Glorious career paths of a Big Data Professional

Are you wondering about the career profiles you may get to fill if you get into Big Data industry? If yes, then Bingo! This is the post that will inform you just about that. Big data is just an umbrella term. There are a lot of profiles and career paths that are covered under this umbrella term. Let us have a look at some of these profiles.

Data Visualisation Specialist

The process of visualizing data is turning out to be critical in guaranteeing information-driven representatives get the upfront investment required to actualize goal-oriented and significant Big Data extends in their organization. Making your data to tell a story and the craft of envisioning information convincingly has turned into a significant piece of the Big Data world and progressively associations need to have these capacities in-house. Besides, as a rule, these experts are relied upon to realize how to picture in different instruments, for example, Spotfire, D3, Carto, and Tableau – among numerous others. Information Visualization Specialists should be versatile and inquisitive to guarantee they stay aware of most recent patterns and answers for a recount to their information stories in the most intriguing manner conceivable with regards to the board room. 

 

Big Data Architect

This is the place the Hadoop specialists come in. Ordinarily, a Big Data planner tends to explicit information issues and necessities, having the option to portray the structure and conduct of a Big Data arrangement utilizing the innovation wherein they practice – which is, as a rule, mostly Hadoop.

These representatives go about as a significant connection between the association (and its specific needs) and Data Scientists and Engineers. Any organization that needs to assemble a Big Data condition will require a Big Data modeler who can serenely deal with the total lifecycle of a Hadoop arrangement – including necessity investigation, stage determination, specialized engineering structure, application plan, and advancement, testing the much-dreaded task of deploying lastly.

Systems Architect 

This Big data professional is in charge of how your enormous information frameworks are architected and interconnected. Their essential incentive to your group lies in their capacity to use their product building foundation and involvement with huge scale circulated handling frameworks to deal with your innovation decisions and execution forms. You’ll need this individual to construct an information design that lines up with the business, alongside abnormal state anticipating the improvement. The person in question will consider different limitations, adherence to gauges, and varying needs over the business.

Here are some responsibilities that they play:

    • Determine auxiliary prerequisites of databases by investigating customer tasks, applications, and programming; audit targets with customers and assess current frameworks.
    • Develop database arrangements by planning proposed framework; characterize physical database structure and utilitarian abilities, security, back-up and recuperation particulars.
    • Install database frameworks by creating flowcharts; apply ideal access methods, arrange establishment activities, and record activities.
    • Maintain database execution by distinguishing and settling generation and application advancement issues, figuring ideal qualities for parameters; assessing, incorporating, and putting in new discharges, finishing support and responding to client questions.
    • Provide database support by coding utilities, reacting to client questions, and settling issues.


Artificial Intelligence Developer

The certain promotion around Artificial Intelligence is additionally set to quicken the number of jobs publicized for masters who truly see how to apply AI, Machine Learning, and Deep Learning strategies in the business world. Selection representatives will request designers with broad learning of a wide exhibit of programming dialects which loan well to AI improvement, for example, Lisp, Prolog, C/C++, Java, and Python.

All said and done; many people estimate that this popular demand for AI specialists could cause a something like what we call a “Brain Drain” organizations poaching talented individuals away from the universe of the scholarly world. A month ago in the Financial Times, profound learning pioneer and specialist Yoshua Bengio, of the University of Montreal expressed: “The industry has been selecting a ton of ability — so now there’s a lack in the scholarly world, which is fine for those organizations. However, it’s not extraordinary for the scholarly world.” It ; howeverusiasm to perceive how this contention among the scholarly world and business is rotated in the following couple of years.

Data Scientist

The move of Big Data from tech publicity to business reality may have quickened, yet the move away from enrolling top Data Scientists isn’t set to change in 2020. An ongoing Deloitte report featured that the universe of business will require three million Data Scientists by 2021, so if their expectations are right, there’s a major ability hole in the market. This multidisciplinary profile requires specialized logical aptitudes, specialized software engineering abilities just as solid gentler abilities, for example, correspondence, business keenness, and scholarly interest.

Data Engineer

Clean and quality data is crucial in the accomplishment of Big Data ventures. Consequently, we hope to see a lot of opening in 2020 for Data Engineers who have a predictable and awesome way to deal with information transformation and treatment. Organizations will search for these special data masters to have broad involvement in controlling data with SQL, T-SQL, R, Hadoop, Hive, Python and Spark. Much like Data Scientists. They are likewise expected to be innovative with regards to contrasting information with clashing information types with have the option to determine issues. They additionally frequently need to make arrangements which enable organizations to catch existing information in increasingly usable information groups – just as performing information demonstrations and their modeling.

IT/Operations Manager Job Description

In Big data industry, the IT/Operations Manager is a profitable expansion to your group and will essentially be in charge of sending, overseeing, and checking your enormous information frameworks. You’ll depend on this colleague to plan and execute new hardware and administrations. The person in question will work with business partners to comprehend the best innovation ventures to address their procedures and concerns—interpreting business necessities to innovation plans. They’ll likewise work with venture chiefs to actualize innovation and be in charge of effective progress and general activities.

Here are some responsibilities that they play:

  • Manage and be proactive in announcing, settling and raising issues where required 
  • Lead and co-ordinate issue the executive’s exercises, notwithstanding ceaseless procedure improvement activities  
  • Proactively deal with our IT framework 
  • Supervise and oversee IT staffing, including enrollment, supervision, planning, advancement, and assessment
  • Verify existing business apparatuses and procedures remain ideally practical and worth included 
  • Benchmark, dissect, report on and make suggestions for the improvement and development of the IT framework and IT frameworks 
  • Advance and keep up a corporate SLA structure

Conclusion

These are some of the best career paths that big data professionals can play after entering the industry. Honesty and hard work can always take you to the zenith of any field that you choose to be in. Also, keep upgrading your skills by taking newer certifications and technologies. Good Luck 

Interview: Does Business Intelligence benefit from Cloud Data Warehousing?

Interview with Ross Perez, Senior Director, Marketing EMEA at Snowflake

Read this article in German:
“Profitiert Business Intelligence vom Data Warehouse in der Cloud?”

Does Business Intelligence benefit from Cloud Data Warehousing?

Ross Perez is the Senior Director, Marketing EMEA at Snowflake. He leads the Snowflake marketing team in EMEA and is charged with starting the discussion about analytics, data, and cloud data warehousing across EMEA. Before Snowflake, Ross was a product marketer at Tableau Software where he founded the Iron Viz Championship, the world’s largest and longest running data visualization competition.

Data Science Blog: Ross, Business Intelligence (BI) is not really a new trend. In 2019/2020, making data available for the whole company should not be a big thing anymore. Would you agree?

BI is definitely an old trend, reporting has been around for 50 years. People are accustomed to seeing statistics and data for the company at large, and even their business units. However, using BI to deliver analytics to everyone in the organization and encouraging them to make decisions based on data for their specific area is relatively new. In a lot of the companies Snowflake works with, there is a huge new group of people who have recently received access to self-service BI and visualization tools like Tableau, Looker and Sigma, and they are just starting to find answers to their questions.

Data Science Blog: Up until today, BI was just about delivering dashboards for reporting to the business. The data warehouse (DWH) was something like the backend. Today we have increased demand for data transparency. How should companies deal with this demand?

Because more people in more departments are wanting access to data more frequently, the demand on backend systems like the data warehouse is skyrocketing. In many cases, companies have data warehouses that weren’t built to cope with this concurrent demand and that means that the experience is slow. End users have to wait a long time for their reports. That is where Snowflake comes in: since we can use the power of the cloud to spin up resources on demand, we can serve any number of concurrent users. Snowflake can also house unlimited amounts of data, of both structured and semi-structured formats.

Data Science Blog: Would you say the DWH is the key driver for becoming a data-driven organization? What else should be considered here?

Absolutely. Without having all of your data in a single, highly elastic, and flexible data warehouse, it can be a huge challenge to actually deliver insight to people in the organization.

Data Science Blog: So much for the theory, now let’s talk about specific use cases. In general, it matters a lot whether you are storing and analyzing e.g. financial data or machine data. What do we have to consider for both purposes?

Financial data and machine data do look very different, and often come in different formats. For instance, financial data is often in a standard relational format. Data like this needs to be able to be easily queried with standard SQL, something that many Hadoop and noSQL tools were unable to provide. Luckily, Snowflake is an ansi-standard SQL data warehouse so it can be used with this type of data quite seamlessly.

On the other hand, machine data is often semi-structured or even completely unstructured. This type of data is becoming significantly more common with the rise of IoT, but traditional data warehouses were very bad at dealing with it since they were optimized for relational data. Semi-structured data like JSON, Avro, XML, Orc and Parquet can be loaded into Snowflake for analysis quite seamlessly in its native format. This is important, because you don’t want to have to flatten the data to get any use from it.

Both types of data are important, and Snowflake is really the first data warehouse that can work with them both seamlessly.

Data Science Blog: Back to the common business use case: Creating sales or purchase reports for the business managers, based on data from ERP-systems such as Microsoft or SAP. Which architecture for the DWH could be the right one? How many and which database layers do you see as necessary?

The type of report largely does not matter, because in all cases you want a data warehouse that can support all of your data and serve all of your users. Ideally, you also want to be able to turn it off and on depending on demand. That means that you need a cloud-based architecture… and specifically Snowflake’s innovative architecture that separates storage and compute, making it possible to pay for exactly what you use.

Data Science Blog: Where would you implement the main part of the business logic for the report? In the DWH or in the reporting tool? Does it matter which reporting tool we choose?

The great thing is that you can choose either. Snowflake, as an ansi-Standard SQL data warehouse, can support a high degree of data modeling and business logic. But you can also utilize partners like Looker and Sigma who specialize in data modeling for BI. We think it’s best that the customer chooses what is right for them.

Data Science Blog: Snowflake enables organizations to store and manage their data in the cloud. Does it mean companies lose control over their storage and data management?

Customers have complete control over their data, and in fact Snowflake cannot see, alter or change any aspect of their data. The benefit of a cloud solution is that customers don’t have to manage the infrastructure or the tuning – they decide how they want to store and analyze their data and Snowflake takes care of the rest.

Data Science Blog: How big is the effort for smaller and medium sized companies to set up a DWH in the cloud? Does this have to be an expensive long-term project in every case?

The nice thing about Snowflake is that you can get started with a free trial in a few minutes. Now, moving from a traditional data warehouse to Snowflake can take some time, depending on the legacy technology that you are using. But Snowflake itself is quite easy to set up and very much compatible with historical tools making it relatively easy to move over.

DS-GVO: Wie das moderne Data-Warehouse Unternehmen entlastet

Artikel des Blog-Sponsors: Snowflake

Viele Aktivitäten, die zur Einhaltung der DS-GVO-Anforderungen beitragen, liegen in den Händen der Unternehmen selbst. Deren IT-Anbieter sollten dazu beitragen, die Compliance-Anforderungen dieser Unternehmen zu erfüllen. Die SaaS-Anbieter eines Unternehmens sollten zumindest die IT-Sicherheitsanforderungen erfüllen, die sich vollständig in ihrem Bereich befinden und sich auf die Geschäfts- und Datensicherheit ihrer Kunden auswirken.

Snowflake wurde von Grund auf so gestaltet, dass die Einhaltung der DS-GVO erleichtert wird – und von Beginn darauf ausgelegt, enorme Mengen strukturierter und semistrukturierter Daten mit der Leichtigkeit von Standard-SQL zu verarbeiten. Die Zugänglichkeit und Einfachheit von SQL gibt Organisationen die Flexibilität, alle unter der DS-GVO erforderlichen Aktualisierungen, Änderungen oder Löschungen nahtlos vorzunehmen. Snowflakes Unterstützung für semistrukturierte Daten kann die Anpassung an neue Felder und andere Änderungen der Datensätze erleichtern. Darüber hinaus war die Sicherheit von Anfang an von grundlegender Bedeutung für Architektur, Implementierung und Betrieb von Snowflakes Data-Warehouse-as-a-Service.

Ein Grundprinzip der DS-GVO

Ein wichtiger Faktor für die Einhaltung der DS-GVO ist, zu verstehen, welche Daten eine Organisation besitzt und auf wen sie sich beziehen. Diese Anforderung macht es nötig, dass Daten strukturiert, organisiert und einfach zu suchen sind.

Die relationale SQL-Datenbankarchitektur von Snowflake bietet eine erheblich vereinfachte Struktur und Organisation, was sicherstellt, dass jeder Datensatz einen eindeutigen und leicht identifizierbaren Speicherort innerhalb der Datenbank besitzt. Snowflake-Kunden können auch relationalen Speicher mit dem Variant-Spaltentyp von Snowflake für semistrukturierte Daten kombinieren. Dieser Ansatz erweitert die Einfachheit des relationalen Formats auf die Schema-Flexibilität semistrukturierter Daten.

Snowflake ist noch leistungsfähiger durch seine Fähigkeit, massive Nebenläufigkeit zu unterstützen. Bei größeren Organisationen können Dutzende oder sogar Hunderte nebenläufiger Datenänderungen, -abfragen und -suchvorgänge zu einem bestimmten Zeitpunkt auftreten. Herkömmliche Data-Warehouses können nicht zu einem bestimmten Zeitpunkt über einen einzelnen Rechen-Cluster hinaus skaliert werden, was zu langen Warteschlangen und verzögerter Compliance führt. Snowflakes Multi-Cluster-Architektur für gemeinsam genutzte Daten löst dieses Problem, indem sie so viele einzigartige Rechen-Cluster bereitstellen kann, wie für einen beliebigen Zweck nötig sind, was zu einer effizienteren Workload-Isolierung und höherem Abfragedurchsatz führt. Jeder Mitarbeiter kann sehr große Datenmengen mit so vielen nebenläufigen Benutzern oder Operationen wie nötig speichern, organisieren, ändern, suchen und abfragen.

Rechte von Personen, deren Daten verarbeitet werden („Datensubjekte“)

Organisationen, die von der DS-GVO betroffen sind, müssen sicherstellen, dass sie Anfragen betroffener Personen nachkommen können. Einzelpersonen haben jetzt erheblich erweiterte Rechte, um zu erfahren, welche Art von Daten eine Organisation über sie besitzt, und das Recht, den Zugriff und/oder die Korrektur ihrer Daten anzufordern, die Daten zu löschen und/oder die Daten an einen neuen Provider zu übertragen. Bei der Bereitstellung dieser Dienste müssen Organisationen ziemlich schnell reagieren, in der Regel innerhalb von 30 Tagen. Daher müssen sie ihre Geschäftssysteme und ihr Data-Warehouse schnell durchsuchen können, um alle personenbezogenen Daten zu finden, die mit einer Person in Verbindung stehen, und entsprechende Maßnahmen ergreifen.

Organisationen können in großem Umfang von der Speicherung aller Daten in einem Data-Warehouse-as-a-Service mit vollen DML- und SQL-Fähigkeiten profitieren. Dies erleichtert das (mühevolle) Durchsuchen getrennter Geschäftssysteme und Datenspeicher, um die relevanten Daten zu finden. Und das wiederum hilft sicherzustellen, dass einzelne Datensätze durchsucht, gelöscht, eingeschränkt, aktualisiert, aufgeteilt und auf andere Weise manipuliert werden können, um sie an entsprechende Anfragen betroffener Personen anzupassen. Außerdem können Daten so verschoben werden, dass sie der Anforderung einer Anfrage zum „Recht auf Datenübertragbarkeit“ entsprechen. Von Anfang an wurde Snowflake mit ANSI-Standard-SQL und vollständiger DML-Unterstützung entwickelt, um sicherzustellen, dass diese Arten von Operationen möglich sind.

Sicherheit

Leider erfordern es viele herkömmliche Data-Warehouses, dass sich Unternehmen selbst um die IT-Sicherheit kümmern und diese mit anderen Services außerhalb des Kernangebots kombiniert wird. Außerdem bieten sie manchmal noch nicht einmal standardmäßige Verschlüsselung.

Als Data-Warehouse, das speziell für die Cloud entwickelt wurde und das Sicherheit als zentrales Element bietet, umfasst Snowflake unter anderem folgende integrierte Schutzfunktionen:

  • Minimaler Betriebsaufwand: Weniger Komplexität durch automatische Performance, Sicherheit und Hochverfügbarkeit, sodass die Infrastruktur nicht optimiert werden muss und kein Tuning nötig ist.
  • Durchgängige Verschlüsselung: Automatische Verschlüsselung aller Daten jederzeit (in ruhendem und bewegtem Zustand).
  • Umfassender Schutz: Zu den Sicherheitsfunktionen zählen Multi-Faktor-Authentifizierung, rollenbasierte Zugriffskontrolle, IP-Adressen-Whitelisting, zentralisierte Authentifizierung und jährliche Neuverschlüsselung verschlüsselter Daten.
  • Tri-Secret Secure: Kundenkontrolle und Datenschutz durch die Kombination aus einem vom Kunden, einem von Snowflake bereitgestellten Verschlüsselungsschlüssel und Benutzerzugangsdaten.
  • Unterstützung für AWS Private Link: Kunden können Daten zwischen ihrem virtuellen privaten Netzwerk und Snowflake übertragen, ohne über das Internet gehen zu müssen. Dadurch ist die Konnektivität zwischen den Netzwerken sicher und einfacher zu verwalten.
  • Stärkere unternehmensinterne Datenabgrenzung dank Snowflake Data Sharing: Organisationen können die Datenfreigabefunktionen von Snowflake nutzen, um nicht personenbezogene Daten mit anderen Abteilungen zu teilen, die keinen Zugriff benötigen – indem sie strengere Sicherheits- und DS-GVO-Kontrollen durchsetzen.
  • Private Umgebung: Unternehmen können eine dedizierte, verwaltete Snowflake- Instanz in einer separaten AWS Virtual Private Cloud (VPC) abrufen.

Rechenschaftspflicht

Was die Komplexität weiter erhöht: Organisationen müssen auch sicherstellen, dass sie und die Organisationen und Tools, mit denen sie arbeiten, Compliance nachweisen können. Snowflake prüft und verfeinert seine IT-Sicherheitspraxis regelmäßig mit peniblen Penetrationstests. Snowflakes Data-Warehouse-as-a-Service ist zertifiziert nach SOC 2 Type II, ist PCI-DSS-konform und unterstützt HIPAA-Compliance. Um Anfragen von Personen, deren Daten verarbeitet werden („Datensubjekte“), zu entsprechen, können Kunden genutzte Daten überprüfen.

Zusätzlich zu diesen Standardfunktionen und -validierungen schützt Snowflake seine Kunden auch durch den Datenschutznachtrag („Data Protection Addendum“), der genau auf die Anforderungen der DS-GVO abgestimmt ist. Snowflake hält sich außerdem an penibel vertraglich festgelegte Sicherheitsverpflichtungen („contractual security commitments“), um effizientere Transaktionen und eine vereinfachte Sorgfaltspflicht zu ermöglichen.

Fazit

Im Rahmen der Europäischen Datenschutz-Grundverordnung müssen Unternehmen technische Maßnahmen ergreifen, mit deren Hilfe sie den Anforderungen ihrer Kunden in Bezug auf Datenschutz und Schutz der Privatsphäre gerecht werden können. Snowflake bietet hier nicht nur den Vorteil, alle wichtigen Kundendaten an einem einzigen Ort zu speichern, sondern ermöglicht auch das schnelle Auffinden und Abrufen dieser Daten, sodass Unternehmen im Bedarfsfall schnell aktiv werden können.

Establish a Collaborative Culture – Process Mining Rule 4 of 4

This is article no. 4 of the four-part article series Privacy, Security and Ethics in Process Mining.

Read this article in German:
Datenschutz, Sicherheit und Ethik beim Process Mining – Regel 4 von 4

Perhaps the most important ingredient in creating a responsible process mining environment is to establish a collaborative culture within your organization. Process mining can make the flaws in your processes very transparent, much more transparent than some people may be comfortable with. Therefore, you should include change management professionals, for example, Lean practitioners who know how to encourage people to tell each other “the truth”, in your team.

Furthermore, be careful how you communicate the goals of your process mining project and involve relevant stakeholders in a way that ensures their perspective is heard. The goal is to create an atmosphere, where people are not blamed for their mistakes (which only leads to them hiding what they do and working against you) but where everyone is on board with the goals of the project and where the analysis and process improvement is a joint effort.

Do:

  • Make sure that you verify the data quality before going into the data analysis, ideally by involving a domain expert already in the data validation step. This way, you can build trust among the process managers that the data reflects what is actually happening and ensure that you have the right understanding of what the data represents.
  • Work in an iterative way and present your findings as a starting point for discussion in each iteration. Give people the chance to explain why certain things are happening and let them ask additional questions (to be picked up in the next iteration). This will help to improve the quality and relevance of your analysis as well as increase the buy-in of the process stakeholders in the final results of the project.

Don’t:

  • Jump to conclusions. You can never assume that you know everything about the process. For example, slower teams may be handling the difficult cases, people may deviate from the process for good reasons, and you may not see everything in the data (for example, there might be steps that are performed outside of the system). By consistently using your observations as a starting point for discussion, and by allowing people to join in the interpretation, you can start building trust and the collaborative culture that process mining needs to thrive.
  • Force any conclusions that you expect, or would like to have, by misrepresenting the data (or by stating things that are not actually supported by the data). Instead, keep track of the steps that you have taken in the data preparation and in your process mining analysis. If there are any doubts about the validity or questions about the basis of your analysis, you can always go back and show, for example, which filters have been applied to the data to come to the particular process view that you are presenting.

Consider Anonymization – Process Mining Rule 3 of 4

This is article no. 3 of the four-part article series Privacy, Security and Ethics in Process Mining.

Read this article in German:
Datenschutz, Sicherheit und Ethik beim Process Mining – Regel 3 von 4

If you have sensitive information in your data set, instead of removing it you can also consider the use of anonymization. When you anonymize a set of values, then the actual values (for example, the employee names “Mary Jones”, “Fred Smith”, etc.) will be replaced by another value (for example, “Resource 1”, “Resource 2”, etc.).

If the same original value appears multiple times in the data set, then it will be replaced with the same replacement value (“Mary Jones” will always be replaced by “Resource 1”). This way, anonymization allows you to obfuscate the original data but it preserves the patterns in the data set for your analysis. For example, you will still be able to analyze the workload distribution across all employees without seeing the actual names.

Some process mining tools (Disco and ProM) include anonymization functionality. This means that you can import your data into the process mining tool and select which data fields should be anonymized. For example, you can choose to anonymize just the Case IDs, the resource name, attribute values, or the timestamps. Then you export the anonymized data set and you can distribute it among your team for further analysis.

Do:

  • Determine which data fields are sensitive and need to be anonymized (see also the list of common process mining attributes and how they are impacted if anonymized).
  • Keep in mind that despite the anonymization certain information may still be identifiable. For example, there may be just one patient having a very rare disease, or the birthday information of your customer combined with their place of birth may narrow down the set of possible people so much that the data is not anonymous anymore.

Don’t:

  • Anonymize the data before you have cleaned your data, because after the anonymization the data cleaning may not be possible anymore. For example, imagine that slightly different customer category names are used in different regions but they actually mean the same. You would like to merge these different names in a data cleaning step. However, after you have anonymized the names as “Category 1”, “Category 2”, etc. the data cleaning cannot be done anymore.
  • Anonymize fields that do not need to be anonymized. While anonymization can help to preserve patterns in your data, you can easily lose relevant information. For example, if you anonymize the Case ID in your incident management process, then you cannot look up the ticket number of the incident in the service desk system anymore. By establishing a collaborative culture around your process mining initiative (see guideline No. 4) and by working in a responsible, goal-oriented way, you can often work openly with the original data that you have within your team.

Responsible Handling of Data – Process Mining Rule 2 of 4

This is article no. 2 of the four-part article series Privacy, Security and Ethics in Process Mining.

Read this article in German:
Datenschutz, Sicherheit und Ethik beim Process Mining – Regel 2 von 4

Like in any other data analysis technique, you must be careful with the data once you have obtained it. In many projects, nobody thinks about the data handling until it is brought up by the security department. Be that person who thinks about the appropriate level of protection and has a clear plan already prior to the collection of the data.

Do:

  • Have external parties sign a Non Disclosure Agreement (NDA) to ensure the confidentiality of the data. This holds, for example, for consultants you have hired to perform the process mining analysis for you, or for researchers who are participating in your project. Contact your legal department for this. They will have standard NDAs that you can use.
  • Make sure that the hard drive of your laptop, external hard drives, and USB sticks that you use to transfer the data and your analysis results are encrypted.

Don’t:

  • Give the data set to your co-workers before you have checked what is actually in the data. For example, it could be that the data set contains more information than you requested, or that it contains sensitive data that you did not think about. For example, the names of doctors and nurses might be mentioned in a free-text medical notes attribute. Make sure you remove or anonymize (see guideline No. 3) all sensitive data before you pass it on.
  • Upload your data to a cloud-based process mining tool without checking that your organization allows you to upload this kind of data. Instead, use a desktop-based process mining tool (like Disco [3] or ProM [4]) to analyze your data locally or get the cloud-based process mining vendor to set-up an on-premise version of their software within your organization. This is also true for cloud-based storage services like Dropbox: Don’t just store data or analysis results in the cloud even if it is convenient.

Künstliche Intelligenz und Data Science in der Automobilindustrie

Data Science und maschinelles Lernen sind die wesentlichen Technologien für die automatisch lernenden und optimierenden Prozesse und Produkte in der Automobilindustrie der Zukunft. In diesem Beitrag werde die zugrundeliegenden Begriffe Data Science (bzw. Data Analytics) und maschinelles Lernen sowie deren Zusammenhang definiert. Darüber hinaus wird der Begriff Optimizing Analytics definiert und die Rolle der automatischen Optimierung als Schlüsseltechnologie in Kombination mit Data Analytics dargelegt. Der Stand der Nutzung dieser Technologien in der Automobilindustrie wird anhand der wesentlichen Teilprozesse in der automobilen Wertschöpfungskette (Entwicklung, Einkauf, Logistik, Produktion, Marketing, Sales und Aftersales, Connected Customer) an exemplarischen Beispielen erläutert. Dass die Industrie heute erst am Anfang der Nutzungsmöglichkeiten steht, wird anhand von visionären Anwendungsbeispielen verdeutlicht, die die revolutionären Möglichkeiten dieser Technologien darstellen. Der Beitrag zeigt auf, wie die Automobilindustrie umfassend, vom Produkt und dessen Entstehungsprozess bis zum Kunden und dessen Verbindung zum Produkt, durch diese Technologie effizienter und kundenorientierter wird.

english-flagRead this article in English:
“Artificial Intelligence and Data Science in the Automotive Industry”

Read more

Clarify Goal of the Analysis – Process Mining Rule 1 of 4

This is article no. 1 of the four-part article series Privacy, Security and Ethics in Process Mining.

Read this article in German:
Datenschutz, Sicherheit und Ethik beim Process Mining – Regel 1 von 4

Clarify Goal of the Analysis

The good news is that in most situations Process Mining does not need to evaluate personal information, because it usually focuses on the internal organizational processes rather than, for example, on customer profiles. Furthermore, you are investigating the overall process patterns. For example, a process miner is typically looking for ways to organize the process in a smarter way to avoid unnecessary idle times rather than trying to make people work faster.

However, as soon as you would like to better understand the performance of a particular process, you often need to know more about other case attributes that could explain variations in process behaviours or performance. And people might become worried about where this will lead them.

Therefore, already at the very beginning of the process mining project, you should think about the goal of the analysis. Be clear about how the results will be used. Think about what problem are you trying to solve and what data you need to solve this problem.

Do:

  • Check whether there are legal restrictions regarding the data. For example, in Germany employee-related data cannot be used and typically simply would not be extracted in the first place. If your project relates to analyzing customer data, make sure you understand the restrictions and consider anonymization options (see guideline No. 3).
  • Consider establishing an ethical charter that states the goal of the project, including what will and what will not be done based on the analysis. For example, you can clearly state that the goal is not to evaluate the performance of the employees. Communicate to the people who are responsible for extracting the data what these goals are and ask for their assistance to prepare the data accordingly.

Don’t:

  • Start out with a fuzzy idea and simply extract all the data you can get. Instead, think about what problem are you trying to solve? And what data do you actually need to solve this problem? Your project should focus on business goals that can get the support of the process managers you work with (see guideline No. 4).
  • Make your first project too big. Instead, focus on one process with a clear goal. If you make the scope of your project too big, people might block it or work against you while they do not yet even understand what process mining can do.

Privacy, Security and Ethics in Process Mining – Article Series

When I moved to the Netherlands 12 years ago and started grocery shopping at one of the local supermarket chains, Albert Heijn, I initially resisted getting their Bonus card (a loyalty card for discounts), because I did not want the company to track my purchases. I felt that using this information would help them to manipulate me by arranging or advertising products in a way that would make me buy more than I wanted to. It simply felt wrong.

Read this article in German:
Datenschutz, Sicherheit und Ethik beim Process Mining – Artikelserie

The truth is that no data analysis technique is intrinsically good or bad. It is always in the hands of the people using the technology to make it productive and constructive. For example, while supermarkets could use the information tracked through the loyalty cards of their customers to make sure that we have to take the longest route through the store to get our typical items (passing by as many other products as possible), they can also use this information to make the shopping experience more pleasant, and to offer more products that we like.

Most companies have started to use data analysis techniques to analyze their data in one way or the other. These data analyses can bring enormous opportunities for the companies and for their customers, but with the increased use of data science the question of ethics and responsible use also grows more dominant. Initiatives like the Responsible Data Science seminar series [1] take on this topic by raising awareness and encouraging researchers to develop algorithms that have concepts like fairness, accuracy, confidentiality, and transparency built in (see Wil van der Aalst’s presentation on Responsible Data Science at Process Mining Camp 2016).

Process Mining can provide you with amazing insights about your processes, and fuel your improvement initiatives with inspiration and enthusiasm, if you approach it in the right way. But how can you ensure that you use process mining responsibly? What should you pay attention to when you introduce process mining in your own organization?

In this article series, we provide you four guidelines that you can follow to prepare your process mining analysis in a responsible way:

Part 1 of 4: Clarify the Goal of the Analysis

Part 2 of 4: Responsible Handling of Data

Part 3 of 4: Consider Anonymization

Part 4 of 4: Establish a collaborative Culture

Acknowledgements

We would like to thank Frank van Geffen and Léonard Studer, who initiated the first discussions in the workgroup around responsible process mining in 2015. Furthermore, we would like to thank Moe Wynn, Felix Mannhardt and Wil van der Aalst for their feedback on earlier versions of this article.

Datenschutz, Sicherheit und Ethik beim Process Mining – Regel 4 von 4:

Dieser Artikel ist Teil 4 von 4 aus der Reihe Datenschutz, Sicherheit und Ethik beim Process Mining.

english-flagRead this article in English:
Privacy, Security and Ethics in Process Mining – Rule 4 of 4


Schaffung einer Kooperationskultur

Möglicherweise ist der wichtigste Bestandteil bei der Schaffung eines verantwortungsbewussten Process Mining-Umfeldes der Aufbau einer Kooperationskultur innerhalb Ihrer Organisation. Process Mining kann die Fehler Ihrer Prozesse viel eindeutiger aufzeigen, als das manchen Menschen lieb ist. Daher sollten Sie Change Management-Experten miteinbeziehen wie beispielsweise Lean-Coaches, die es verstehen, Menschen dazu zu bewegen, sich gegenseitig “die Wahrheit“ zu sagen (siehe auch: Erfolgskriterien beim Process Mining).

Darüber hinaus sollten Sie vorsichtig sein, wie Sie die Ziele Ihres Process Mining-Projektes vermitteln und relevante Stakeholder so einbeziehen, dass ihre Meinung gehört wird. Ziel ist es, eine Atmosphäre zu schaffen, in der die Menschen nicht für ihre Fehler verantwortlich gemacht werden (was nur dazu führt, dass sie verbergen, was sie tun und gegen Sie arbeiten), sondern ein Umfeld zu schaffen, in dem jeder mitgenommen wird und wo die Analyse und Prozessverbesserung ein gemeinsames Ziel darstellt, für das man sich engagiert.

Was man tun sollte:

  • Vergewissern Sie sich, dass Sie die Datenqualität überprüfen, bevor Sie mit der Datenanalyse beginnen, bestenfalls durch die Einbeziehung eines Fachexperten bereits in der Datenvalidierungsphase. Auf diese Weise können Sie das Vertrauen der Prozessmanager stärken, dass die Daten widerspiegeln, was tatsächlich passiert und sicherstellen, dass Sie verstanden haben, was die Daten darstellen.
  • Arbeiten Sie auf iterative Weise und präsentieren Sie Ihre Ergebnisse als Ausgangspunkt einer Diskussion bei jeder Iteration. Geben Sie allen Beteiligten die Möglichkeit zu erklären, warum bestimmte Dinge geschehen und seien Sie offen für zusätzliche Fragen (die in der nächsten Iteration aufgegriffen werden). Dies wird dazu beitragen, die Qualität und Relevanz Ihrer Analyse zu verbessern, als auch das Vertrauen der Prozessverantwortlichen in die endgültigen Projektergebnisse zu erhöhen.

Was man nicht tun sollte:

  • Voreilige Schlüsse ziehen. Sie können nie davon ausgehen, dass Sie alles über den Prozess wissen. Zum Beispiel können langsamere Teams die schwierigen Fälle behandeln, es kann gute Gründe geben, von dem Standardprozess abzuweichen und Sie sehen möglicherweise nicht alles in den Daten (beispielsweise Vorgänge, die außerhalb des Systems durchgeführt werden). Indem Sie konstant Ihre Beobachtungen als Ausgangspunkt für Diskussionen anbringen und den Menschen die Möglichkeit einräumen, Ihre Erfahrung und Interpretationen mitzugeben, beginnen Sie, Vertrauen und die Kooperationskultur aufzubauen, die Process Mining braucht.
  • Schlussfolgerungen erzwingen, die ihren Erwartungen entsprechen oder die sie haben möchten, indem Sie die Daten falsch darstellen (oder Dinge darstellen, die nicht wirklich durch die Daten unterstützt werden). Führen Sie stattdessen ganz genau Buch über die Schritte, die Sie bei der Datenaufbereitung und in Ihrer Process-Mining-Analyse ausgeführt haben. Wenn Zweifel an der Gültigkeit bestehen oder es Fragen zu Ihrer Analysebasis gibt, dann können Sie stets zurückkehren und beispielsweise zeigen, welche Filter bei den Daten angewendet wurden, um zu der bestimmten Prozesssicht zu gelangen, die Sie vorstellen.