Was der BREXIT für die Cloud-Strategie bedeutet

Datensouveränität wird nach dem Brexit eine der größten Herausforderungen für Unternehmen sein. Geschäftsführer sind sich der Bedeutung dessen bewusst und fürchten die Gefahr eines „Data cliff edge“, wenn die Trennung Großbritanniens von der EU endgültig beschlossene Sache sein wird.

Ohne ein klares Gespür dafür zu haben, welche Vorschriften und Compliance-Anforderungen bald gelten werden, versuchen britische Unternehmen herauszufinden, wie sie ihre Daten bestmöglich schützen, Geschäftsverzögerungen verhindern und kostspielige Fehler vermeiden können. Die Vieldeutigkeit rund um den Brexit wirft mehr Fragen als Antworten auf, darunter: Wo sollten britische Unternehmen ihre Daten speichern? Sollten sie alle ihre Rechenzentren nach Großbritannien verlegen? Wie wirkt sich der Besitz von Rechenzentren auf den Datenschutz aus? Welche Bedrohungen bestehen, wenn nach Abschluss des Brexit Daten innerhalb oder außerhalb des Vereinigten Königreichs gespeichert werden?

Für Führungskräfte sind der Mangel an Antworten und die Angst vor dem Unbekannten frustrierend. In dieser ungewissen Zeit können smarte Geschäftsführer aber den Brexit für ihre Zwecke lenken, indem sie ihn als Chance und nicht als Hindernis für sich nutzen.

Die unsicher regulierte Zukunft

Für Unternehmen mit Sitz in Großbritannien, die Datenspeicherung und private Cloud-Dienste anbieten, ist vor allem der Ort, an dem sich die Daten befinden, von Belang. Die Gewährleistung der Sicherheit und Kontrolle über eigene Daten ist von zentraler Bedeutung. Gleichzeitig ist jedoch auch die Einhaltung unbekannter zukünftiger Vorschriften und Gesetze zum Datenschutz und zum Datentransfer ein Muss.

Grundlage ist die Einhaltung der Datenschutzverordnung (DSGVO) vom 25. Mai 2018, da das Vereinigte Königreich zu diesem Zeitpunkt noch immer Teil der EU war. Nach Angaben des Information Commissioner’s Office (ICO) des Vereinigten Königreichs – einer unabhängigen Behörde, die sich für die Wahrung von Informations- und Datenschutzrechten von Einzelpersonen einsetzt – bestätigte die britische Regierung, dass ein Austritt aus der EU keine Auswirkungen auf die DSGVO haben wird. Was in diesem Jahr, wenn sich Großbritannien und die EU endgültig voneinander trennen, passieren wird, kann man nur vermuten. Die Ratschläge von ICO sind richtungsweisend: „Bereiten Sie sich darauf vor, die Bestimmungen der DSGVO zu erfüllen und voranzukommen.“

Bemerkenswerterweise schreibt die DSGVO nicht vor, wo Unternehmen ihre Daten aufbewahren müssen. Es ist lediglich erforderlich, dass die EU-Organisationen ihre Daten innerhalb der EU speichern und außerhalb der EU unzugänglich machen müssen. Ausnahme: die Daten betreffen eine DSGVO-konforme Organisation. Wie sich dieses Mandat auf das Vereinigte Königreich auswirkt, muss noch gesehen werden. Denn das Vereinigte Königreich war ja zum Zeitpunkt der Ausarbeitung der Verordnung Teil der EU. Es ist unklar, ob das Vereinigte Königreich am Ende mit der DSGVO konform sein wird.

Aus globaler Sicht muss Großbritannien herausfinden, wie der Datenaustausch und der grenzüberschreitende Datenfluss reguliert werden können. Der freie Datenfluss ist wichtig für Unternehmen und Innovation, was bedeutet, dass das Vereinigte Königreich Vereinbarungen, wie die EU sie mit den USA getroffen haben, benötigt. Ein Privacy Shield, das den Austausch personenbezogener Daten zu gewerblichen Zwecken ermöglicht. Ob das Vereinigte Königreich Vereinbarungen wie den Privacy Shield umsetzen kann, oder neue Vereinbarungen mit Ländern wie den USA treffen muss, ist etwas, was nur die Zeit zeigen wird.

Wo sind die Daten?

Rechenzentren können heute durch freien Datenfluss, sowohl im Vereinigten Königreich als auch in der EU betrieben werden. Das Vereinigte Königreich unterliegt gleichem Schutz und gleichen Vorschriften wie die EU. Viele Spekulationen beinhalten allerdings, dass in naher Zukunft britische Kunden von einem in Großbritannien ansässigen Rechenzentrum bedient werden müssen, ebenso wie europäische Kunden ein EU-Rechenzentrum benötigen. Es gibt keine Garantien. Unklar ist auch, ob diese Situation die Anbieter von Rechenzentren dazu veranlassen wird, den Umzug aus Großbritannien in Betracht zu ziehen, um sich stärker auf den Kontinent zu konzentrieren, oder ob sie sich an beiden Standorten gleichzeitig niederlassen werden. Das Wahrscheinlichste: Die Anbieter tendieren zu letzterem, wie auch Amazon Web Services (AWS). Selbst nach dem Brexit-Votum hielt Amazon an seinem Wort fest und eröffnete Ende letzten Jahres sein erstes AWS-Rechenzentrum in London. Dies unterstreicht sowohl sein Engagement für Großbritannien als auch das unternehmerische Engagement.

Aus dem Brexit eine Geschäftsmöglichkeit machen

Die Automatisierung des IT-Betriebs und die Einführung einer Cloud-Strategie könnten die ersten Schritte sein, um die unbeantworteten Fragen des Brexit zu lösen und daraus einen Vorteil zu machen. Es ist an der Zeit, die Vorteile dessen zu erkennen, teure Hardware und Software von Unternehmen vor Ort durch den Umstieg auf die öffentliche Cloud zu ersetzen. Dies ist nicht nur die kostengünstigere Option. Cloud-Anbieter wie AWS, Microsoft Azure und Google Cloud Platform (GCP) ersparen in diesem politischen Umfeld sogar Unternehmen die Verwaltung und Wartung von Rechenzentren. Einige Unternehmen sind möglicherweise besorgt über die steigenden Raten von Public-Cloud-Anbietern, ihre Preisanpassungen scheinen jedoch an den relativen Wertverlust des Sterlings gebunden zu sein. Selbst bei geringen Erhöhungen sind die Preise einiger Anbieter, wie AWS, noch immer deutlich niedriger als die Kosten, die mit dem Betrieb von Rechenzentren und privaten Clouds vor Ort verbunden sind, insbesondere wenn Wartungskosten einbezogen werden. Wenn man diesen Gedanken noch einen Schritt weiterführt, wie kann der Brexit als eine Chance für Unternehmen betrachtet werden?Organisationen sammeln alle Arten von Daten. Aber nur eine Handvoll von ihnen verwendet effektive Datenanalysen, die Geschäftsentscheidungen unterstützen. Nur wenige Unternehmen tun mehr, als ihre Daten zu speichern, da ihnen die Tools und Ressourcen fehlen, um nahtlos auf ihre Daten zuzugreifen, oder weil Abfragen teuer sind. Ohne ein für die Cloud konstruiertes Data Warehouse ist dieser Prozess bestenfalls eine Herausforderung, und der wahre Wert der Daten geht dabei verloren. Ironischerweise bietet der Brexit die Möglichkeit, dies zu ändern, da Unternehmen ihre IT-Abläufe neu bewerten und alternative, kostengünstigere Methoden zum Speichern von Daten suchen müssen. Durch den Wechsel zu einer öffentlichen Cloud und die Nutzung eines Data Warehouses für die Cloud können Unternehmen Beschränkungen und Einschränkungen ihrer Daten aufheben und diese für die Entscheidungsfindung zugänglich machen.

Der Brexit dient also als Katalysator einer datengesteuerten Organisation, die Daten verwendet, anstatt sie für schlechte Zeiten zu speichern. Am Ende scheint die Prognose der Verhandlungen in Brüssel doch eine ziemlich stürmische zu sein.

Big Data Essentials – Intro

1. Big Data Definition

Data umfasst Nummern, Text, Bilder, Audio, Video und jede Art von Informationen die in Ihrem Computer gespeichert werden können. Big Data umfasst Datenmengen, die eine oder mehrere der folgenden Eigenschaften aufweisen: Hohes Volumen (High Volume), hohe Vielfalt (High Variety) und / oder eine notwendige hohe Geschwindigkeit (High Velocity) zur Auswertung. Diese drei Eigenschaften werden oft auch als die 3V’s von Big Data bezeichnet.

1.1. Volumen: Menge der erzeugten Daten

Volumen bezieht sich auf die Menge der generierten Daten. Traditionelle Datenanalysemodelle erfordern typischerweise Server mit großen Speicherkapazitäten, bei massiver Rechenleistung sind diese Modelle nicht gut skalierbar. Um die Rechenleistung zu erhöhen, müssen Sie weiter investieren, möglicherweise auch in teurere proprietäre Hardware. Die NASA ist eines von vielen Unternehmen, die enorme Mengen an Daten sammeln. Ende 2014 sammelte die NASA alle paar Sekunden etwa 1,73 GB an Daten. Und auch dieser Betrag der Datenansammlung steigt an, so dass die Datenerfassung entsprechend exponentiell mitwachsen muss. Es resultieren sehr hohe Datenvolumen und es kann schwierig sein, diese zu speichern.

1.2. Vielfalt: Unterschiedliche Arten von Daten

Das  traditionelle  Datenmodell (ERM)  erfordert  die  Entwicklung  eines  Schemas,  das  die  Daten in ein Korsett zwingt. Um das Schema zu erstellen, muss man das Format der Daten kennen, die gesammelt werden. Daten  können  wie  XML-Dateien  strukturiert  sein,  halb  strukturiert  wie  E-Mails oder unstrukturiert wie Videodateien.

Wikipedia – als Beispiel – enthält mehr als nur Textdaten, es enthält Hyperlinks, Bilder, Sound-Dateien und viele andere Datentypen mit mehreren verschiedenen Arten von Daten. Insbesondere unstrukturierte   Daten haben   eine   große   Vielfalt.  Es   kann   sehr   schwierig   sein, diese Vielfalt in einem Datenmodell zu beschreiben.

1.3. Geschwindigkeit: Geschwindigkeit, mit der Daten genutzt werden

Traditionelle Datenanalysemodelle wurden für die Stapelverarbeitung (batch processing) entwickelt. Sie sammeln die gesamte Datenmenge und verarbeiten sie, um sie in die Datenbank zu speichern. Erst mit einer Echtzeitanalyse der Daten kann schnell auf Informationen reagiert werden. Beispielsweise können Netzwerksensoren, die mit dem Internet der Dinge (IoT) verbunden sind, tausende von Datenpunkten pro Sekunde erzeugen. Im Gegensatz zu Wikipedia, deren Daten später verarbeitet werden können, müssen Daten von Smartphones und anderen Netzwerkteilnehmern mit entsprechender Sensorik in  Echtzeit  verarbeitet  werden.

2. Geschichte von Big Data

2.1. Google Solution

  • Google File System speichert die Daten, Bigtable organisiert die Daten und MapReduce verarbeitet es.
  • Diese Komponenten arbeiten zusammen auf einer Sammlung von Computern, die als Cluster bezeichnet werden.
  • Jeder einzelne Computer in einem Cluster wird als Knoten bezeichnet.

2.2 Google File System

Das Google File System (GFS) teilt Daten in Stücke ‚Chunks’ auf. Diese ‚Chunks’ werden verteilt und auf verschiedene Knoten in einem Cluster nachgebildet. Der Vorteil ist nicht nur die mögliche parallele Verarbeitung bei der späteren Analysen, sondern auch die Datensicherheit. Denn die Verteilung und die Nachbildung schützen vor Datenverlust.

2.3. Bigtable

Bigtable ist ein Datenbanksystem, das GFS zum Speichern und Abrufen von Daten verwendet. Trotz seines Namens ist Bigtable nicht nur eine sehr große Tabelle. Bigtable ordnet die Datenspeicher mit einem Zeilenschlüssel, einem Spaltenschlüssel und einem Zeitstempel zu. Auf diese Weise können dieselben Informationen über einen längeren Zeitraum hinweg erfasst werden, ohne dass bereits vorhandene Einträge überschrieben werden. Die Zeilen sind dann in den Untertabellen partitioniert, die über einem Cluster verteilt sind. Bigtable wurde entwickelt, um riesige Datenmengen zu bewältigen, mit der Möglichkeit, neue Einträge zum Cluster hinzuzufügen, ohne dass eine der vorhandenen Dateien neu konfiguriert werden muss.

2.4. MapReduce

Als dritter Teil des Puzzles wurde ein Parallelverarbeitungsparadigma namens MapReduce genutzt, um die bei GFS gespeicherten Daten zu verarbeiten. Der Name MapReduce wird aus den Namen von zwei Schritten im Prozess übernommen. Obwohl der Mapreduce-Prozess durch Apache Hadoop berühmt geworden ist, ist das kaum eine neue Idee. In der Tat können viele gängige Aufgaben wie Sortieren und Falten von Wäsche als Beispiele für den MapReduce- Prozess betrachtet werden.

Quadratische Funktion:

  • wendet die gleiche Logik auf jeden Wert an, jeweils einen Wert
  • gibt das Ergebnis für jeden Wert aus
    (map square'(1 2 3 4)) = (1 4 9 16)

Additionsfunktion

  • wendet die gleiche Logik auf alle Werte an, die zusammen genommen werden.
    (reduce + ‘(1 4 9 16)) = 30

Die Namen Map und Reduce können bei der Programmierung mindestens bis in die 70er-Jahre zurückverfolgt werden. In diesem Beispiel sieht man, wie die Liste das MapReduce-Modell verwendet. Zuerst benutzt man Map der Quadratfunktion auf einer Eingangsliste für die Quadratfunktion, da sie abgebildet ist, alle angelegten Eingaben und erzeugt eine einzige Ausgabe pro Eingabe, in diesem Fall (1, 4, 9 und 16). Additionsfunktion reduziert die Liste und erzeugt eine einzelne Ausgabe von 30, der die Summe aller Eingänge ist.

Google nutzte die Leistung von MapReduce, um einen Suchmaschinen-Markt zu dominieren. Das Paradigma kam in der 19. Websearch-Engine zum Einsatz und etablierte sich innerhalb weniger Jahre und ist bis heute noch relevant. Google verwendete MapReduce auf verschiedene Weise, um die Websuche zu verbessern. Es wurde verwendet, um den Seiteninhalt zu indexieren und ein Ranking über die Relevant einer Webseite zu berechnen.

Dieses  Beispiel  zeigt  uns  den MapReduce-Algorithmus, mit dem Google Wordcount auf Webseiten ausführte. Die Map-Methode verwendet als Eingabe einen Schlüssel (key) und einen Wert, wobei der Schlüssel den Namen des Dokuments darstellt  und  der  Wert  der  Kontext  dieses Dokuments ist. Die Map-Methode durchläuft jedes Wort im Dokument und gibt es als Tuple zurück, die aus dem Wort und dem Zähler 1 besteht.

Die   Reduce-Methode   nimmt   als   Eingabe auch  einen  Schlüssel  und  eine  Liste  von  Werten an, in der der Schlüssel ein Wort darstellt. Die  Liste  von  Werten  ist  die  Liste  von  Zählungen dieses Worts. In diesem Beispiel ist der Wert 1. Die Methode “Reduce” durchläuft alle Zählungen. Wenn die Schleife beendet ist, um die Methode zu reduzieren, wird sie als Tuple zurückgegeben, die aus dem Wort und seiner Gesamtanzahl besteht.

 

Unternehmen brauchen eine Datenstrategie

Viele Unternehmen stecken gerade in der Digitalisierung fest, digitalisieren Prozesse und Dokumente, vernetzen immer mehr Maschinen und Endgeräte, und generieren dabei folglich immer mehr Daten. Aber auch ungeachtet der aktuellen Digitalisierungs- und Vernetzungsinitiativen verfügen Unternehmen bereits längst über einen wahren Datenschatz in Ihren ERP-, CRM- und sonstigen IT-Systemen. Hinzu kommt ein beinahe unerschöpfliches Datenpotenzial aus externen Quellen hinzu, insbesondere dem Social Media, den Finanzportalen und behördlichen Instituten (Open Data).

Nur die wenigsten Unternehmen – jene dürfen wir ohne Zweifel zu den Gewinnern der Digitalisierung zählen – verfügen über eine konkrete Strategie, wie Daten aus unternehmensinternen und -externen Datenquellen zur Geschäftsoptimierung genutzt werden können: Die Datenstrategie.

Was ist eine Datenstrategie?

Die Datenstrategie ist ein ausformulierter und zielorientierter Verfahrensplan, um Daten in Mehrwert zu verwandeln. Er bringt während seiner Formulierung alle nötigen Funktionsbereichen zusammen, also IT-Administratoren, kaufmännische Entscheider und natürlich Data Scientists bzw. Datenexperten (welche genaue Berufsbezeichnung auch immer damit verbunden sein mag).

Die Datenstrategie ist ein spezieller Business Plan zur gewinnorientierten Datennutzung. In ihr werden klare Ziele und Zeitvorgaben (kurz-, mittel-, langfristig) definiert, der voraussichtliche Ressourcen-Einsatz und die Rahmenbedingungen benannt. Dazu gehören sowohl die technischen (Hardware, Software) als auch die rechtlichen Rahmen (Datenschutz, Datensicherheit, Urheberrecht usw.). Die Datenstrategie die Herausforderungen nachvollziehbar heraus und stellt im Abgleich fest, ob die bestehende Belegschaft im aktuellen Zustand die nötigen Kapazitäten und Qualifikationen hat bzw. ob Maßnahmen zum Erwerb von Know-How (Qualifizierung, Recruiting) ergriffen werden sollten.

Wozu braucht ein Unternehmen eine Datenstrategie?

Viele Unternehmen – ich bin zumindest mit vielen solcher Unternehmen im Gespräch – wissen oft nicht, wie sie am Trend zur Datennutzung partizipieren können, bevor es der Wettbewerb tut bzw. man für neue Märkte unzureichend / zu spät vorbereitet ist. Sie wissen, dass es Potenziale für die Nutzung von Daten gibt, jedoch nicht, welche Tragweite derartige Projekte hinsichtlich des Einsatzes und des Ergebnisses haben werden. Diesen Unternehmen fehlt eine Datenstrategie als ein klarer Fahrplan, um über Datenanalyse die bestehenden Geschäfte zu optimieren. Und möglicherweise auch, um neue Geschäftsmöglichkeiten zu erschließen.

Demgegenüber steht eine andere Art von Unternehmen: Diese sind bereits seit Jahren in die Nutzung von Big Data eingestiegen und haben nun viele offene Baustellen, verschiedene neue Tools und eine große Vielfalt an Projektergebnissen. Einige dieser Unternehmen sehen sich nunmehr mit einer Komplexität konfrontiert, für die der Wunsch nach Bereinigung aufkommt. Hier dient die Datenstrategie zur Fokussierung der Ressourcen auf die individuell besten, d.h. gewinnträchtigsten bzw. nötigsten Einsatzmöglichkeiten, anstatt alle Projekte auf einmal machen.

Zusammenfassend kann demnach gesagt werden, dass eine Datenstrategie dazu dient, sich nicht in Big Data bzw. Data Science Projekte zu verrennen oder mit den falschen Projekten anzufangen. Die Strategie soll Frustration vermeiden und schon vom Ansatz her dafür sorgen, dass die nächst höhere Etage – bis hin zum Vorstand – Big Data Projekte nicht für sinnlos erklärt und die Budgets streicht.

Wie entsteht eine Datenstrategie?

Ein ganz wesentlicher Punkt ist, dass die Datenstrategie kein Dokument wird, welches mühsam nur für die Schublade erstellt wurde. Der Erfolg entsteht schließlich nicht auf schönen Strategiefolien, sondern aus zielgerichteter Hands-on-Arbeit. Zudem ist es erfolgskritisch, dass die Datenstrategie für jeden beteiligten Mitarbeiter verständlich ist und keine Beraterfloskeln enthält, jedoch fachlich und umsetzungsorientiert bleibt. Im Kern steht sicherlich in der Regel eine Analysemethodik (Data Science), allerdings soll die Datenstrategie alle relevanten Fachbereiche im Unternehmen mitnehmen und somit ein Gemeinschaftsgefühl (Wir-Gefühl) erschaffen, und keinesfalls die Erwartung vermitteln, die IT mache da schon irgendwas. Folglich muss die Datenstrategie gemeinschaftlich entwickelt werden, beispielsweise durch die Gründung eines Komitees, welches aus Mitarbeitern unterschiedlichster Hintergründe besetzt ist, die der Interdisziplinität gerecht wird. Eine entsprechend nötige Interdisziplinität des Teams bringt übrigens – das wird häufig verschwiegen – auch Nachteile mit sich, denn treffen die führenden Köpfe aus den unterschiedlichen Fachbereichen aufeinander, werden Vorschläge schnell abgehoben und idealistisch, weil sie die Erwartungen aller Parteien erfüllen sollen. Eine gute Datenstrategie bleibt jedoch auf dem Boden und hat realistische Ziele, sie orientiert sich an den Gegebenheiten und nicht an zukünftigen Wunschvorstellungen einzelner Visionäre.

Idealerweise wird die Entwicklung der Datenstrategie von jemanden begleitet, der sowohl Erfahrung in Verarbeitung von Daten als auch vom Business hat, und der über explizite Erfahrung mit Big Data Projekten verfügt. Gerade auch das Einbeziehen externer Experten ermöglicht, dass indirekt durch den Erfahrungseinfluss aus bereits gemachten Fehlern in anderen Unternehmen gelernt werden kann.


Mehr dazu im nächsten Artikel: Die fünf Schritte zur Datenstrategie! 

Was ist eigentlich Apache Spark?

Viele Technologieanbieter versprechen schlüsselfertige Lösungen für Big Data Analytics, dabei kann keine proprietäre Software-Lösung an den Umfang und die Mächtigkeit einiger Open Source Projekten heranreichen.

Seit etwa 2010 steht das Open Source Projekt Hadoop, ein Top-Level-Produkt der Apache Foundation, als einzige durch Hardware skalierbare Lösung zur Analyse von strukturierten und auch unstrukturierten Daten. Traditionell im Geschäftsbereich eingesetzte Datenbanken speichern Daten in einem festen Schema ab, das bereits vor dem Laden der Daten definiert sein muss. Dieses Schema-on-Write-Prinzip stellt zwar sicher, dass Datenformate bekannt und –konflikte vermieden werden. Es bedeutet jedoch auch, dass bereits vor dem Abspeichern bekannt sein muss, um welche Daten es sich handelt und ob diese relevant sind. Im Hadoop File System (HDFS) wird ein Schema für erst bei lesenden Zugriff erstellt.

Apache Spark ist, ähnlich wie Hadoop, dank Parallelisierung sehr leistungsfähig und umfangreich mit Bibliotheken (z. B. für Machine Learning) und Schnittstellen (z. B. HDFS) ausgestattet. Allerdings ist Apache Spark nicht für jede Big Data Analytics Aufgabe die beste Lösung, Als Einstiegslektüre empfiehlt sich das kostenlose Ebook Getting Started with Spark: From Inception to Production. Wer jedoch erstmal wissen möchte, erfährt nachfolgend die wichtigsten Infos, die es über Apache Spark zu wissen gilt.

Was ist Apache Spark?

Apache Spark ist eine Allzweck-Tool zur Datenverarbeitung, eine sogenannte Data Processing Engine. Data Engineers und Data Scientists setzen Spark ein, um äußerst schnelle Datenabfragen (Queries) auf große Datenmengen im Terabyte-Bereich ausführen zu können.

Spark wurde 2013 zum Incubator-Projekt der Apache Software Foundation, eine der weltweit wichtigsten Organisationen für Open Source. Bereits 2014 es wie Hadoop zum Top-Level-Produkt. Aktuell ist Spark eines der bedeutensten Produkte der Apache Software Foundation mit viel Unterstützung von Unternehmen wie etwa Databricks, IBM und Huawei.

Was ist das Besondere an Spark?

Mit Spark können Daten transformiert, zu fusioniert und auch sehr mathematische Analysen unterzogen werden.
Typische Anwendungsszenarien sind interactive Datenabfragen aus verteilten Datenbeständen und Verarbeitung von fließenden Daten (Streaming) von Sensoren oder aus dem Finanzbereich. Die besondere Stärke von Spark ist jedoch das maschinelle Lernen (Machine Learning) mit den Zusätzen MLib (Machine Learning Bibliothek) oder SparkR (R-Bibliotheken direkt unter Spark verwenden), denn im Gegensatz zum MapReduce-Algorithmus von Hadoop, der einen Batch-Prozess darstellt, kann Spark sehr gut iterative Schleifen verarbeiten, die für Machine Learning Algorithmen, z. B. der K-Nearest Neighbor Algorithmus, so wichtig sind.spark-stack

Spark war von Beginn an darauf ausgelegt, Daten dynamisch im RAM (Arbeitsspeicher) des Server-Clusters zu halten und dort zu verarbeiten. Diese sogenannte In-Memory-Technologie ermöglicht die besonders schnelle Auswertung von Daten. Auch andere Datenbanken, beispielsweise SAP Hana, arbeiten In-Memory, doch Apache Spark kombiniert diese Technik sehr gut mit der Parallelisierung von Arbeitsschritten über ein Cluster und setzt sich somit deutlich von anderen Datenbanken ab. Hadoop ermöglicht über MapReduce zwar ebenfalls eine Prallelisierung, allerdings werden bei jedem Arbeitsschrit Daten von einer Festplatte zu einer anderen Festplatte geschrieben. Im Big Data Umfeld kommen aus Kostengründen überwiegend noch mechanisch arbeitende Magnet-Festplatten zum Einsatz, aber selbst mit zunehmender Verbreitung von sehr viel schnelleren SSD-Festplatten, ist der Arbeitsspeicher hinsichtlich der Zeiten für Zugriff auf und Schreiben von Daten unschlagbar. So berichten Unternehmen, die Spark bereits intensiv einsetzen, von einem 100fachen Geschwindigkeitsvorteil gegenüber Hadoop MapReduce.

Spark kann nicht nur Daten im Terabyte, sondern auch im Petabyte-Bereich analysieren, ein entsprechend großes Cluster, bestehend aus tausenden physikalischer oder virtueller Server, vorausgesetzt. Ähnlich wie auch bei Hadoop, skaliert ein Spark-Cluster mit seiner Größe linear in seiner Leistungsfähigkeit. Spark ist neben Hadoop ein echtes Big Data Framework.
Spark bringt sehr viele Bibliotheken und APIs mit, ist ferner über die Programmiersprachen Java, Python, R und Scala ansprechbar – das sind ohne Zweifel die im Data Science verbreitetsten Sprachen. Diese Flexibilität und geringe Rüstzeit rechtfertigt den Einsatz von Spark in vielen Projekten. Es kann sehr herausfordernd sein, ein Data Science Team mit den gleichen Programmiersprachen-Skills aufzubauen. In Spark kann mit mehreren Programmiersprachen gearbeitet werden, so dass dieses Problem teilweise umgangen werden kann.spark-runs-everywhere

In der Szene wird Spark oftmals als Erweiterung für Apache Hadoop betrachtet, denn es greift nahtlos an HDFS an, das Hadoop Distributed File System. Dank der APIs von Spark, können jedoch auch Daten anderer Systeme abgegriffen werden, z. B. von HBase, Cassandra oder MongoDB.

Was sind gängige Anwendungsbeispiele für Spark?

  • ETL / Datenintegration: Spark und Hadoop eignen sich sehr gut, um Daten aus unterschiedlichen Systemen zu filtern, zu bereinigen und zusammenzuführen.
  • Interaktive Analyse: Spark eignet sich mit seinen Abfragesystemen fantastisch zur interaktiven Analyse von großen Datenmengen. Typische Fragestellungen kommen aus dem Business Analytics und lauten beispielsweise, welche Quartalszahlen für bestimmte Vertriebsregionen vorliegen, wie hoch die Produktionskapazitäten sind oder welche Lagerreichweite vorhanden ist. Hier muss der Data Scientist nur die richtigen Fragen stellen und Spark liefert die passenden Antworten.
  • Echtzeit-Analyse von Datenströmen: Anfangs vor allem zur Analyse von Server-Logs eingesetzt, werden mit Spark heute auch Massen von Maschinen- und Finanzdaten im Sekundentakt ausgewertet. Während Data Stream Processing für Hadoop noch kaum möglich war, ist dies für Spark ein gängiges Einsatzgebiet. Daten, die simultan von mehreren Systemen generiert werden, können mit Spark problemlos in hoher Geschwindigkeit zusammengeführt und analysiert werden.
    In der Finanzwelt setzen beispielsweise Kreditkarten-Unternehmen Spark ein, um Finanztransaktionen in (nahezu) Echtzeit zu analysieren und als potenziellen Kreditkartenmissbrauch zu erkennen.
  • Maschinelles Lernen: Maschinelles Lernen (ML – Machine Learning) funktioniert desto besser, je mehr Daten in die ML-Algorithmen einbezogen werden. ML-Algorithmen haben in der Regel jedoch eine intensive, vom Data Scientist betreute, Trainingsphase, die dem Cluster viele Iterationen an Arbeitsschritten auf die großen Datenmengen abverlangen. Die Fähigkeit, Iterationen auf Daten im Arbeitsspeicher, parallelisiert in einem Cluster, durchführen zu können, macht Spark zurzeit zu dem wichtigsten Machine Learning Framework überhaupt.
    Konkret laufen die meisten Empfehlungssysteme (beispielsweise von Amazon) auf Apache Spark.

 

Eine Hadoop Architektur mit Enterprise Sicherheitsniveau

Dies ist Teil 3 von 3 der Artikelserie zum Thema Eine Hadoop-Architektur mit Enterprise Sicherheitsniveau.

Die ideale Lösung

Man denkt, dass die Integration einer sehr alten Technologie, wie ActiveDirectory oder LDAP zusammen mit einem etablierten und ausgereiften Framework wie Hadoop reibungslos funktionieren würde. Leider sind solche Annahmen in der IT Welt zu gut um wahr zu sein. Zum Glück gibt es bereits erste Erfahrungsberichte  von  Unternehmen, die ihre Hadoop Infrastruktur an ein zentrales IMS gekoppelt haben.

Da die meisten Unternehmen  Active Directory als IMS benutzen, werden die im Folgenden  dargestellte Bilder und Architekturen dies ebenfalls tun.  Die vorgeschlagene Architektur ist jedoch derartig flexibel und technologieunabhängig, dass man das Active Directory auf den Bildern problemlos gegen LDAP austauschen könnte. Vielmehr ist die Integration eines Hadoop Clusters mit LDAP einfacher, da beide Technologien nativ zu Linux sind.

Schritt Eins – Integration von Hadoop mit Active Directory

Der erste Schritt, um Hadoop in dasActive Directory zu integrieren, ist ein sogenannter One-Way Trust von der Linux Welt hin zur Windows Welt . Dabei ist das Vertrauen des Authentisierungsmechanismuses von Hadoop zum Active Directory gemeint. Alle Identity Management Systeme bieten diese Funktionalität an, um sich gegenseitig vertrauen zu können und User aus anderen Domänen (Realms) zu akzeptieren. Das ermöglicht z.B. globalen Firmen mit vielen Standorten und unterschiedlichen IT Infrastrukturen und Identity Management Systemen diese zu verwalten und miteinander kommunizieren zu lassen.

Das Key Distribution Center (KDC) von Kerberos ist das Herz des Kerberos Systems im Hadoop. Hier  werden die User und ihre Passwörter oder Keytabs geschützt und verwaltet. Dabei brauchen wir lediglich den One Way Trust von KDC zu Active Directory. Allerdings gibt es eine vielversprechendere Technologie, die FreeIPA. Diese hat laut Wikipedia das Ziel, ein einfach zu verwaltendes Identity,-Policy-and-Audit-System (IPA) zur Verfügung zu stellen. Seit der Version 3.0.0 kann sich FreeIPA in das Active Directory integrieren. Die aussagekräftigen Vorteile von FreeIPA sind folgende:

  1. Reibungslose Integration mit Active Directory
  2. Es wird zusammen mit der Technologie SSSD geliefert, die das temporäre Speichern von Rechten und Passwörtern erlaubt. Das erlaubt auch offline den Zugriff auf  Fähigkeiten und Unabhängigkeit vom zentralen IPA, dem unterliegenden System.
  3. Integrierte Kerberos und Single Sign On (SSO) Funktionalitäten.

Wir lassen dann FreeIPA die Verwaltung von Kerberos und die primäre Authentisierung unseres Clusters übernehmen. Sowohl das Active Directory, als auch FreeIPA erlauben eine kinderleichte Umsetzung des One Way Trusts mithilfe von Web Tools. Im Prinzip muss man beim One Way Trust lediglich die öffentlichen Zertifikate jedes Tools mit denen der anderen bekannt machen.

Schritt Zwei – Synchronisation der Rechte & Rollen von Active Directory

Jetzt sind alle User, die sich im Active Directory befinden, unserem Hadoop Cluster bekannt. Ein User kann sich mithilfe des kinit Kommandos und nach Eingabe seines Usernames und Passwortes einloggen. Aber man braucht auch die im Active Directory definierten Rollen und Gruppen, um eine Autorisierung mithilfe von Ranger oder Sentry zu ermöglichen. Ohne die Provisionierung der Rollen haben wir bei der Autorisierung ein ähnliches Problem, wie es bei der Authentisierung aufgetreten ist.  Man müsste die Rollen selber verwalten, was nicht ideal ist.

Zum Glück gibt es verschiedene Ansätze um eine regelforme Synchronisierung der Gruppen von Active Directory in Ranger oder Sentry zu implementieren. Ranger kommt mit einem LDAP Plugin namens uxugsync, das sowohl mit LDAP als auch mit dem Active Directory kommunizieren kann. Leider hat die aktuelle Version dieses Plugins einige Nachteile:

  1. Leistungsprobleme, weil es defaultsmäßig versucht, den ganzen Hierarchiebaum von Active Directory zu synchronisieren. Das kann zu einem großen Problem für große Firmen werden, die mehrere tausend User haben. Außerdem müssen nicht alle User Zugriff auf Hadoop haben.
  2. Man kann bestimmte User syncen lassen, indem man ihren Gruppename im Gruppenfeld vom Plugin einträgt. Nachteil dabei ist, dass diese Abfrage nicht rekursiv funktioniert und alle Gruppe die im Ranger sein sollen einzeln abgefragt werden müssen, Das wiederum skaliert nicht sonderlich gut.
  3. Massive und regelmäßige Abfragen des Plugins können sogar zu einem DDoS Angriff auf den zentralen Active Directory führen.

Eine bessere Lösung wäre es, wenn wir die schönen Features des SSSD Deamons (der wie oben beschrieben zusammen mit FreeIPA kommt) ausnutzen könnten. Mithilfe von SSSD werden alle User und ihre entsprechenden Gruppen dem unterliegenden Linux Betriebssystem bekannt gemacht. Das bedeutet, dass man ein einfaches Script schreiben könnte, das die User und ihre Gruppen vom System direkt abfragt und zu Ranger oder Sentry über ihre entsprechende REST APIs überträgt. Dabei schont man sowohl das Active Directory vor regelmäßigen und aufwändigen Abfragen und schafft sogar ein schnelleres Mapping der Rollen zwischen Hadoop und Betriebssystem, auch wenn Active Directory nicht erreichbar ist. Es gibt derzeit Pläne, ein solches Plugin in den nächsten Versionen von Ranger mitzuliefern.

Schritt Drei – Anlegen und Verwaltung von technischen Usern

Unser System hat jedoch neben personalisierten Usern, die echten Personen in einem Unternehmen entsprechen, auch  technische User. Die technischen Users (Nicht Personalisierte Accounts – NPA), sind die Linux User mit denen die Hadoop Dienste gestartet werden. Dabei hat HDFS, Ambari usw. jeweils seinen eigenen User mit demselben Namen. Rein theoretisch könnten diese User auch im Active Directory einen Platz finden.

Meiner Meinung nach gehören diese User aber nicht dorthin. Erstens, weil sie keine echten User sind und zweitens, weil die Verwaltung solcher User nach Upgrades oder Neuinstallation des Clusters schwierig sein kann. Außerdem müssen solche User nicht den gleichen Sicherheitspolicies unterliegen, wie die normalen User. Am besten sollten sie kein Passwort besetzen, sondern lediglich ein Kerberos Keytab, das sich nach jedem Upgrade oder Neuinstallierung des Clusters neu generiert und in FreeIPA angelegt ist. Deswegen neige ich eher dazu, die NPAs in IPA anzulegen und zu verwalten.

High Level Architektur

Das folgende Bild fasst die Architektur zusammen. Hadoop Dienste, die üblicherweise in einer explorativen Umgebung benutzt werden, wie Hive und HBase, werden mit dargestellt. Es ist wichtig zu beachten, dass jegliche Technologie, die ein Ausführungsengine für YARN anbietet, wie Spark oder Storm, von dieser Architektur ebenfalls profitiert. Da solche Technologien nicht direkt mit den unterliegenden Daten interagieren, sondern diese immer über YARN und die entsprechenden Datanodes erhalten, benötigen sie auch keine besondere Darstellung oder Behandlung. Der Datenzugriff aus diesen 3rd Party Technologien respektiert die im Ranger definierten ACLs und Rollen des jeweiligen Users, der sie angestoßen hat.

hadoop-integration-active-directory-ipa-domain

Architektur in einer Mehrclusterumgebung

Wir haben schon das Argument untermauert, warum  unsere technischen User direkt im IPA liegen sollten. Das kann jedoch insofern Probleme verursachen, wenn man mit mehreren Clustern arbeitet, die alle die gleichen Namen für ihre technischen User haben. Man merkt sofort, dass es sich hier um eine Namenskollision handelt. Es gibt zwei Lösungsansätze hierfür:

  1. Man fügt den Namen Präfixen, die als kurze Beschreibungen der jeweiligen Umgebung dienen, wie z.B. ada, proj1, proj2 hinzu. Dadurch haben die User unterschiedliche Namen, wie proj1_hdfs für die proj1 Umgebung und ada_hdfs für die ada Umgebung. Man kann diese Lösung auch bei Kerberos KDCs benutzen, die in jeder Umgebung dediziert sind und die technischen User der jeweiligen Umgebung beibehalten.
  2. Man benutzt einen separaten Realm für jede Umgebung und damit auch eine separate IPA Instanz. Hier gibt es wiederum zwei verschiedene Ansätze. Ich muss jedoch zugeben, dass ich die Zweite nie ausprobiert habe und daher für ihre Durchführbarkeit nicht garantieren kann:
    1. Man bindet jede Umgebung einzeln über ihre FreeIPA per One Way Trust an das zentrale Active Directory. Das hat natürlich den Nachteil einer uneinheitlichen User Management Infrastruktur für alle Umgebungen, da Jede ihre eigene IPA Infrastruktur verwaltet und wartet.
    2. Man baut einen Hierarchiebaum von unterschiedlichen IPA Instanzen, so wie man es bei Forests von Active Directory Instanzen macht.

Das folgende Bild stellt den letzten Ansatz dar. Im Prinzip haben wir hier einen hierarchischen IPA Cluster mit mehreren One Way Trusts von den lokalen IPA Instanzen zu der zentralen IPA.

hadoop-local-identity-management-domain-ipa-netzwerk

Zusammenfassung

Wie Sie vielleicht von der gesamten Diskussion her abgeleitet haben, ist die Umsetzung einer unternehmerisch-konformen und personenbasierten Sicherheitsarchitektur innerhalb von Hadoop  keine einfache Sache. Man muss mit unterschiedlichen Architekturen und Ansätzen spielen, bevor man einen relativ vernünftigen oder sogar idealen Zustand erreicht hat. Die Berücksichtigung der jeweiligen IT Architektur spielt dabei eine sehr große Rolle. Ich hoffe, ich konnte die wichtigsten Merkmalen einer solchen Architektur und die Punkte, die ein Architekt besonders beachten muss, klar darstellen.

Als Zusammenfassung habe ich Ihnen am Ende eine Art Shoppingliste aller Komponenten zusammengestellt, die wichtig für den personalisierten Zugriff im Hadoop sind:

  1. Kerberos – Authentisierung
  2. FreeIPA – Authentisierung, Integration mit Active Directory
  3. Active Directory oder LDAP
  4. Ranger oder Sentry
    1. Plugin für Rollen/Gruppen Mapping zwischen AD und dem Betriebssystem
  5. Optional SSSD für schnellere Abfrage der Gruppen und Rollen des Betriebssystems

Zurück zu Teil 2 von 3 – Sicherheitstechnologie in Hadoop

Eine Hadoop Architektur mit Enterprise Sicherheitsniveau

Dies ist Teil 2 von 3 der Artikelserie zum Thema Eine Hadoop-Architektur mit Enterprise Sicherheitsniveau.

Der aktuelle Stand der Technologie

Zum Glück ist Hadoop heutzutage ein bisschen reifer, als es noch vor zehn Jahren war. Es gibt viele Tools, einige davon OpenSource und einige lizenziert, die den Sicherheitsmangel im Hadoop zu lösen versuchen. Die Tabelle unten zeigt eine Auswahl der am meisten genutzten Sicherheitstools. Da jedes Tool von einer anderen Hadoop Distribution bevorzugt wird, habe ich diese Parameter mit berücksichtigt.

Es ist zu beachten, dass die zwei populärsten Hadoop Distributions (Hortonworks und Cloudera) kaum Unterschiede aufweisen, wenn man sie auf funktionaler Ebene vergleicht. Der größte Unterschied  besteht darin, dass Hortonworks ein Open Source und Cloudera ein kommerzielles Produkt ist. Abgesehen davon hat jeder Vendor den einen oder anderen Vorteil, ein ausführlicher Vergleich würde jedoch den Rahmen dieses Artikels sprengen.

sicherheitsmerkmale-hadoop-hortenworks-cloudera-other

Hadoop kommt von der Stange ohne aktivierte Authentisierung. Die Hadoop Dienste vertrauen jedem User, egal als was er oder sie sich ausgibt. Das sieht  folgendermaßen aus:

Angenommen Mike arbeitet an einer Maschine, die ihm Zugriff auf den Hadoop Cluster erlaubt und Sudo-Rechte gibt. Aber Mike hat das Passwort für den hdfs Superuser nicht. Er kann sich jetzt einfach als der hdfs User ausgeben, indem er die folgenden Kommandos ausführt. Dabei bekommt er fatalerweise alle Rechten des hdfs Superusers und ist in der Lage das gesamte HDFS Filesystem zu löschen. Es würde sogar bereits der Environment variabel USER ausreichen, um einen anderen User umzuwandeln.

hadoop-linux-useradd-hdfs

Kerberos ist im Moment der einzige Weg um Authentisierung im Hadoop zu gewährleisten. Kein Weg führt daran vorbei, es sei denn, man ist verrückt genug, um ein hochkompliziertes System auf Linux basierter ACLs auf jeder Maschine zu installieren und zu verwalten, um User daran zu hindern sich falsch zu authentifizieren. Es ist zudem wichtig zu beachten, dass Kerberos als einziges Sicherheitsmerkmal zur Authentifizierung dient, aber ohne richtige Authentisierung gibt es auch keine richtige Autorisierung. Wenn User jetzt selbst in der Lage sind, sich beliebig als jemand anderes auszugeben, können sie so selbst zu den sensibelsten Daten unbefugten Zugriff erlangen.

Apache Ranger oder Sentry erlauben die Definition und Verwaltung von Access Control Lists (ACLs). Diese Listen legen fest, welche User Zugriff auf welchen Bereich des HDFS Filesystems haben Der gleiche Effekt kann auch ohne diese Tools, durch einfache  Hadoop ACLs erreicht werden, die den normalen Linux ACLs ähneln. Es empfiehlt sich jedoch die neuesten Tools zu benutzen, wegen a) ihrer Benutzerfreundlichkeit, b) ihrer ausgearbeiteten APIs, die einem Administrator erlauben die Listen ohne GUI zu verwalten und beim Programmieren sogar zu automatisieren, und c) wegen ihrer Auditingfähigkeiten, die das Nachverfolgen von Zugriffen und Aktionen ermöglichen.

Anbei ist das Bild einer Ranger Policy, die der Gruppe der User rekursiv Lese- und Ausführungsrechte auf das Verzeichnis /projects/autonomous_driving gibt.

Alle einzelne Stücke des Puzzles kommen zusammen

Nachdem wir ermittelt haben, welche Technologien es gibt, die uns zu einem sicheren Cluster verhelfen, müssen diese im nächsten Schritt zusammengesetzt werden. Zum Glück hat jeder Vendor seine eigene Technologie, um Tools aus dem  Hadoop Ecosystem zu integrieren und zu verwalten. Cloudera beispielsweise bietet den sehr wirksamen Cloudera Manager und Hortonworks das Apache Ambari an. Die beiden Tools kümmern sich um das Anlegung der technischen Hadoop User (hdfs, hadoop, hive, ranger, e.t.c.) und der entsprechenden Kerberos Keytabs, die den technischen Usern erlauben, sich gegenüber Hadoop zu authentisieren. Am Ende der Installation hat man sämtliche Konfigurationen zentral platziert und kann neue personalisierte Accounts anlegen. Man kann sich dann im Ranger oder Sentry Web UI anmelden und ACLs für die User und Gruppen definieren.

Das ist allerdings nicht der Idealzustand. Jedes Unternehmen verwaltet ihre User bereits in bestimmten Verwaltungssystemen, die sich innerhalb der IT Infrastruktur befinden. Diese Systeme (oder auch Identity Management Systems) sind ein wichtiges vertikales, abteilungsübergreifendes Element der unternehmerischen IT Architektur. Jedes EDS Tool im Unternehmen ist an ein Identity Management System, wie Active Directory oder LDAP, gekoppelt und muss damit die User nicht selbst verwalten.

Der Stellenwert solcher Tools wird sofort erkennbar, wenn man die strengen Sicherheitsregeln eines modernen Unternehmens betrachtet: Passwörter müssen bestimmte Kriterien erfüllen und alle 30 Tagen gewechselt werden. Außerdem darf niemand eins seiner letzten zehn Passwörter benutzen.

Eine IT Architektur, die die Implementierung solcher unternehmensbreiten  Anforderungen in jeder einzelne Applikation fördert ist der Alptraum jedes Applikationsentwicklers und zeigt das Versagen des IT-Architekten.

Aber lassen Sie uns zurück zu unserem Hauptthema kommen. Wie können wir ein System wie Active Directory oder LDAP in Hadoop integrieren?  Der nächste Abschnitt gibt die Antwort auf diese Frage.


Weiter zu  Teil 3 von 3 – Eine Einterprise Hadoop Architektur für beste Sicherheit

Zurück zu Teil 1 von 3 – Motivation und Anforderungen einer Data Science Plattform

Eine Hadoop Architektur mit Enterprise Sicherheitsniveau

Die Motivation für eine unternehmenskonforme Sicherheitsarchitektur für Hadoop

Hadoop und die damit einhergehenden Technologien und Applikationen (Hadoop Ecosystem) stellen keine neue Idee mehr dar. Zugegebenermaßen hat man jedoch das Gefühl, dass Hadoop noch lange nicht reif genug für dessen Integration an die IT Infrastruktur und an die Prozesse eines Unternehmens ist. Bei fast jeder Hadoop Distribution mangelt es an bestimmten nicht-funktionalen Aspekten. Die Hadoop Community hat sich sehr lange um die Erfüllung der funktionalen Anforderungen gekümmert und dabei Aspekte wie Sicherheit, Monitoring, Data Governance und Auditing vernachlässigt.

Eine berechtigte Frage wäre nun: Warum ist das so?

Zum besseren Verständnis der Leser werde ich zunächst auf diese Frage und die Geschichte von Hadoop eingehen, bevor ich mich mit dem Aufbau einer sicheren Hadoop Infrastruktur beschäftige.
Hadoop hat eine, für IT Verhältnisse, relativ lange Geschichte hinter sich. Das erste Release fand im Februar 2006 statt, wobei Yahoo bereits von Beginn an Interesse an der Mitwirkung und Benutzung bekundete. Am Anfang waren alle Applikationen, die für Hadoop geschrieben wurden, Backend Data-Crunching Jobs. Diese führten eine Art von Datenanalyse, basierend auf großen Datenmengen,  durch, die sonst, ohne die Verwendung der von Hadoops verteilter Architektur und Prozessframework, viel länger gedauert hätte. Dabei haben die Entwickler mithilfe der MapReduce Ausführungsengine Aggregierungen und  anderen SQL-ähnliche Abfragen von Datenbeständen geschrieben. Sämtliche Applikationen waren von ihrer Natur her Batchjobs, die regelmäßig auf dem Cluster angestoßen wurden, um Resultate zu berechnen und diese weiter an standardisierte Visualisierungstools zu leiten. Normale User brauchten daher keinen direkten Zugriff auf den Cluster selbst, sondern nur auf die Tools, die die Resultate der Hadoop Jobs sammelten. Das hat die Arbeit der ITler stark vereinfacht, da sie  den Hadoop Cluster, der viele sensible Daten über ihr Unternehmen beherbergt , komplett von der restlichen IT Infrastruktur abtrennen und durch Firewalls sichern konnten. Die Kommunikationskanäle zwischen Hadoop und anderen Tools waren dabei auf das absolut Notwendigste –   sprich Daten rein, Resultate raus –  begrenzt. Durch diese Limitierung fiel das zeitaufwendige Installieren und Verwalten von Usern und das Schreiben von Autorisierungspolicies weg.
Mit dem Zuwachs der Datenmenge in modernen Unternehmen und der wachsenden Popularität des Hadoop Ecosystems kamen weitere Use Cases und mehrere Tools hinzu. Hadoop2 hat in diesem Zuge eine komplett neue Architektur veröffentlicht, in der man nicht mehr vom MapReduce abhängig ist. Andere Ausführungsengines sind aufgetaucht, die auf bestimmte Use Cases abzielen und sich in diesen Fällen durch bessere Leistung als das MapReduce Framework auszeichnen. Mehr und mehr Business- und Daten-Analysten wurden daraufhin auf Hadoop aufmerksam und wollten die Technik für sich nutzen.. Insbesondere Banken und Finanzdienstleister erkannten das gewaltige Potenzial dieser Technologie und wollten sie nutzen, um ihre Kunden besser zu verstehen.
Das war der Moment, in dem Unternehmen weltweit den Druck empfanden, eine ernste Sicherheitsarchitektur für Hadoop zu entwickeln. Dabei stießen ihre Ingenieure jedoch auf erste Probleme:
Wie gewährleistet man nutzerbasierten Zugriff auf Tools, die sich normalerweise innerhalb eines Hadoop Clusters befinden? Und noch wichtiger: Wie beschützt man sensible Daten vor unbefugtem Zugriff? Welcher Nutzer darf auf welche Daten zugreifen?
All diese Fragen, die sich mit dem Thema „Personalisierter Zugriff“  befassten, brauchten umgehend eine Antwort.

Die Sicherheitsanforderungen einer Data Science Plattform

Den Bedarf an höheren Sicherheitsvorkehrungen haben insbesondere die Hadoop Plattformen, die ihren Usern interaktive und adhoc Jobs/Abfragen ermöglichen möchten. Solche Plattformen sind in der BigData Welt als interaktive oder explorative (abgeleitet vom englischen Wort Exploration) Umgebungen bekannt. Ihr Hauptziel ist es, eine BigData Umgebung anzubieten, die den Usern erlaubt, neue Techniken und maschinelles Lernen auf Datensätze anzuwenden, um versteckte Muster zu erkennen.

Hier sind einige der wichtigsten Ziele, die ein sicheres Hadoop Umfeld erfüllen muss:

  1. Jeder User muss in der Lage sein, selber Abfragen oder Machine Learning Algorithmen auf große Datenmengen anzustoßen.
  2. User müssen sogar in der Lage sein, selber Daten einzufügen und zwar in einer kontrollierten Art und Weise.
  3. Resultate müssen direkt auf dem Cluster abrufbar sein, damit die neuesten BigData Visualisierungstechnologien genutzt werden können
  4. Unbefugter Zugriff auf Datensätze einer dritten Abteilung durcheinzelne Personen oder Gruppen muss verhindert werden.
  5. Jeder Datenzugriff muss kontrolliert und auditiert werden können.

Dieser Artikel ist der Start der drei-teiligen Serie zum Thema Sicherheit auf Enterprise-Niveau für Hadoop. 


Weiter zu Teil 2 von 3 – Sicherheitstechnologie in Hadoop

Hyperkonvergenz: Mehr Intelligenz für das Rechenzentrum

Wer heute dafür verantwortlich ist, die IT-Infrastruktur seines Unternehmens oder einer Organisation zu steuern, der steht vor einer ganzen Reihe Herausforderungen: Skalierbar, beliebig flexibel und mit möglichst kurzer „time-to-market“ für neue Services – so sollte es sein. Die Anforderungen an Kapazität und Rechenpower können sich schnell ändern. Mit steigenden Nutzerzahlen oder neuen Anwendungen, die geliefert werden sollen. Weder Kunden noch Management haben Zeit oder Verständnis dafür, dass neue Dienste wegen neuer Hardwareanforderungen nur langsam oder mit langem Vorlauf ausgerollt werden können.

Unternehmen wollen deshalb schnell und flexibel auf neue Anforderungen und Produkterweiterungen reagieren können. Dabei kommt in der Praxis häufig sehr heterogene Infrastruktur zum Einsatz: On-Premise-Systeme vor Ort, externe Data Center und Cloud-Lösungen müssen zuverlässig, nahtlos und insbesondere auch sicher die Services bereit stellen, die Kunden oder Mitarbeiter nutzen. Wichtig dabei: die Storage- und Computing-Kapazität sollte flexibel skalierbar sein und sich auch kurzfristig geänderten Anforderungen und Prioritäten anpassen können. Zum Beispiel: Innerhalb von kurzer Zeit deutlich mehr virtuelle Desktopsysteme für User bereit stellen.

Smarte Software für Rechenzentren

Der beste Weg für den CIO und die IT-Abteilung, diese neuen Herausforderungen zu lösen, sind „Hyperkonvergenz“-Systeme. Dabei handelt es sich um kombinierte Knoten für Storage und Computing-Leistung im Rechenzentrum, die dank smarter Software beliebig erweitert oder ausgetauscht werden können. Hierbei handelt es sich um SDS-Systeme („Software defined Storage“) – die Speicherkapazität und Rechenleistung der einzelnen Systeme wird von der Software smart abstrahiert und gebündelt.

Das Unternehmen Cisco zeigt, wie die Zukunft im Rechenzentrum aussehen wird: die neue Plattform HyperFlex setzt genau hier an. Wie der Name andeutet, bietet HyperFlex eine Hyperkonvergenz-Plattform für das Rechenzentrum auf Basis von Intel® Xeon® Prozessoren*. Der Kern ist hier die Software, die auf dem eigenen Filesystem „HX Data Platform“ aufsetzt. Damit erweitern Kunden ihr bestehendes System schnell und einfach. Diese Hyperkonvergenz-Lösung ist darauf ausgelegt, nicht als Silo parallel zu bereits bestehender Infrastruktur zu stehen, sondern zu einem Teil der bestehenden Hard- und Software zu werden.

Denn die Verwaltung von HyperFlex-Knoten ist in Ciscos bestehendem UCS Management integriert. So dauert es nur wenige Minuten, bis neue Nodes zu einem System hinzugefügt sind. Nach wenigen Klicks sind die zusätzlichen Knoten installiert, konfiguriert, provisioniert und somit live in Betrieb. Besonders hilfreich für dynamische Unternehmen: HyperFlex macht es sehr einfach möglich, im Betrieb selektiv Storage-, RAM-c oder Computing-Kapazität zu erweitern – unabhängig voneinander.  Sollten Knoten ausfallen, verkraftet das System dies ohne Ausfall oder Datenverlust.

Weiterführende Informationen zu den Cisco HyperFlex Systemen finden Sie mit einem Klick hier.

Dieser Sponsored Post entstand in Zusammenarbeit mit Cisco & Intel.

*Intel, the Intel logo, Xeon, and Xeon Inside are trademarks or registered trademarks of Intel Corporation in the U.S. and/or other countries.