analytics stärker die Vielfalt des Kundenverhaltens und der unterschiedlichen Situationen in den Filialen. Verfahren wie etwa multivariate Regressionsanalyse, Entscheidungsbäume und statistische Hypothesentest können die in Unternehmen etablierte Analyse von deskriptiven Statistiken – etwa der Vergleich von Umsatzzahlen zwischen Pilot- und Vergleichsfilialen mit Pivot-Tabellen – ergänzen.

Predictive Analytics kann helfen verschiedenste Geschäftsprozesse individuell für Kunden zu gestalten. Generell können auf Grundlage von automatischen, in Echtzeit erstellten Vorhersagen Prozesse im Unternehmen optimiert werden. Außerdem kann Predictive Analytics Mitarbeiter bei wiederkehrenden Tätigkeiten unterstützen, beispielsweise in der Disposition.

Data Science Blog: Welche Fähigkeiten benötigen gute Data Scientists denn wirklich zur Geschäftsoptimierung? Wie wichtig ist das Domänenwissen?

Die wichtigsten Eigenschaften eines Data Scientist sind große Neugierde, eine sehr analytische Denkweise und eine exzellente Kommunikationsfähigkeit. Um mit Data Science erfolgreich Geschäftsprozesse zu optimieren, benötigt man ein breites Wissensspektrum: vom Geschäftsprozess über das IT-Datenmodell und das Know-how zur Entwicklung von Vorhersagemodellen bis hin zur Prozessintegration. Das ist nur im Team machbar. Domänenwissen spielt dabei eine wichtige Rolle, weshalb es für den Data Scientist essentiell ist sich mit den Prozessverantwortlichen und Business Analysten auszutauschen.

Data Science Blog: Sie bearbeiten Anwendungsfälle für den Handel. Können sich Branchen die Anwendungsfälle gegenseitig abschauen oder sollte jede Branche auf sich selbst fokussiert bleiben?

Es gibt sowohl Anwendungsfälle, die für den Einzelhandel und andere Branchen gleichermaßen relevant sind, als auch Themen, die für Thalia als Buchhändler besonders wichtig sind.

Die Individualisierung im eCommerce ist ein branchenübergreifendes Thema. Analytisches CRM, etwa das zielsichere Ausspielen von Kampagnen oder eine passgenaue Kundensegmentierung, ist für eine Versicherung oder Bank genauso wichtig wie für den Baumarkt oder den Buchhändler. Die Warenkorbanalyse mit statistischen Algorithmen ist ein klassisches Data Mining-Thema, das für den Einzelhandel generell interessant ist.

Natürlich muss man sich vorab über die Besonderheiten des jeweiligen Geschäftsumfeldes Gedanken machen, aber prinzipiell kann man von Unternehmen oder Branchen lernen, die Advanced und Predictive Analytics schon seit Jahren oder Jahrzehnten nutzen. Die passende IT-Infrastruktur und das entsprechende Interesse vom Fachbereich vorausgesetzt, eignen sich diese Anwendungsfälle damit besonders für den Einstieg in Advanced und Predictive Analytics – auch für Mittelständler.

Das Kerngeschäft des Buchhändlers  Thalia ist es, Kunden mit für sie interessanten Geschichten zusammen zu bringen. Die Geschichten selber bestehen aus Text. Die Produktbeschreibungen („Klappentexte“) und -besprechungen liegen in Textform vor. Und Kundenfeedback – sei es auf Thalia.de oder in sozialen Medien – erreicht uns als Text. Erkenntnisse aus Texten abzuleiten (Text Mining) ist deshalb für Thalia wichtiger als für andere Einzelhändler.

Data Science Blog: Welche Algorithmen und Tools verwenden Sie für Ihre Anwendungsfälle? Womit machen Sie eher gute, womit eher schlechte Erfahrungen?

Die Palette bei Thalia reicht von A wie Automated Machine Learning bis Z wie Zeitreihenanalyse. Ich selber arbeite aktuell mit verschiedenen Klassifikationsalgorithmen (z.B., regularisierte logistische Regression,  Random Forest, XGB, Naive Bayes, SAP’s Automated Predictive Library). Im Bereich Text Mining beschäftigen wir uns im Moment unter anderem mit Topic Models und Word2Vec.

Sowohl Algorithmus als auch die Software muss zum Verwendungszweck passen. Bei der Auswahl des Algorithmus gibt es häufig einen Trade-off zwischen Interpretierbarkeit und Prognosegüte. Das muss zusammen mit der Fachabteilung je nach Anwendungsfall abgewogen werden.

Mit flexibler Open Source-Software wie etwa R oder Python lassen sich schnell Proof-of-Concept-Projekte verwirklichen. Für die Integration in bestehende Prozesse sind manchmal kommerzielle Software-Lösungen besser.

Data Science Blog: Soviel zum kurz- und mittelfristigen Start in die Datennutzung. Wie sieht es für die langfristige Verankerung von Advanced/Predictive Analytics im Unternehmen aus? Was muss hier im Rahmen der IT-Infrastruktur bedacht und verankert werden?

Ohne Daten keine Datenanalyse. Je flexibler man auf unterschiedliche Daten im Unternehmen zugreifen kann, desto höher die Innovationsgeschwindigkeit durch Advanced/Predictive Analytics. „Datensilos“ abzubauen bzw. zu vermeiden ist also ein sehr wichtiges Thema. Hohe Datenqualität und die umfassende Dokumentation von Daten sind auch essentiell. Das gilt natürlich nicht nur für Advanced und Predictive Analytics sondern auch für Business Intelligence.

Die langfristige Verankerung von Advanced und Predictive Analytics im Unternehmen verlangt den Aufbau und die kontinuierliche Weiterentwicklung von Infrastruktur in Form von Hardware, Software, Kompetenzen und Wissen, sowie Organisationsformen und Prozessen. Wertschöpfung durch Advanced bzw. Predictive Analytics erfordert das konstruktive Zusammenspiel von Domänenexpertise aus der Fachabteilung, Wissen über Datenstrukturen und -modellen  aus der IT-Abteilung bzw. BI/BW-Systemen und tiefem statistischem Know-how. Nur durch die Zusammenarbeit verschiedener Unternehmensbereiche entstehen Erfolge für das gesamte Unternehmen.

Data Science Blog: Auch organisatorisch sollte langfristig sicherlich einiges bedacht werden. Wann sollten Projekte in den jeweiligen Fachbereichen direkt umgesetzt werden? Wann vielleicht besser in einer zentralen Daten-Abteilung?

Das hängt von einer Reihe von Faktoren ab. Bei hochgradig spezialisiertem Know-how, von dem unterschiedliche Fachbereiche profitieren können, kann es Synergie-Effekte geben, wenn dies zentral organisiert ist. Eine zentrale Einheit kann vielleicht auch Innovationen breiter in ein Unternehmen tragen. Wenn bestimmte Anwendungsszenarien von Advanced/Predictive Analytics für eine Fachabteilung hingegen eine zentrale Rolle spielen oder sie sich ein einem sehr schnelllebigen Umfeld bewegt, dann wäre eine fachliche und organisatorische Verankerung im Fachbereich wichtig.

Glorious career paths of a Big Data Professional

Are you wondering about the career profiles you may get to fill if you get into Big Data industry? If yes, then Bingo! This is the post that will inform you just about that. Big data is just an umbrella term. There are a lot of profiles and career paths that are covered under this umbrella term. Let us have a look at some of these profiles.

Data Visualisation Specialist

The process of visualizing data is turning out to be critical in guaranteeing information-driven representatives get the upfront investment required to actualize goal-oriented and significant Big Data extends in their organization. Making your data to tell a story and the craft of envisioning information convincingly has turned into a significant piece of the Big Data world and progressively associations need to have these capacities in-house. Besides, as a rule, these experts are relied upon to realize how to picture in different instruments, for example, Spotfire, D3, Carto, and Tableau – among numerous others. Information Visualization Specialists should be versatile and inquisitive to guarantee they stay aware of most recent patterns and answers for a recount to their information stories in the most intriguing manner conceivable with regards to the board room. 

 

Big Data Architect

This is the place the Hadoop specialists come in. Ordinarily, a Big Data planner tends to explicit information issues and necessities, having the option to portray the structure and conduct of a Big Data arrangement utilizing the innovation wherein they practice – which is, as a rule, mostly Hadoop.

These representatives go about as a significant connection between the association (and its specific needs) and Data Scientists and Engineers. Any organization that needs to assemble a Big Data condition will require a Big Data modeler who can serenely deal with the total lifecycle of a Hadoop arrangement – including necessity investigation, stage determination, specialized engineering structure, application plan, and advancement, testing the much-dreaded task of deploying lastly.

Systems Architect 

This Big data professional is in charge of how your enormous information frameworks are architected and interconnected. Their essential incentive to your group lies in their capacity to use their product building foundation and involvement with huge scale circulated handling frameworks to deal with your innovation decisions and execution forms. You’ll need this individual to construct an information design that lines up with the business, alongside abnormal state anticipating the improvement. The person in question will consider different limitations, adherence to gauges, and varying needs over the business.

Here are some responsibilities that they play:

    • Determine auxiliary prerequisites of databases by investigating customer tasks, applications, and programming; audit targets with customers and assess current frameworks.
    • Develop database arrangements by planning proposed framework; characterize physical database structure and utilitarian abilities, security, back-up and recuperation particulars.
    • Install database frameworks by creating flowcharts; apply ideal access methods, arrange establishment activities, and record activities.
    • Maintain database execution by distinguishing and settling generation and application advancement issues, figuring ideal qualities for parameters; assessing, incorporating, and putting in new discharges, finishing support and responding to client questions.
    • Provide database support by coding utilities, reacting to client questions, and settling issues.


Artificial Intelligence Developer

The certain promotion around Artificial Intelligence is additionally set to quicken the number of jobs publicized for masters who truly see how to apply AI, Machine Learning, and Deep Learning strategies in the business world. Selection representatives will request designers with broad learning of a wide exhibit of programming dialects which loan well to AI improvement, for example, Lisp, Prolog, C/C++, Java, and Python.

All said and done; many people estimate that this popular demand for AI specialists could cause a something like what we call a “Brain Drain” organizations poaching talented individuals away from the universe of the scholarly world. A month ago in the Financial Times, profound learning pioneer and specialist Yoshua Bengio, of the University of Montreal expressed: “The industry has been selecting a ton of ability — so now there’s a lack in the scholarly world, which is fine for those organizations. However, it’s not extraordinary for the scholarly world.” It ; howeverusiasm to perceive how this contention among the scholarly world and business is rotated in the following couple of years.

Data Scientist

The move of Big Data from tech publicity to business reality may have quickened, yet the move away from enrolling top Data Scientists isn’t set to change in 2020. An ongoing Deloitte report featured that the universe of business will require three million Data Scientists by 2021, so if their expectations are right, there’s a major ability hole in the market. This multidisciplinary profile requires specialized logical aptitudes, specialized software engineering abilities just as solid gentler abilities, for example, correspondence, business keenness, and scholarly interest.

Data Engineer

Clean and quality data is crucial in the accomplishment of Big Data ventures. Consequently, we hope to see a lot of opening in 2020 for Data Engineers who have a predictable and awesome way to deal with information transformation and treatment. Organizations will search for these special data masters to have broad involvement in controlling data with SQL, T-SQL, R, Hadoop, Hive, Python and Spark. Much like Data Scientists. They are likewise expected to be innovative with regards to contrasting information with clashing information types with have the option to determine issues. They additionally frequently need to make arrangements which enable organizations to catch existing information in increasingly usable information groups – just as performing information demonstrations and their modeling.

IT/Operations Manager Job Description

In Big data industry, the IT/Operations Manager is a profitable expansion to your group and will essentially be in charge of sending, overseeing, and checking your enormous information frameworks. You’ll depend on this colleague to plan and execute new hardware and administrations. The person in question will work with business partners to comprehend the best innovation ventures to address their procedures and concerns—interpreting business necessities to innovation plans. They’ll likewise work with venture chiefs to actualize innovation and be in charge of effective progress and general activities.

Here are some responsibilities that they play:

  • Manage and be proactive in announcing, settling and raising issues where required 
  • Lead and co-ordinate issue the executive’s exercises, notwithstanding ceaseless procedure improvement activities  
  • Proactively deal with our IT framework 
  • Supervise and oversee IT staffing, including enrollment, supervision, planning, advancement, and assessment
  • Verify existing business apparatuses and procedures remain ideally practical and worth included 
  • Benchmark, dissect, report on and make suggestions for the improvement and development of the IT framework and IT frameworks 
  • Advance and keep up a corporate SLA structure

Conclusion

These are some of the best career paths that big data professionals can play after entering the industry. Honesty and hard work can always take you to the zenith of any field that you choose to be in. Also, keep upgrading your skills by taking newer certifications and technologies. Good Luck 

Programmierung für OttoNormalVerbraucher

Facebook und Co. arbeiten daran Nachrichten so aufzubereiten, dass sie emotional noch mehr ansprechen, als ob die gesellschaftliche Situation nicht schon aufgeheizt genug ist. Wir arbeiten daran dem Endnutzer Werkzeuge bereitzustellen um seine rationale Urteilskraft mit Hilfe des Computers zu stärken. Dafür benötigt man möglichst einfache aber dennoch leistungsstarke Programmiersprachen und umfangreiche, vertrauenswürdige, öffentlich zugängliche Informationen in Form von vielgestaltigen großen Tabellen und Dokumenten ähnlich der Wikipedia. 

Auch wenn die entwickelte Sprache so einfach wie möglich ist, wird sie im Gegensatz zum Facebookansatz einen gewissen Lernaufwand erfordern. 

Eine solche Programmiersprache in Kombination mit vertrauensvollen Daten könnte ein großer Schritt in Richtung einer weiteren Demokratisierung der Gesellschaft werden. Viele Falschnachrichten könnten leicht von jedermann durch entsprechende Fakten oder statistischen Auswertungen paralysiert werden. 

Vielleicht kann man die Schaffung einer solchen Programmiersprache mit der Schaffung des ersten Alphabets durch die Phönizier oder der Schaffung des ersten Alphabets mit Vokalen durch die Griechen vergleichen. Hätten diese Völker solche Leistungen vollbringen können ohne diese Voraussetzungen. Ich vermute ohne dieses Alphabet hätte es keine griechische Wissenschaft und Kultur gegeben; vielleicht auch keine griechische Demokratie.  

Entwurfskriterien für eine solche Sprache:

  1. Eine mathematische Fundierung ist erforderlich.
  2. Methodisch-didaktische und pragmatische Fragen stehen zunächst vor Effizienzproblemen.
  3. Kurze, lesbare Programme; die wichtigsten Schlüsselworte sollten kurz sein
  4. Einfache, unstrukturierte Programme; Schleifen und allgemeine Rekursionen führen häufig zu schwer lesbaren und schwer änderbaren Programmen; 
  5. Universelle Anwendbarkeit; sie muss nicht nur für Relationen (flache einfache Tabellen) sondern auch für strukturierte Tabellen und Dokumente nutzbar sein; sie muss nicht nur für Anfragen an die wichtigsten Systeme sondern auch für vielfältige Berechnungen geeignet sein
  6. Um im Schulunterricht einsetzbar zu sein, muss sie die verschiedenen mathematische Teilgebiete unterstützen, sowie Nutzen für die anderen Fächer bieten
  7. Sie sollte so mächtig sein, dass sie andere Systeme und Sprachen wie Tabellenkalkulation und SQL ersetzen kann. 
  8. Aus Endnutzersicht darf es nur ein einheitliches System mit einheitlicher Syntax (Schreibweise) für die Verarbeitung von Massendaten geben, genau wie die Operationen der Einzeldatenverarbeitung (+ – * : sin) standardisiert sind. 

 

Einführung in o++o: 

A. Merkel „Jeder Schüler soll neben lesen, rechnen und schreiben auch programmieren können.“ 

o++o (ausführlich ottoPS) ist eine tabellenorientierte Programmiersprache mit funktionalen Möglichkeiten, die auf Schleifen verzichtet. Dennoch ist o++o sehr ausdrucksstark und man kann mit ihr nicht nur kompakte Anfragen sondern auch vielfältige Berechnungen für strukturierte Tabellen und strukturierte Dokumente bewerkstelligen.

o++o benutzt viele mathematische Konzepte, daher sehen wir die Hauptvorteile der Vermittlung im Mathematikunterricht, genau wie die wesentlichen Fähigkeiten für die Nutzung des Taschenrechners in Mathematik vermittelt werden. o++o verwendet insbesondere folgende Konzepte: Kollektion (Menge, Multimenge, Liste); Gleichheit und Inklusionsbeziehungen dieser; Tupel; leistungsfähige Operationen zum Selektieren; Berechnen; Restrukturieren; Sortieren und Aggregieren (Summe; Durchschnitt; …),… .

Tabellenkalkulationsprogramme wie EXCEL und die Datenbankstandardabfragesprache SQL kennen keine strukturierten Schemen und Tabellen. Erste Tests mit Vorschulkindern lassen vermuten, dass man mit strukturierten Tabellen leichter rechnen kann als mit Dezimalzahlen. Wir wollen einige o++o-Beispielprogramme anfügen:

1. Berechne den Wert eines einfachen Terms.

2*3+4

* und + haben jeweils 2 Inputwerte. Zunächst wird 2*3 (6) berechnet. Die 6 ist erster Inputwert von +, so dass sich insgesamt 24 ergibt. Hier wird also einfach von links nach rechts gerechnet.

 

2. Schreibe den Term cos³(sin²(3.14159)) in o++o.

pi sin hoch 2 cos hoch 3

 

Unserer Meinung nach ist der Ausgangsterm für Otto Normalverbraucher schwer zu lesen. Man beginnt mit pi geht nach links bis zum sin dann nach rechts zum hoch 2 jetzt bewegt man sich wieder nach links zum cos und abschließend nach rechts zum hoch 3. Diese Schreibweise wurde sicher eingeführt um Klammern zu sparen. Eigentlich müsste der Ausgangsterm um unmissverständlich zu sein, folgendes Aussehen haben: 

(cos((sin(3.14159))²))³ 

Das ist sicher noch schwerer zu lesen und man bewegt sich noch mehr von links nach rechts und umgekehrt. 

 

3. Schreibe den Term sin²(x)+cos³(y)  in o++o.

X sin hoch 2 + (Y cos hoch 3) 

oder 

X sin hoch 2

+ Y cos hoch 3

Man könnte alle Terme in o++o ohne Klammern schreiben, allerdings müssten dann bestimmte Terme mehrzeilig geschrieben werden.  

 

4. Wie berechnet man den Term 2+3:4*5 ?

2+(3:(4*5))=2 3/20

2+((3:4)*5)=5 ¾

o++o: ((2+3):4)*5=6 1/4

 

Man erkennt, dass man mit der Schulweisheit Punktrechnung geht vor Strichrechnung noch nicht auskommt. Man benötigt die Regel „von links nach rechts“ zusätzlich.

 

5. Berechne den Durchschnitt mehrerer Noten.

1 2 3 1 2 ++:

 

Vom methodischen Standpunkt kann man dieses Programm noch verbessern, indem man die Klammern für Listen hinzufügt: [1 2 3 1 2] ++:

Man erkennt jetzt, dass die Durchschnittsoperation ++: einen Inputwert, nämlich eine Liste besitzt und dass ++: diesem einen Inputwert nachgestellt wird. Da die Nutzer in der Regel nicht viel tippen wollen, gehen wir davon aus, dass die erste Notation in Praxis häufiger benutzt werden wird.

 

6. Berechne die Durchschnitte einer strukturierten Tabelle noten.tab für jedes Fach.

noten.tab

DUR:=NOTEl ++:

noten.tab könnte so aussehen:

FACH,NOTEl l
Ma       1 2 1 3 1 2
Phy      4 3 2 2 1

 

Hierbei kürzt l Liste ab. D.h., noten.tab ist eine einfache strukturierte Tabelle (Liste), die zu jedem Fach eine Liste von Noten enthält. Um Platz zu sparen, wählen wir auch hier die methodisch nicht optimale Darstellung. Wie FACH ist auch NOTE ein Spaltenname, so dass noten.tab eigentlich so dargestellt werden müsste:

FACH,NOTEl l

Ma       1 2 1 3 1 2
Phy      4 3 2 2 1

 

Das Ergebnis der Anfrage wieder im „tab-Format“:

FACH, DUR, NOTEl l
Ma 1.66666666667 1 2 1 3 1 2
Phy 2.4 4 3 2 2 1

7. Bilde die Summe der Zahlen von 1 bis 100 (Aufgabe von Gauß Klasse 5).

1 .. 100 ++

Wie die Addition und die Multiplikation besitzt  .. zwei Inputwerte (1 und 100). Als Zwischenergebnis entsteht die Liste

ZAHLl
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43
44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63
64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83
84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100

,deren Zahlen dann aufsummiert werden, so dass sich 5050 ergibt. 

 

8. Berechne näherungsweise das Maximum der Sinus-Funktion im Intervall [1 2].

1 … 2!0.001 sin max 

… benötigt 3 Inputwerte: 1. den Anfangswert 1, den Endwert 2 und die Schrittweite 0.001. Es entstehen hierbei die Zahlen 1 1.001 1.002 1.003 …1.999 2.

Auf jede der Zahlen wird die Sinusfunktion angewandt, sodass wieder 1001 Zahlen entstehen. Auf diese Liste wird dann die Funktion max (Maximum) angewandt. Obwohl es sich hierbei um ein Näherungsverfahren handelt, kommt der exakte Wert 1 heraus, wenn die Schrittweite weiter verfeinert wird. sin und max haben jeweils einen Inputwert (hier eine Liste) aber der Outputwert von sin ist wieder eine Liste und max erzeugt lediglich eine Zahl, da es sich hier um eine Aggregationsfunktion handelt. Der zweite und der dritte Inputwert einer dreistelligen Operation (oben  …) wird jeweils durch ein „!“ getrennt. Das ist in o++o nötig, da das Komma für die Paarbildung bereits vergeben ist und das Leerzeichen bereits Listenelemente trennt. 

 

9. Berechne näherungsweise das Minimum des Polynoms X³ + 4 X² -3 X+2 im Intervall [0 2] mit zugehörigem X-Wert.

[X! 0 … 2!0.001] 

Y:= X polynom [1 4 -3 2] 

MINI:= Yl min

avec Y = MINI

avec ist französisch und bezeichnet eine Selektion. Ein konkretes Polynom von einer Variablen X  hat stets nur einen Inputwert, der für X eingesetzt wird. polynom in Zeile 2 ist dagegen allgemeiner und hat 2 Inputwerte: 

  1. Den Inputwert für X, der hier alle Zahlen, die in der ersten Zeile generiert wurden, annimmt.
  2. Eine Liste von Zahlen, die den Koeffizienten des konkreten Polynoms entspricht.

Durch die ersten Zeile entsteht eine Liste von Zahlen, die alle den Namen X bekommen haben. Das erkennt man am besten in der xml bzw. ment-Repräsentation:

<X>0.</X>

<X>0.001</X>

<X>0.002</X>

Gesamtergebnis:
MINI,             (X, Y     l)

1.481482037 0.333 1.481482037

10. Berechne eine Nullstelle der Cosinus Funktion im Intervall [1 2] näherungsweise.

[X! 1 … 2!0.0001]

avec X cos < 0

avec X pos = 1  

Hier verbleiben nach der ersten Selektion nur die X-Werte mit Funktionswert kleiner 0. Von diesen wird im zweiten Schritt der erste Wert ausgewählt. Da wir wissen, dass cos nur eine Nullstelle im betrachteten Intervall besitzt, wird diese durch das Ergebnis angenähert. pos kürzt Position ab, so dass das erste Paar der verbliebenen Paare selektiert wird. 

11. Berechne das Gesamtwachstum, wenn 5 Jahreswachstumszahlen gegeben sind. Runde das Ergebnis auf eine Stelle nach dem Komma.

[W! 0 1.5 2.1 1.3 0.4 1.2]

ACCU:= first 100. next ACCU pred *(W:100+1) at W

rnd 1

Die Ergebnistabelle:

[W! 0 1.5 2.1 1.3 0.4 1.2]
ACCU:= first 100. next ACCU pred *(W:100+1) at W
rnd 1
Die Ergebnistabelle:
W, ACCU l
0. 100.
1.5 101.5
2.1 103.6
1.3 105.
0.4 105.4
1.2 106.7

Der erste ACCU-Wert ergibt sich durch den Ausdruck hinter first (100.). Für den zweiten Wert wird für ACCU pred der Wert 100. eingesetzt und der Term nach next bewertet. Es ergibt sich 101.5. Diese Zahl wird wieder in ACCU pred eingesetzt und der next-Term erneut berechnet (rund 103.6),…  bis der letzte W-Wert erreicht ist. pred ist der predecessor (Vorgänger).

 

12. Berechne die Fläche unter der Sinuskurve im Intervall [0, pi] näherungsweise.

0 … pi!0.0001 sin * 0.0001 ++

Hierbei werden nacheinander alle Zahlen zwischen 0 und pi generiert, dann von jeder Zahl der Sinus berechnet und anschließend jede Zahl mit 0.0001 multipliziert. Es entstehen 31415 Rechteckflächen, die abschließend addiert werden.

 

13. Berechne den DurchschnittsBMI pro Alter und den BMI pro Person und Alter für alle Personen über 20.

<TAB!
NAME, LAENGE, (ALTER, GEWICHT l) l
Klaus        1.68     18      61     30     65     56     80
Rolf           1.78      40     72
Kathi         1.70       18      55     40     70
Walleri     1.00      3      16
Viktoria   1.61      13      51
Bert          1.72      18      66     30     70
!TAB>

avec NAME! 20&lt;ALTER
BMI:= GEWICHT : LAENGE : LAENGE
gib ALTER,BMIAVG,(NAME,BMI m) m BMIAVG:= BMI ! ++:
rnd 2 #rundet alle Zahlen der Tabelle auf 2 Stellen nach dem Punkt

Die TAB-Klammern deuten an, dass die eingeschlossenen Daten der TAB-Darstellung entsprechen. 

Die obige Bedingung selektiert Personen-Sätze, d.h. NAME,LAENGE,(ALTER,GEWICHT l) Tupel (strukturierte Tupel bzw. Strupel). Da eine Personen mehrere ALTER-Angaben besitzt, muss quantifiziert werden. NAME! 20 <ALTER selektiert demnach alle Personen, die einen entsprechenden Alterseintrag besitzen. D.h., der Existenzquantor wird nicht geschrieben, gehört aber zu jeder Bedingung.  In diesem kleinen Beispiel könnte man die Selektion natürlich auch per Hand realisieren.

Resultat:

ALTER, BMIAVG, (NAME, BMI  m) m

18     20.98   Bert 22.31

                       Kathi 19.03

                       Klaus 21.61

30     23.35   Bert 23.66

                       Klaus 23.03

40     23.47   Kathi 24.22

                       Rolf  22.72

56     28.34   Klaus 28.34

Das Endergebnis kann beispielsweise durch einfaches Klicken als Säulendiagramm dargestellt werden. Das Beispiel zeigt, dass man eine Hierarchie einfach durch Angabe des gewünschten Schemas umkehren kann. Im Ergebnis ist der Name dem Alter untergeordnet.

 Es wird insbesondere deutlich, dass die Aufgaben ohne Kenntnisse der Differential- und Integral-rechnung gelöst werden können. Mit o++o kann der Mathematikunterricht in vielfältiger Weise unterstützt werden. Das reicht von Klasse 7 oder tiefer bis zur Klassenstufe 12. Es betrifft: Rechnen mit natürlichen Zahlen, Dezimalzahlen, näherungsweise Berechnung von Nullstellen beliebiger Funktionen, Ableitung, Flächen unter Kurven, Extremwerte (kann wahrscheinlich bereits in der Sekundarschule gelehrt werden), Wahrscheinlichkeitsrechnung, … . Mit o++o können Dinge in einfacher Weise berechnet werden, die sonst nur theoretisch abgehandelt werden. Dadurch kann das Verständnis der Konzepte wesentlich verbessert, erweitert und vertieft werden. Weitere Informationen zu o++o finden Sie unter ottops.de (Z.B. „o++o auf 8 Seiten“ ist eine kurze Einführung).

Wir glauben, dass o++o besondere Vorteile für den Mathematik- und Informatikunterricht bietet aber auch in den anderen Fächern sinnvoll genutzt werden kann.

Treffen Sie bessere Entscheidungen

Entscheidungen prägen unseren Alltag, dies beginnt schon bei der Frage, was man anziehen oder essen soll. Andere hingegen mögen auf den ersten Blick unbedeutend erscheinen, können das Leben aber gravierend verändern, wie beispielsweise die Entscheidung, ob die Überquerung einer Straße sicher ist. Je größer die relative Macht eines Entscheidungsträgers ist, desto größer ist natürlich auch die Auswirkung seiner Entscheidungen.


Read this article in English: 
“How to Make Better Decisions”


Auch der Unternehmensalltag ist geprägt durch Entscheidungen. Tatsächlich kann man ein Unternehmen als die Summe großer und kleiner Entscheidungen betrachten: Welche neuen Märkte erschlossen werden sollen, über die nächste große Werbekampagne bis hin zur Wandfarbe für das neue Büro. Im Idealfall wäre jede einzelne Entscheidung innerhalb einer Organisation Teil einer konsistenten, kohärenten Unternehmensstrategie.

Leider ist eine derartige Konsistenz für viele Unternehmen schwer umsetzbar. Den Überblick darüber zu behalten, was in der gestrigen Sitzung beschlossen wurde, geschweige denn vor Wochen, Monaten oder gar Jahren, kann schwierig sein. Die Erkennung, Kategorisierung und Standardisierung der Entscheidungsfindung kann daher eine Möglichkeit sein, diese Herausforderung zu meistern.

Strategische, taktische und operative Entscheidungen

Grundsätzlich gibt es in einem Unternehmen drei Entscheidungsebenen: Strategische Entscheidungen haben einen großen Einfluss auf das gesamte Unternehmen, wie bspw. Fusionen und Übernahmen oder die Aufgabe eines leistungsschwachen Geschäftsbereichs. Taktische Entscheidungen werden zu bestimmten Themen getroffen, z. B. wo und wie eine Marketingkampagne durchgeführt werden soll.

Und schließlich gibt es noch die operativen Entscheidungen, auf die jeder Mitarbeiter täglich in jedem Unternehmen trifft: Beispielsweise wie viele Treuepunkte ein Kunde erhält, bei welchem ​​Lieferanten Materialien und Dienstleistungen gekauft werden oder ob ein Kunde einen Kredit erhält. Millionen dieser Entscheidungen werden jeden Tag getroffen.

Der kumulative Effekt dieser operativen Entscheidungen hat einen enormen Einfluss auf die geschäftliche Leistung eines Unternehmens. Nicht unbedingt in dem Maße wie sich strategische oder taktische Entscheidungen auswirken, aber sie nehmen Einfluss darauf, wie reibungslos und effektiv die Dinge innerhalb des Unternehmens tatsächlich erledigt werden.

Risiken einer schlechten Entscheidungsfindung

Auf operativer Ebene können sich selbst kleine Entscheidungen erheblich auf das gesamte Unternehmen auswirken – vor allem dann, wenn sich diese Entscheidungen wiederholen. In vielen Fällen bedeutet dies:

  • Compliance-Verstöße: Mitarbeiter und Systeme wissen nicht, was das Management erwartet, oder welches das richtige Verfahren ist. Mit der Zeit kann dies dazu führen, dass Richtlinien generell nicht eingehalten werden.
  • Weniger Agilität: Unkontrolliert oder unstrukturiert getroffene Entscheidungen lassen sich nur schwer ändern, um schnell auf neue interne oder externe Umstände reagieren zu können.
  • Reduzierte Genauigkeit: Ohne einen klaren Entscheidungsrahmen können sich unklar und unpräzise ausgerichtete Prozesse und Praktiken weiterverbreiten.
  • Mangelnde Transparenz: Mitarbeiter und Management können möglicherweise die Faktoren nicht erkennen und verstehen, die jedoch für eine effektive Entscheidungsfindung zu berücksichtigen sind.
  • Zunehmende Nichteinhaltung gesetzlicher Vorschriften: Viele Entscheidungen betreffen Themen wie Steuern, Finanzen und Umwelt, sodass falsch getroffene Entscheidungen zu potenziellen Verstößen gegen Gesetze und Vorschriften und damit letztlich zu Straf- und Rechtskosten führen können.

Diese Risiken können sich wiederholen, wenn Entscheidungen nicht prozessbasiert, sondern aus dem Bauch heraus getroffen werden oder wenn Entscheidungsträger erst Anwendungsfälle, Berichte und Prozesse durchsuchen müssen.

Treffen Sie bessere Entscheidungen

Die richtige Entscheidung zur richtigen Zeit zu treffen, ist für den Geschäftserfolg entscheidend; doch nur wenige Unternehmen verwalten ihre Entscheidungen als separate Instanzen. Die meisten Unternehmen nutzen KPIs oder Ähnliches, um die Auswirkungen ihrer Entscheidungen zu messen, statt die eigentlichen Entscheidungsprozesse im Vorfeld zu definieren.

Hier kommt Business Decision Management (BDM) ins Spiel, mit dem Entscheidungen identifiziert, katalogisiert und modelliert werden können – insbesondere die bereits genannten operativen Entscheidungen. BDM kann zudem ihre Auswirkungen auf die Leistung quantifizieren und Metriken und Schlüsselindikatoren für die Entscheidungen erstellen.

Mit einem effektiven BDM-Ansatz und der Decision Model and Notation (DMN) können Unternehmen Modelle zur Entscheidungsfindung erstellen. DMN bietet ein klares, benutzerfreundliches Notationssystem, das Geschäftsentscheidungen einschließlich der zugrunde liegenden Richtlinien und Daten beschreibt.

Bessere Entscheidungen mit Signavio

Die Signavio Business Transformation Suite unterstützt nicht nur den DMN-Standard, sondern auch den Aufbau einer umfassenden Umgebung zur kollaborativen Ermittlung, Verwaltung und Verbesserung Ihrer Entscheidungen.

Mit dem Signavio Process Manager können Sie Entscheidungen über mehrere Geschäftsbereiche hinweg standardisieren, replizieren und wiederverwenden und diese Entscheidungen mit Ihren Geschäftsprozessen verknüpfen. Der Signavio Process Manager ermöglicht es Ihren Mitarbeitern, stets die beste Entscheidung für ihre Arbeit zu treffen – egal, wie komplex die Aufgaben sind.

Profitieren Sie von den vielen Vorteilen wie verbesserte Leistung und geringere Risiken und trennen Sie die Entscheidungsfindung von unklaren Prozessen und unsicheren Technologien. Registrieren Sie sich noch heute für eine kostenlose 30-Tage-Testversion und lernen Sie die Signavio Business Transformation Suite und ihre Vorteile kennen. Mehr zum Thema lesen Sie in unserem kostenlosen Whitepaper.

Visual Question Answering with Keras – Part 2: Making Computers Intelligent to answer from images

Making Computers Intelligent to answer from images

This is my second blog on Visual Question Answering, in the last blog, I have introduced to VQA, available datasets and some of the real-life applications of VQA. If you have not gone through then I would highly recommend you to go through it. Click here for more details about it.

In this blog post, I will walk through the implementation of VQA in Keras.

You can download the dataset from here: https://visualqa.org/index.html. All my experiments were performed with VQA v2 and I have used a very tiny subset of entire dataset i.e all samples for training and testing from the validation set.

Table of contents:

  1. Preprocessing Data
  2. Process overview for VQA
  3. Data Preprocessing – Images
  4. Data Preprocessing through the spaCy library- Questions
  5. Model Architecture
  6. Defining model parameters
  7. Evaluating the model
  8. Final Thought
  9. References

NOTE: The purpose of this blog is not to get the state-of-art performance on VQA. But the idea is to get familiar with the concept. All my experiments were performed with the validation set only.

Full code on my Github here.


1. Preprocessing Data:

If you have downloaded the dataset then the question and answers (called as annotations) are in JSON format. I have provided the code to extract the questions, annotations and other useful information in my Github repository. All extracted information is stored in .txt file format. After executing code the preprocessing directory will have the following structure.

All text files will be used for training.

 

2. Process overview for VQA:

As we have discussed in previous post visual question answering is broken down into 2 broad-spectrum i.e. vision and text.  I will represent the Neural Network approach to this problem using the Convolutional Neural Network (for image data) and Recurrent Neural Network(for text data). 

If you are not familiar with RNN (more precisely LSTM) then I would highly recommend you to go through Colah’s blog and Andrej Karpathy blog. The concepts discussed in this blogs are extensively used in my post.

The main idea is to get features for images from CNN and features for the text from RNN and finally combine them to generate the answer by passing them through some fully connected layers. The below figure shows the same idea.

 

I have used VGG-16 to extract the features from the image and LSTM layers to extract the features from questions and combining them to get the answer.

3. Data Preprocessing – Images:

Images are nothing but one of the input to our model. But as you already may know that before feeding images to the model we need to convert into the fixed-size vector.

So we need to convert every image into a fixed-size vector then it can be fed to the neural network. For this, we will use the VGG-16 pretrained model. VGG-16 model architecture is trained on millions on the Imagenet dataset to classify the image into one of 1000 classes. Here our task is not to classify the image but to get the bottleneck features from the second last layer.

Hence after removing the softmax layer, we get a 4096-dimensional vector representation (bottleneck features) for each image.

Image Source: https://www.cs.toronto.edu/~frossard/post/vgg16/

 

For the VQA dataset, the images are from the COCO dataset and each image has unique id associated with it. All these images are passed through the VGG-16 architecture and their vector representation is stored in the “.mat” file along with id. So in actual, we need not have to implement VGG-16 architecture instead we just do look up into file with the id of the image at hand and we will get a 4096-dimensional vector representation for the image.

4. Data Preprocessing through the spaCy library- Questions:

spaCy is a free, open-source library for advanced Natural Language Processing (NLP) in Python. As we have converted images into a fixed 4096-dimensional vector we also need to convert questions into a fixed-size vector representation. For installing spaCy click here

You might know that for training word embeddings in Keras we have a layer called an Embedding layer which takes a word and embeds it into a higher dimensional vector representation. But by using the spaCy library we do not have to train the get the vector representation in higher dimensions.

 

This model is actually trained on billions of tokens of the large corpus. So we just need to call the vector method of spaCy class and will get vector representation for word.

After fitting, the vector method on tokens of each question will get the 300-dimensional fixed representation for each word.

5. Model Architecture:

In our problem the input consists of two parts i.e an image vector, and a question, we cannot use the Sequential API of the Keras library. For this reason, we use the Functional API which allows us to create multiple models and finally merge models.

The below picture shows the high-level architecture idea of submodules of neural network.

After concatenating the 2 different models the summary will look like the following.

The below plot helps us to visualize neural network architecture and to understand the two types of input:

 

6. Defining model parameters:

The hyperparameters that we are going to use for our model is defined as follows:

If you know what this parameter means then you can play around it and can get better results.

Time Taken: I used the GPU on https://colab.research.google.com and hence it took me approximately 2 hours to train the model for 5 epochs. However, if you train it on a PC without GPU, it could take more time depending on the configuration of your machine.

7. Evaluating the model:

Since I have used the very small dataset for performing these experiments I am not able to get very good accuracy. The below code will calculate the accuracy of the model.

 

Since I have trained a model multiple times with different parameters you will not get the same accuracy as me. If you want you can directly download mode.h5 file from my google drive.

 

8. Final Thoughts:

One of the interesting thing about VQA is that it a completely new field. So there is absolutely no end to what you can do to solve this problem. Below are some tips while replicating the code.

  1. Start with a very small subset of data: When you start implementing I suggest you start with a very small amount of data. Because once you are ready with the whole setup then you can scale it any time.
  2. Understand the code: Understanding code line by line is very much helpful to match your theoretical knowledge. So for that, I suggest you can take very few samples(maybe 20 or less) and run a small chunk (2 to 3 lines) of code to get the functionality of each part.
  3. Be patient: One of the mistakes that I did while starting with this project was to do everything at one go. If you get some error while replicating code spend 4 to 5 days harder on that. Even after that if you won’t able to solve, I would suggest you resume after a break of 1 or 2 days. 

VQA is the intersection of NLP and CV and hopefully, this project will give you a better understanding (more precisely practically) with most of the deep learning concepts.

If you want to improve the performance of the model below are few tips you can try:

  1. Use larger datasets
  2. Try Building more complex models like Attention, etc
  3. Try using other pre-trained word embeddings like Glove 
  4. Try using a different architecture 
  5. Do more hyperparameter tuning

The list is endless and it goes on.

In the blog, I have not provided the complete code you can get it from my Github repository.

9. References:

  1. https://blog.floydhub.com/asking-questions-to-images-with-deep-learning/
  2. https://tryolabs.com/blog/2018/03/01/introduction-to-visual-question-answering/
  3. https://github.com/sominwadhwa/vqamd_floyd