Bringing intelligence to where data lives: Python & R embedded in T-SQL

Introduction

Did you know that you can write R and Python code within your T-SQL statements? Machine Learning Services in SQL Server eliminates the need for data movement. Instead of transferring large and sensitive data over the network or losing accuracy with sample csv files, you can have your R/Python code execute within your database. Easily deploy your R/Python code with SQL stored procedures making them accessible in your ETL processes or to any application. Train and store machine learning models in your database bringing intelligence to where your data lives.

You can install and run any of the latest open source R/Python packages to build Deep Learning and AI applications on large amounts of data in SQL Server. We also offer leading edge, high-performance algorithms in Microsoft’s RevoScaleR and RevoScalePy APIs. Using these with the latest innovations in the open source world allows you to bring unparalleled selection, performance, and scale to your applications.

If you are excited to try out SQL Server Machine Learning Services, check out the hands on tutorial below. If you do not have Machine Learning Services installed in SQL Server,you will first want to follow the getting started tutorial I published here: 

How-To Tutorial

In this tutorial, I will cover the basics of how to Execute R and Python in T-SQL statements. If you prefer learning through videos, I also published the tutorial on YouTube.

Basics

Open up SQL Server Management Studio and make a connection to your server. Open a new query and paste this basic example: (While I use Python in these samples, you can do everything with R as well)

Sp_execute_external_script is a special system stored procedure that enables R and Python execution in SQL Server. There is a “language” parameter that allows us to choose between Python and R. There is a “script” parameter where we can paste R or Python code. If you do not see an output print 7, go back and review the setup steps in this article.

Parameter Introduction

Now that we discussed a basic example, let’s start adding more pieces:

Machine Learning Services provides more natural communications between SQL and R/Python with an input data parameter that accepts any SQL query. The input parameter name is called “input_data_1”.
You can see in the python code that there are default variables defined to pass data between Python and SQL. The default variable names are “OutputDataSet” and “InputDataSet” You can change these default names like this example:

As you executed these examples, you might have noticed that they each return a result with “(No column name)”? You can specify a name for the columns that are returned by adding the WITH RESULT SETS clause to the end of the statement which is a comma separated list of columns and their datatypes.

Input/Output Data Types

Alright, let’s discuss a little more about the input/output data types used between SQL and Python. Your input SQL SELECT statement passes a “Dataframe” to python relying on the Python Pandas package. Your output from Python back to SQL also needs to be in a Pandas Dataframe object. If you need to convert scalar values into a dataframe here is an example:

Variables c and d are both scalar values, which you can add to a pandas Series if you like, and then convert them to a pandas dataframe. This one shows a little bit more complicated example, go read up on the python pandas package documentation for more details and examples:

You now know the basics to execute Python in T-SQL!

Did you know you can also write your R and Python code in your favorite IDE like RStudio and Jupyter Notebooks and then remotely send the execution of that code to SQL Server? Check out these documentation links to learn more: https://aka.ms/R-RemoteSQLExecution https://aka.ms/PythonRemoteSQLExecution

Check out the SQL Server Machine Learning Services documentation page for more documentation, samples, and solutions. Check out these E2E tutorials on github as well.

Would love to hear from you! Leave a comment below to ask a question, or start a discussion!

Analyse der Netzwerktopologie des Internets auf Basis des IPv4-Protokolls

Wie kommen Daten die man via Internet quer durch die Welt sendet eigentlich an ihr Ziel? Welchen Weg nehmen beispielsweise die Datenpakete, wenn ich von mir zu Hause eine Datei an meinen Nachbarn ein Haus weiter sende? Wie groß ist der “Umweg”, den die Daten nehmen? Und macht es eigentlich einen Unterschied, ob ich www.google.de, www.google.com oder www.google.nl aufrufe, oder gehen alle Suchanfragen sowieso an dasselbe Ziel?

Fragen wie diese lassen sich durch eine Kombination von Tools wie traceroute oder tracepath und geoiplookup beantworten und unter Verwendung des Python-Paketes geoplotlib sogar graphisch auf einer Weltkarte darstellen. Die so gewonnenen Ergebnisse zeigen Teile der Netzwerktopologie des Internets auf und führen zu interessanten, teils unerwarteten Erkenntnissen.

Ziel dieses Artikels soll sein, ein möglichst einfaches Tutorial zum selber mitbasteln bereit zu stellen. Die einzelnen Schritte die hierfür notwendig sind, werden möglichst einfach verständlich dargestellt und erklärt, trotzdem sind zum vollständigen Verständnis grundlegende Kenntnisse in Python sowie der Kommandozeile hilfreich. Er richtet sich aber auch an alle, die sich einfach einmal etwas in ihrer virtuellen Umgebung „umschauen“ möchten oder einfach nur an den Ergebnissen interessiert sind, ohne sich mit den Details und wie diese umgesetzt werden, auseinander setzen zu wollen.  Am Ende des Artikels werden die einzelnen Skripte des Projekts als zip-Datei bereitgestellt.

Hinweis: Diese Anleitung bezieht sich auf ein Linux-System und wurde unter Ubuntu getestet. Windows-User können beispielsweise mit dem Befehl tracert (als Ersatz für traceroute) ähnliche Ergebnisse erziehlen, jedoch muss dann das Parsing der IP-Adressen abgeändert werden.

1. Grundsätzliches Erkunden der Route, die ein Datenpaket nimmt

Hierfür wird ein Programm wie traceroute, tracepath oder nmap benötigt, welches durch Versenden von „abgelaufenen Datenpaketen“ die Hosts „auf dem Weg“ zum Ziel dazu bringt, ihre IPv4-Adresse zurück zu geben. In diesem Artikel wird beispielhaft traceroute verwendet, da dieses unter den meisten Linux-Versionen bereits zur „Grundausstattung“ gehört und somit für diesen Schritt keine weitere Software installiert werden muss. Die Verwendung von traceroute folgt der Syntax:

Als Ziel muss hier die IP-Adresse bzw. der Domainname des Zielrechners angegeben werden. Ein Beispiel soll dies vereinfachen:

Im Beispiel wird die Route zum Hostrechner mit der Domain www.google.de ermittelt. In der ersten Spalte der Ausgabe ist die Nummer des jeweiligen „Hops“ zu sehen. Wichtig ist insbesondere die zweite Spalte, welche die IPv4-Adresse des jeweiligen Rechners auf dem Weg zum Ziel darstellt. Die folgenden Spalten enthalten weitere Informationen wie Antwortzeiten der jeweiligen Server und die IP-Adressen der Folge-Server.

Um die Ausgabe in eine Form umzuwandeln, welche später einfacher von Python gelesen werden kann, muss diese noch ausgelesen werden (Parsing). zuerst soll die erste Zeile der Ausgabe herausgeschnitten werden, da diese zwar informativ, jedoch kein Teil der eigentlichen Route ist. Dies kann sehr einfach durchgeführt werden, indem die Ausgabe des traceroute-Befehls an einen Befehl wie beispielsweise sed „gepiped“ (also weitergeleitet) wird. Die dabei entstehende Pipe sieht dann wie folgt aus:

Um bei unserem Beispiel mit der Route zu www.google.de zu bleiben, sieht der Befehl und die Entsprechende Ausgabe wie folgt aus:

Anschließend soll die zweite Spalte der Ausgabe herausgeschnitten werden. Dies ist am einfachsten mit dem Befehl awk zu bewerkstelligen. Das Prinzip dahinter ist das gleiche wie im obigen Schritt: die Ausgabe des vorherigen Befehls wird dem Befehl awk als Eingabe weitergeleitet, womit der gesamte Befehl nun wie folgt aussieht:

Bezogen auf das google-Beispiel sehen Ein- und Ausgabe nun so aus:

Im letzten Schritt sollen die einzelnen IP-Adressen durch Leerzeichen getrennt in eine einzelne Zeile geschrieben werden. Sinn dieses Schrittes ist, dass später viele Zielrechner nacheinander aus einer Datei eingelesen werden können und jede Route zu einem Zielrechner als eine einzelne Zeile in eine Zieldatei geschrieben wird.
Auch dieser Schritt funktioniert ähnlich wie die obigen Schritte, indem die Ausgabe des letzten Schrittes an einen weiteren Befehl weitergeleitet wird, der diese Funktion erfüllt. Dieser Schritt könnte wieder mit dem Befehl sed durchgeführt werden, da aber nur ein einzelnes Zeichen (nämlich das Zeilenumbruch-Zeichen bzw. Newline) durch ein Leerzeichen ersetzt werden soll, wird hier aufgrund der einfacheren Syntax der Befehl tr verwendet.
Der fertige Befehl sieht nun wie folgt aus:

Oder im fertigen Beispiel mit www.google.de:

Hiermit ist das Parsen abgeschlossen und die fertige Ausgabe kann nun in eine Ergebnisdatei geschrieben werden. Um automatisch viele Zielrechner aus einer Datei einzulesen und alle gefundenen Routen in eine Zieldatei zu schreiben, wird der obige Befehl in eine Schleife „verpackt“ welche die Zielrechner Zeile für Zeile aus der Datei zieladressen.txt ausliest und die gefundenen Routen ebenso Zeile für Zeile in die Datei routen.csv schreibt. Die Datei routen.csv kann später zur Ermittlung verschiedener Informationen zu den gefunden IP-Adressen einfach mit einem Python-Skript eingelesen und geparst werden.

In diesem Artikel wird das fertige Skript ohne weitere Erklärung in der beiliegenden zip-Datei bereitgestellt. Wen die genaue Funktionsweise der Schleife interessiert, sei angehalten sich generell über die Funktionsweise von Shellskripten einzulesen, da dies den Rahmen des Artikels sprengen würde.

Dieses Skript benötigt die Datei zieladressen.txt welche wie folgt aussehen muss (anstatt Domainnamen können auch direkt IPv4-Adressen verwendet werden):

2. Sammeln von (Geo-)Informationen zu bestimmten IPv4-Adressen

Die gefundenen IPv4-Adressen können anschließend mit dem Befehl geoiplookup oder über die Internetseite http://geoiplookup.net/ relativ genau (meißtens auf Städteniveau) lokalisiert werden. Dies funktioniert, da einzelne Subnets in der Regel bestimmten Regionen und Internetprovidern zugeordnet sind.

Der Befehl geoiplookup greift hierbei auf eine vorher installierte und lokal gespeicherte Datenbank zu, welche je nach installierter Version als Country- oder City-Edition vorliegt. Da geoiplookup nicht zu den Standartbordmitteln unter Linux gehört und um die weiteren Schritte auch Benutzern anderer Betriebssysteme zu ermöglichen, wird hier nur ein kurzes Beispiel der Benutzung dieses Befehls und dessen Ausgabe gegeben und im weiteren die Online-Abfrage mittels eines Python-Skriptes beschrieben.

Die Internetseite http://geoiplookup.net bietet einen Onlineservice welcher Geo- und weitere Informationen zu gegebenen IPv4-Adressen bereitstellt. Öffnet man die Seite ohne Angabe einer IP-Adresse in einem Browser, so erhält man die entsprechenden Informationen über die eigene IP-Adresse. (Achtung: die Verwendung eines Proxies oder gar Tor führt zwangsläufig zu falschen Ergebnissen.)

Da die Seite auch über eine API (also eine automatisierte Abfrageschnittstelle) unter der Adresse “http://api.geoiplookup.net/?query=${IPADRESSE}” verfügt, kann man die entsprechenden Informationen zu den IP-Adressen mittels eines Pythonskriptes abfragen und auswerten. Als Antwort erhält man eine XML‑Datei welche beispielsweise folgendermaßen aussieht:

Diese kann im Browser z. B. unter der Adresse http://api.geoiplookup.net/?query=77.20.253.87 aufgerufen werden (oder unter: http://api.geoiplookup.net/ für die eigene Adresse).

Um die hierin enthaltenen Informationen mit Hilfe von Python auszulesen lässt sich ElementTree aus aus dem Modul xml.etree, das in der Python-Standartbibliothek vorhanden ist, verwenden. Dies wird im beiliegenden Skript mit der Funktion get_hostinfo() bewerkstelligt:

Diese parst die XML-Datei automatisch zu einem Python-DefaultDict das dann die entsprechenden Informationen enthält (das DefaultDict wird verwendet da normale Python Dictionaries zu Fehlern führen, wenn nicht gesetzte Werte abgefragt werden). Die Ausgabe der Funktion sieht dann wie folgt aus:

3. Plotten der gefundenen Routen mit geoplotlib auf einer Weltkarte

Wichtig für das anschließende Plotten ist hierbei die Geolocation also ‘latitude’ und ‘longitude’. Mit den Werten kann man anschließend die mit traceroute gefundenen Pfade als Basemap plotten. Dies funktioniert mit der Funktion drawroutes2map():

Der Plot einer Verbindungsanfrage an www.google.de aus Berlin sieht beispielsweise folgendermaßen aus:

Hier wird deutlich, dass Datenpakete durchaus nicht immer den kürzesten Weg nehmen, sondern teilweise rund um die Welt gesendet werden (Deutschland – USA – Sydney(!) – USA), bevor sie an ihrem Ziel ankommen und dass das Ziel einer Verbindung zu einer Domain mit der Endung „de“ nicht unbedingt in Deutschland liegen muss.

Mit Default-Einstellungen werden von der Funktion drawroutes2map() alle Routen in zufälligen Farben geplottet, welche in der Datei routen.csv gefunden werden.

Lässt man viele Routen plotten wird hierbei die Netzwerkstruktur deutlich, über die die Daten im Internet verteilt werden. Auf dem obigen Plot kann man recht gut erkennen, dass die meisten Internetseiten in Europa oder den USA gehostet werden, einige noch in China und Japan, dagegen beispielsweise Afrika praktisch unbedeutend ist.

Auf dem nächsten Plot wiederum ist zu erkennen, dass es tatsächlich eine Art “Hotspots” gibt über die fast alle Daten laufen, wie z. B. Frankfurt am Main, Zürich und Madrid.

4. Schematische Darstellung der Routen als directed Graph mit graphviz

Mit graphviz lassen sich schematische Graphen darstellen. Mit dem Paket pygraphviz existiert hiefür auch eine Python-Anbindung. Die schematische Darstellung als Graph ist in vielen Fällen deutlich übersichtlicher als die Darstellung auf einer Weltkarte und die Topologie des Netzwerkes wird besser sichtbar.

Die entsprechende Python-Funktion, die alle Routen aus der Datei routes.csv als geplotteten Graph ausgibt ist drawroutes2graph():

Die Funktion schreibt den erstellten Graph in der Dot-Language in die Datei routes.dot und erstellt zwei verschiedene visuelle Darstellungen als png-Dateien.

Da mit der Funktion get_hostinfo() auch weitere Informationen zu den jeweiligen IP-Adressen verfügbar sind  können diese auch visuell im Graph dargestellt werden. So sind in der folgenden Darstellung Hosts in verschiedenen Ländern in unterschiedlichen Farben dargestellt. (Deutschland in grün, USA in rot, Spanien in gelb, Schweiz in blau, China in magenta und alle übrigen Länder und Hosts ohne Länderinformation in schwarz).

Diese Art der Darstellung vereint damit die Vorteile der schematischen Darstellung mit der Geoinformation zu den jeweiligen Hosts. Aus der Grafik lässt sich beispielsweise sehr gut erkennen, dass, trotz oft vieler Zwischenstationen innerhalb eines Landes, Landesgrenzen überschreitende Verbindungen relativ selten sind.

Auch interessant ist, dass das Netzwerk durchaus Maschen aufweist – mit anderen Worten: Dass ein und dieselbe Station bei verschiedenen Verbindungsanfragen über verschiedene Zwischenstationen angesprochen wird und Daten, die von Punkt A nach Punkt B gesendet werden, nicht immer denselben Weg nehmen.

5. Schlussfolgerung

Was kann man hieraus denn nun letztendlich an Erkenntnissen ziehen? Zum einen natürlich, wie Daten via Internet über viele Zwischenstationen rund um die Welt gesendet und hierbei mit jeder Station neu sortiert werden. Vor allem aber auch, dass mit dem entsprechenden Know-How und etwas Kreativität mit bemerkenswert wenig Code bereits Unmengen an Daten gesammelt, geordnet und ausgewertet werden können. Alle möglichen Daten werden in unserer heutigen Welt gespeichert und sind zu einem nicht unbeträchtlichen Teil auch für jeden, der weiß, wer diese Daten hat oder wie man sie selber ermitteln kann, verfügbar und oft lassen sich hier interessante Einblicke in die Funktionsweise unserer Welt gewinnen.

Wieviele Trainungsbeispiele benötigen Lernverfahren? (1/2)

Kurz nach der Jahrtausendwende begann das Zeitalter der digitalen Daten. Seitdem übertrifft die Menge der digitalen Daten die der Analogen [HL11] und dem Maschinellen Lernen stehen enorme Datenmengen zur Verfügung. Unter dem Buzzword „big data“ wird dabei meist nur das reine Volumen gesehen, andere Faktoren, wie die Frequenz mit der die Daten zu verarbeiten sind und die Variabilität der Formate werden oft vernachlässigt, obwohl auch solche Daten unter „big data“ zusammengefasst werden. Betrachtet man das Volumen dann spielen zwei Faktoren eine zentrale Rolle, die das „big“ von „big data“ ausmachen: die Anzahl der Beispieldatensätze und – und dies wird häufig übersehen – die Anzahl der Eigenschaften mit denen die Beispieldaten beschrieben werden.
Wenn von „big data“ gesprochen wird, wird dabei oft angenommen, dass genügend Datensätze vorhanden sind. Für bestimmte Anwendungen jedoch, müssen die Daten in unterschiedliche Gruppen unterschieden werden, um beim Lernen nicht Äpfel und Birnen in einen Topf zu werfen. In solchen Fällen kann es leicht passieren, dass pro Gruppe zu wenig Beispieldaten vorhanden sind und die Frage an Bedeutung gewinnt: „Reichen die Datensätze eigentlich aus, um ein Vorhersagemodel mit einer gewissen Mindestgüte zu lernen?“.
Leider gibt es bisher keine einfache Antwort auf diese Frage, da diese neben der Anzahl der Eigenschaften – der Dimensionalität – der Daten, von der Struktur des Datenraums, der Verteilung der Daten in diesem Raum, dem verwendeten Lernverfahren, der Ausdrucksfähigkeit seiner Hypothesenrepräsentation und seiner endgültigen Parametrisierung abhängt. In der “Computational Learning Theory” wurden jedoch Ansätze zur Abschätzungen von Untergrenzen erarbeitet, die, unter der Annahme idealer Lernverfahren, zu mindestens eine Aussage über die benötigte Mindestmenge an Trainingsdaten gestatten.
Ziel dieses Beitrags ist es auf möglichst anschauliche Art und Weise anhand eines praktischen Beispiels zu zeigen, welchen Einfluss die Dimensionalität der Daten auf die Abschätzung der Anzahl der benötigten Beispiele für das Erlernen von Vorhersagemodellen – genauer einfachen Klassifikationsmodellen[1] – hat und welche Methoden hierfür existieren. In diesem ersten Teil liegt das Hauptaugenmerk auf endlichen Daten- und Hypothesenräumen und wir werden sehen, dass selbst für eine kleine Anzahl von Eigenschaften – sprich Dimensionen – nützliche Aussagen nur für sehr einfache Hypothesenrepräsentationen möglich sind. Im zweiten Teil werden wir einen Abschätzungsansatz betrachten, der die „Unterscheidungsstärke“ unterschiedlicher Lernverfahren berücksichtigt und mit dem auch Abschätzungen für unendliche Daten- und Hypothesenräume möglich werden.

Anwendungsbeispiel

Betrachten wir das Beispiel eines Online-Shops, der Produkte über das Internet verkauft und dessen Produkte klassifiziert werden sollen. Wie die Produkte klassifiziert werden sollen ist für unsere Betrachtungen unerheblich, was wir aber im Kopf haben sollten: der Absatz unterschiedlicher Produkte folgt einer Potenzverteilung. Eine kleine Zahl von Produkten wird sehr häufig verkauft, so dass für sie viele Datensätze existieren (solche Produkte werden gewöhnlicher Weise in konventionellen Geschäften vertrieben, die nur begrenzte Lagerkapazitäten haben). Der Großteil der Produkte wird jedoch eher seltener umgesetzt (auch als „long tail“ bezeichnet), so dass die Anzahl ihrer Datensätze gering ist; u.U. so gering, dass für sie keine verlässlichen Vorhersagemodelle erlernbar sind.

Zur Illustration gehen wir davon aus, dass in dem Online-Shop Produkte von 500 Marken verkauft werden und diese Produkte neben ihrer Marke durch ihre Größe (10 mögliche Werte), ihre Farbe (20 mögliche Werte), die ersten drei Ebenen der Google Produktkategorien (auf der dritten Ebene 500 mögliche Werte) und ihren Preis (im Bereich 0,49 – 100 €) beschrieben werden.

In diesem Kontext besitzt die Antwort auf die Frage: „Wie viele Daten werden überhaupt für ein Lernverfahren benötigt?“ offensichtlich konkreten Nutzen,

  • da wir abschätzen können, ob für ein konkretes Produkt überhaupt ein sinnvolles Vorhersagemodell erlernbar ist,
  • da wir aus der Abschätzung auf die Dauer der Datensammlung schließen können und
  • um ggf. die Daten von selten verkauften Produkten inhaltlich oder zeitlich zu aggregieren.

Was uns vorweg klar sein sollte

Die Daten, die wir zum Erlernen von Vorhersagemodellen verwenden, werden durch Eigenschaften (normalerweise als Feature, in der Statistik auch als Variablen bezeichnet) beschrieben. Die Eigenschaften werden in beobachtete und abhängige Eigenschaften (im Maschinellen Lernen auch als Label bezeichnet) unterschieden. Die Wertebereiche der Eigenschaften können in endliche und unendliche Wertebereich unterschieden werden.

Wir können nicht erwarten, dass ein Lernverfahren ein 100%ig korrektes Modell erlernt. Lernverfahren versuchen durch einen induktiven Schluss aus Daten ein Vorhersagemodell zu ermitteln. Da die zur Verfügung stehende Datenmenge immer begrenzt sein wird und die Daten damit realistischer Weise unvollständig sein werden, Messfehler und Inkonsistenzen enthalten können, kann auch ein erlerntes Modell niemals 100%ig korrekt sein.

Viele unterschiedliche Modelle können konsistent mit den verfügbaren Daten sein. Ziel des Lernverfahrens ist es daher mit den verfügbaren Daten das bestmögliche Vorhersagemodell zu ermitteln.

Wir müssen in Kauf nehmen, dass unbekannte, zukünftige oder ungewöhnliche Daten zu fehlerhaften Vorhersagen führen. Zum Lernzeitpunkt ist nur ein Ausschnitt aller Daten verfügbar. Zukünftig erhobene Daten können Veränderungen unterliegen oder es können bisher noch nicht gesehene Fälle auftreten, auf die das erlernte Modell nicht mehr richtig passt.

Aus diesen Fakten ergibt sich die einzig realistische Annahme: ein gutes Lernverfahren soll mit großer Wahrscheinlichkeit eine gute Näherung des richtigen Vorhersagemodells erlernen.

Anzahl benötigter Trainingsfälle

Zur Abschätzung der Anzahl benötigter Trainingsfälle – als Beispielkomplexität (sample complexity) bezeichnet – wurden in der Computational Learning Theory unterschiedliche Ansätze entwickelt. Diese Ansätze beschreiben für idealisierte Lernverfahren unter welchen Bedingungen probabilistisch, approximativ, korrektes Lernen (PAC learning) effizient möglich ist. Grundlegend für die Einsetzbarkeit dieser Ansätze ist die Unterscheidung, ob das Lernen in einem endlichen oder unendlichen Hypothesenraum erfolgt, und ob das Lernverfahren konsistente Hypothesen oder nur näherungsweise Hypothesen, z.B. beim Vorliegen von Messfehlern, zu den Daten erlernen kann.

Endliche Datenräume

Sofern die Daten nur durch nominelle Eigenschaften mit endlichen Wertebereichen beschrieben werden[2], lässt sich die Größe des Datenraums relativ einfach bestimmen. Die folgende Tabelle beschreibt für die wichtigsten nominellen Eigenschaftstypen Größenfaktoren, die im Folgenden zur vereinheitlichten Darstellung verwendet werden:

Type
t
Fehlende Werte (NA) ? Größe des Wertebereichs
n
Größenfaktor g(t)
Boolean Nein 2 2
Boolean Ja 2 3
Nominal (Menge) Nein n_t n_t
Nominal (Menge) Ja n_t n_t+1

Die Größe eines endlichen d-dimensionalen Datenraums D kann allgemein mit folgender Formel bestimmt werden |D| = \prod_{i=1}^d{g(t_i)}.

Das Lernproblem besteht darin: aus einer Teilmenge von Trainingsbeispielen S  aus dem Datenraum D, i.e. S \subset D, die ein Trainer dem Lernverfahren vorgibt, um Zielkonzept c zu erlernen, eine Hypothese aus dem Hypothesenraum h \in H des Lernverfahrens zu ermitteln, welche (möglichst) alle positiven Beispiel S_p  umfasst und (möglichst) alle negativen Beispiele S_n  ausschließt.

Einfache Hypothesenrepräsentation

Die einfachste Hypothesenrepräsentation, in der Lernen, welches über einfaches Erinnern hinausgeht, sinnvoll ist, sind Disjunktionen von Bool’schen Eigenschaften. Eine Beispielanwendung für die diese Repräsentation Sinn macht, ist das Erkennen von Spam-Emails anhand des Vorliegens unterschiedlicher alternativer Eigenschaften, die Spam-Emails charakterisieren. Der Hypothesenraum dieser Sprache besitzt eine Größe von |H| = 2^d [FoDS18]. Ein Beispiel für ein verbreitetes Lernverfahren, das eine Hypothesenrepräsentation dieses Typs nutzt, ist Naive Bayes.

Beliebige nominelle Eigenschaften können durch One-Hot- oder Dummy-Encoding als Bool’sche Variablen kodiert werden. Damit ergibt sich zum Erlernen von Disjunktionen kodierter, Bool’scher Eigenschaften die Größe des Hypothesenraums als |H| = 2^{\sum_{i=1}^d{g(t_i)}}.

Um unser Produktbeispiel in dieser Sprache zu repräsentieren, müssen die Eigenschaften geeignet kodiert werden, z.B. durch One-Hot- oder Dummy-Encoding, bei dem jeder Wert einer Eigenschaft durch eine neue bool’sche Variable kodiert wird. Hieraus ergeben sich im Fall von One-Hot-Encoding 500+10+20+500+9941=10.971 und im Fall von Dummy-Encoding 499+9+19+499+9940=10.966 neue Bool’sche Eigenschaften.

Eigenschaftsvektoren (Feature-Vektoren, bzw. Konjunktionen von Eigenschaften) stellen die nächstkomplexere Repräsentationssprache dar, die, solange sie nicht um ein Konstrukt zur Verallgemeinerung erweitert wird, sehr unspektakulär ist, da Beispiele mit ihr lediglich erinnert werden. Erst wenn ein „don’t care“-Symbol, wie z.B. „?“, für beliebige Eigenschaftswerte hinzugefügt wird, wird die extremste Form von Generalisierung möglich, die von einzelnen Werten gleich auf alle Werte generalisiert [ML97]. Durch das „don’t care“-Symbol wird der Größenfaktor g um einen weiteren Wert erhöht. Für diese Repräsentation beträgt die Größe des Hypothesenraums  über rein bool‘schen Eigenschaften (inkl. „don’t care“)  |H| = 3^d und für allgemeine endliche Eigenschaften|H| = \prod_{i=1}^d{(g(t_i)+1)}. Diese Repräsentation ist sehr eingeschränkt und erlaubt es nur einzelne und keine kombinierten Konzepte zu erlernen. Sie ist daher eigentlich nur von theoretischem Interesse und wird – soweit bekannt – in keinem praktisch eingesetzten Lernverfahren genutzt.

Interessanter ist eine Verallgemeinerung dieser Repräsentationssprache, die k-CNF (konjunktive Normalform), die aus einer Konjunktion von Disjunktionen der Länge k besteht, die sowohl polynomielle Beispiel- als auch Zeitkomplexität besitzt [ML97] und für die ein effizienter Algorithmus existiert. Diese Repräsentation lässt sich auch auf einen d-dimensionalen Eigenschaftsvektor übertragen, in dem für jede Eigenschaft Generalisierungen über beliebige Teilmengen erlaubt werden. Die Größe des Hypothesenraums dieser Sprache beträgt |H| = \prod_{i=1}^d{2^{g(t_i)}} = 2^{\sum_{i=1}^d{g(t_i)}}. Mit dieser Sprache können alle Eigenschaften zwar separat auf beliebige Teilmengen generalisiert werden, Korrelationen zwischen Eigenschaften werden jedoch nicht berücksichtigt.

Für Repräsentationssprachen, die keinerlei Einschränkungen machen, besitzt der Hypothesenraum für Daten mit d bool‘schen Eigenschaften eine Größe von |H| = 2^{2^d}. Auf beliebige endliche Eigenschaften übertragen, kann diese Aussage zu |H| = 2^{|D|} = 2^{\prod_{i=1}^d{g(t_i)}} verallgemeinert werden.

Wie aus diesen Abschätzungen ersichtlich wird, hat die Dimensionalität d der Daten einen direkten Einfluss auf die Größe des Hypothesenraums und damit auf die Anzahl der von einem Lernverfahren zu berücksichtigenden Konzepte.

Realistische Hypothesenrepräsentation

Bis auf einfache Disjunktionen bool’scher Eigenschaften, sind einfache Hypothesenrepräsentationen entweder zu ausdrucksschwach, so dass nützliche Konzepte kaum ausdrückbar sind, oder zu ausdrucksstark, so dass Lernen in vertretbarer nicht-exponentieller Zeit nicht möglich ist. Die gängigen Lernverfahren, wie k-Nearest Neighbors, Naive Bayes, Decision Trees, Random Forrests, AdaBoost, XGBoost, Logistic Regression, Support Vector Machines und Neuronale Netze, etc. beschränken durch spezifische Annahmen (inductive bias) den Hypothesenraum, um so nützliche Konzepte in vernünftiger Zeit zu erlernen.

Leider lassen sich nur für wenige der real eingesetzten Verfahren Abschätzungen für die Größe des Hypothesenraums finden.

Verfahren |H| Parameter
Boolean-coded Naive Bayes 2^{\sum_{i=1}^d{g(t_i)}}
Boolean-coded Decision Trees[3] 2^{\sum_{i=1}^d{g(t_i)}}
Boolean-coded Decision Trees with limited depth [4] 2(2^k-1)(1+log_2{⁡\sum_{i=1}^d{g(t_i)}} ) +1 k = Tiefenbegrenzung

Lernen eines zu allen Trainingsdaten konsistenten Konzepts (aka Overfitting)

Unter der Annahme eines idealen Lernalgorithmus, kann die Größe des Hypothesenraums dazu verwendet werden die Anzahl der Trainingsdaten m die ein „konsistenter Lernalgorithmus“[5] benötigt, um ein beliebiges Konzept mit einem maximalen Fehler \epsilon und einer Unsicherheit \delta (bzw. einer Wahrscheinlichkeit von 1 - \delta ) zu erlernen, abgeschätzt werden mit[6]

    \[m \geq \frac{1}{\epsilon}(ln{(|H|)} + ln{(\frac{1}{\delta})})\]

Nehmen wir für unser Beispielszenario an Produkt A wird stündlich im Durchschnitt 100 mal verkauft und Produkt B wird jeden Tag im Schnitt nur 10 mal verkauft.  Zur Vereinfachung nehmen wir weiter an, die Produkte werden jeden Tag – egal ob Wochentag oder Wochenende – nur zwischen 6:00 und 20:00 Uhr verkauft. Pro Monat erhalten wir für Produkt A 42.000 Datensätze und für Produkt B 300 Datensätze.

Der Datenraum D hat eine Größe von |D| = 500*10*20*500*9941 \approx 497 Mrd. Punkten. Mit einer einfachen bool’schen Kodierung ergibt sich d = 500+10+20+500+9951 = 10.971 und |H| = 2^{10.961}.

Wollten wir Datensätze dieser Produkte mit einem Fehler \epsilon von maximal 10% und einer maximalen Unsicherheit \delta = 5% – wie auch immer – klassifizieren, so würden wir für den Einsatz von Naive Bayes oder unbegrenzten DecisionTrees mindestens 76.145 Datensätze benötigen. Weder die monatlichen Daten von Produkt A noch Produkt B würden ausreichen.

Mit einem tiefenbeschränkten Entscheidungsbaum-Verfahren mit 5 Stufen, sind, ungeachtet der Qualität des Lernergebnisses, die Daten von Produkt A und B ausreichend, um die Anforderungen an \epsilon und \delta einzuhalten, da nur mindestens 91 Datensätze benötigt werden.

Ein, dieser Abschätzung zugrundeliegender, idealer Lernalgorithmus, ist jedoch für praktische Anwendungen unrealistisch, da er zwar für die Trainingsdaten ein konsistentes Konzept ermitteln würde, welches aber bei unbekannten, neuen Daten versagen kann. Der angenommene Lernalgorithmus unterliegt der „Überanpassung“ (overfitting).

Nichts desto trotz ist diese Abschätzungsformel hilfreich, da sie eine Aussage erlaubt, wie viele Trainingsbeispiele im besten Fall ausreichen, um mit einem idealen Lernverfahren ein Konzept mit einem maximalen Fehler von \epsilon und einer Unsicherheit von höchstens \delta zu erlernen, das in der genutzten Hypothesenrepräsentation ausdrückbar ist.

Agnostisches Lernen eines Konzeptes, das möglichst gut zu den Trainingsdaten passt

Überanpassung wollen wir in der Regel vermeiden, damit die erlernten Vorhersagemodelle auch auf unbekannte, fehlerbehaftete oder teilweise inkonsistente Daten anwendbar sind. Anders ausgedrückt: das zu erlernende Konzept c kann etwas außerhalb des Hypothesenraums liegen, der durch das eingesetzte Lernverfahren erfasst wird. Dies bedeutet, dass wir im Hypothesenraum des Lernverfahrens nur eine Näherung c' erlernen können, die möglichst gut sein sollte. Solch ein – als agnostisch bezeichnetes – Lernverfahren muss daher bestrebt sein den Fehler zwischen den Trainingsdaten und dem Fehler der sich durch das Erlernen der Näherung c' ergibt möglichst klein zu halten.

Auch hierfür kann, unter der Annahme eines idealen Lernalgorithmus, die Größe des Hypothesenraums dazu verwendet werden die Anzahl der Trainingsdaten m die ein „agnostisches Lernverfahren“ benötigt, um eine gute Näherung an das zu erlernende Konzept in einem endlichen Hypothesenraum mit einem maximalen Fehler \epsilon und einer Unsicherheit \delta (bzw. einer Wahrscheinlichkeit von 1 - \delta) zu erlernen, abgeschätzt werden mit[6]

    \[m \geq \frac{1}{2\epsilon^2}(ln{(|H|)} + ln{(\frac{2}{\delta})})\]

Auf das Beispiel angewendet müsste sich – unter der Annahme gleicher Rahmenbedingungen – die Mindestzahl von Trainingsbeispielen auf m = 490 belaufen. D.h. die Daten von Produkt A könnten zum Lernen der Klassifikation verwendet werden, die Datenmenge für Produkt B wäre jedoch nicht ausreichend.

Folgerung

Mit diesem ersten Beitrag haben wir anhand eines kleinen realen Beispiels gezeigt, wie sich für einen idealen Lernalgorithmus über die Betrachtung der Größe endlicher Hypothesenräume, die Mindestanzahl der benötigten Trainingsbeispiel abschätzen lässt.

Auch wenn es sich hierbei um eine idealisierte Betrachtung handelt, erlauben solche Abschätzungen Aussagen darüber, wann Lernverfahren nur mit einem größeren Fehler behaftet einsetzbar sind.

Diese Betrachtung erstreckte sich bisher nur über endliche Eigenschaften und berücksichtigt die Komplexität der Hypothesenrepräsentation – eine der wesentlichen Eigenschaften eines Lernverfahrens – noch nicht. Dies wird Thema des zweiten Teils sein, in dem wir sehen werden, wie sich Abschätzung auf der Basis der – sogenannten – Vapnik-Chervonenkis-Dimension (VC-Dimension) für viele gängige Klassen von Lernverfahren einsetzen lassen.

Fußnoten

[1] Wir betrachten hierbei nur rein binäre, binomiale resp. Bool’sche Klassifikationsprobleme, deren Aussagen sich jedoch auch auf multinomiale Klassifikation und reell-wertige Vorhersagemodelle übertragen lassen (siehe [ESL09], Seite 238).

[2] Unendlich, überabzählbare Eigenschaften lassen sich in Abhängigkeit vom Anwendungsproblem und der erforderlichen Genauigkeit oft diskretisieren und als ordinale Daten oder Intervalle ganzer Zahlen repräsentieren, wie z.B. Alter, Körpergröße, Längen, Temperatur, und Zeitintervalle usw., wenn es ausreichend ist diese mit einer Genauigkeit von Jahren, cm, mm, Zehntelgrad oder Sekunden zu erfassen.

[3] Vollausgebaute Decision Trees unterliegen der Gefahr der „Überanpassung“ (overfitting) und werden in der Regel gestutzt, um dies zu vermeiden. Die Abschätzung stellt daher die Obergrenze dar.

[4] http://www.cs.cmu.edu/~guestrin/Class/10701/slides/learningtheory-bigpicture.pdf  und https://www.autonlab.org/_media/tutorials/pac05.pdf (Letzter Zugriff: 10.3.2018)

[5] Ein „konsistenter Lernalgorithmus“ erlernt Hypothesen, die – wann immer möglich – perfekt zu den Trainingsdaten passen [ML97].

[6] Details zur Ableitung der beschriebenen Untergrenzen finden sich u.a. in [ML97], [FoML12] oder [FoDS18].

Referenzen

[HL11] „The World’s Technological Capacity to Store, Communicate, and Compute Information“, M. Hilbert, P. López, Science 332, 60, 2011, http://www.uvm.edu/pdodds/files/papers/others/2011/hilbert2011a.pdf (letzter Zugriff: 14. März 2018)

[ESL09] “The Elements of Statistical Learning”, T. Hastie, R. Tibshirani, J. Friedman, 2nd Edition, Springer, 2009.

[ML97] „Machine Learning“, T. Mitchell, McGraw-Hill, 1997.

[FoML12] „Foundations of Machine Learning“, M. Mohri, A. Rostamizadeh, A. Talwalkar, The MIT Press, 2012.

[FoDS18] „Foundations of Data Science“, A. Blum, J. Hopcroft, R. Kannan, Cornell University, https://www.cs.cornell.edu/jeh/book.pdf, Jan. 4th, 2018 (letzter Zugriff: 14. März 2018)

Distributed Computing – MapReduce Algorithmus

Sollen große Datenmengen analysiert werden, ist die Hardware eines leistungsfähigen Computers schnell überfordert und die Analysezeiten werden zu lang. Die Lösung zur Bewältigung von Big Data Analytics sind Konzepte des verteilten Rechnens (Distributed Computing).

Vertikale Skalierung – Der Klassiker der leistungsstarken Datenverarbeitung

Die meisten Unternehmen setzen heute noch auf leistungsstarke und aufrüstbare Einzelserver. Sollten Datenmengen größer und Analysen rechenaufwändiger werden, werden Festplatten (Storage), Arbeitsspeicher (RAM) und Prozessoren (CPU) aufgerüstet oder der Server direkt durch einen leistungsstärkeren ersetzt.

Diese Form der sogenannten vertikalen Skalierung (Vergrößerung der Server-Komponenten) ist für viele Unternehmen heute noch gängige Praxis, auch weil sie leicht zu administrieren ist und sie mit nahezu jeder Software funktioniert. Jedoch sind der Erweiterbarkeit gewisse Grenzen gesetzt und auch der Wechsel zu noch leistungsfähigerer Hardware würde den Einsatz von neuester High-End-Hardware bedeuten, der Kostenanstieg wäre exponentiell. Ferner bedarf es einer durchdachten Backup-Strategie mit gespiegelten Festplatten oder einem ganzen Backup-Server.

Leistungsstarke Server sind teuer und können zwar große Datenmengen weitaus schneller auswerten als Consumer-Computer, jedoch sind auch sie eher nicht dazu in der Lage, Big Data zu verarbeiten, also beispielsweise 100 Terabyte Daten binnen Sekunden statistisch auszuwerten.

Horizontale Skalierung – Skalierbare Speicher-/Rechenleistung

Ein alternatives Konzept zur vertikalen Skalierung ist die horizontale Skalierung. Dabei werden mehrere Computer, die im Vergleich oftmals über nur mittelmäßige Leistungsmerkmale verfügen, über ein Computer-Netzwerk verbunden und parallel angesteuert.

Der große Vorteil der horizontalen Skalierung ist der kostengünstige Einstieg, denn praktisch könnte bereits mit einem einzelnen Computer (Node) begonnen werden und dann nach und nach mit weiteren Nodes die Leistungsfähigkeit des Clusters (Verbund von Nodes) linear gesteigert werden. Ungefähr linear wachsen auch die Kosten an, so dass diese weitaus besser planbar sind. Cluster können weitaus höhere Leistungen erreichen als es einzelne Server könnten, daher gibt die horizontale Skalierung als diejenige, die sich für Big Data Analytics eignet, denn sie ermöglicht verteiltes Rechnen (Distributed Computing). Mit einem ausreichend großen Cluster lassen sich auch 100 Terabyte und mehr in wenigen Augenblicken statistisch auswerten.

Ferner ermöglichen horizontale Lösungen integrierte Backup-Strategien, indem jeder Node des Clusters über ein Backup der Daten eines anderen Nodes verfügt. Verfügt ein Node sogar über mehrere Backups, lässt sich eine sehr hohe Ausfallsicherheit – Datenverfügbarkeit im Cluster – erzielen.

Jedoch gibt es auch Nachteile der horizontalen Skalierung: Die Administration eines Clusters ist weitaus herausfordernder als ein einzelner Server, egal wie leistungsstark dieser sein mag. Auch Bedarf es viel räumlichen Platz für einen (oder gar mehrere) Cluster. Die Kompatibilität der Nodes sollte auch für die nächsten Jahr gesichert sein und nicht zuletzt ist es eine große Hürde, dass die einzusetzende Software (Datenbank- und Analyse-Software) für den Einsatz auf Clustern geeignet sein muss. Verbreite Software-Lösungen für verteiltes Speichern und Rechnen kommen beispielsweise von der Apache Foundation als Open Source Software: Hadoop, Spark und Flink.

Map Reduce Processing

Damit verteiltes Rechnung funktioniert, bedarf es der richtigen Software, die wiederum Algorithmen einsetzt, die sich dafür eignen. Der bekannteste und immer noch am weitesten verbreitete Algorithmus ist MapReduce. MapReduce ist ein sehr einfacher Algorithmus und dürfte von der grundsätzlichen Vorgehensweise jedem Software-Entwickler oder Analyst vertraut sein. Das Prinzip entspricht dem folgenden SQL-Statement, dass die am häufigsten vorkommende Sprache aus dem Datensatz (Tabelle Customers) abfragt:

Es gibt eine Tabelle (es könnte eine Tabelle in einer relationalen Datenbank sein oder eine CSV-Datei), die durch eine SELECT-Query abgefragt (map), groupiert (combine) und sortiert (sort). Dieser Schritt kann vereinfacht als Map-Funktion betrachtet werden, die in einer Liste Paaren aus Schlüssel (Keys) und Werten (Values) resultiert. Ist diese Liste vorhanden, kann diese auf die gewünschten Ergebnisse entspechend einer Logik (z. B. max(), min(), mean(), sum()) auf wenige oder nur einen einzigen Wert reduziert werden (Reduce-Funktion). Zu beachten ist dabei, dass der Map-Prozess sehr viel speicher- und rechen-aufwändiger als der Reduce-Prozess ist. Führen wir diese Abfrage auf einer Maschine aus, fassen wir die beiden Abfragen als ein Statement aus:

Betrachten wir jedoch die einzelnen Schritte, können wir sie wieder zumindest in einen Map- und einen Reduce-Schritt unterteilen. Diese Aufteilung machen wir uns für das verteilte Rechnen zunutze: Wenn jeder Computer (Node; oft auch Client Node oder Data Node) einen Teil der Daten besitzt, kann jeder Node für sich einen Map-Prozess durchführen, die Ergebnisse dann an einen Master-Node (oder in Hadoop-Sprache: Name Node) senden, der den Reduce-Prozess durchführt. Der Großteil der Aufgabe findet somit auf dem Cluster statt, nur der simple Reduce-Schritt auf einem einzelnen Computer.

Oftmals reicht ein parallel ablaufender Map-Prozess auf dem Cluster nicht aus, um Daten effizient auswerten zu können. Die Maßgabe sollte stets sein, den Reduce-Aufwand so gering wie möglich zu halten und soviel Arbeit wie möglich auf den Cluster zu verlagern. Daher sollte jeder Node im Cluster soweit aggregieren wie möglich: Dafür gibt es den Combine-Schritt.

Die zuvor erwähnte SQL-Abfrage als MapReduce würde bedeuten, dass ein Node über den Datensatz verfügt (und andere Nodes über weitere Datensätze) und jeder Node für sich seine Daten über einen Map-Prozess herausarbeitet, über einen Combine-Prozess aggregiert und die Aggregationsergebnisse an den Master-Node (Name Node) sendet. Hat der Master-Node alle Ergebnisse erhalten, berechnet dieser daraus das Endergebnis (Reduce).

Zusammenfassung: Map Reduce

MapReduce ist der bekannteste Algorithmus zur verteilten Verarbeitung von Daten und eignet sich für die Durchführung von komplexen Datenanalysen. Liegen Datensätze auf mehreren Computern (Client Nodes) vor, läuft der Algorithmus in der Regel in drei Schritten ab:

  1. Map – Selektierung der Datensätze auf den Computern im gewünschten Format und Durchführung einer Berechnung, beispielsweise der Bildung einer Summe. Dieser Schritt ist ermöglich das Prinzip Schema on Read, das aus Hadoop ein Tool zur Verarbeitung von unstrukturierten Daten macht.
  2. Combine – Durchführung einer Aggregation, die ebenfalls auf jeden Client Node durchgeführt wird, zur Zusammenfassung von Map-Ergebnissen.
  3. Reduce – Aggregation aller Ergebnisse auf dem zentralen Rechner (Name Node)

MapReduce ist dazu geeignet, unstrukturierte Daten zu verarbeiten, denn das Format der Daten wird über einen Map-Algorithmus bestimmt, der sehr flexibel programmiert werden kann. MapReduce ist kein eng definierter Algorithmus, sondern eine Hülle, die mit Inhalt befüllt werden muss. So müssen MapReduce-Algorithmen individuell über eine Programmiersprache wie Java, Scala oder Python programmiert werden.

Ein Beispiel eines in Java programmierten Word-Count-Algorithmus nach der MapReduce-Logik in Hadoop findet sich hier:

MapReduce und Advanced Analytics

MapReduce spielt seine Vorteile auf Computer-Clustern aus und eignet sich sehr zur Analyse von Daten nach dem Schema on Read. Für kompliziertere Analysealgorithmen ist MapReduce jedoch nur bedingt geeignet, denn bereits einfache Join-Anweisungen benötigen mehrere MapReduce-Ketten.

Während statistische Auswertungen und Join-Anweisungen mit MapReduce noch gut möglich sind, werden Algorithmen des maschinellen Lernens schwierig bis kaum möglich, da diese viele Iterationen, z. B. zur Anpassung von Gewichten, benötigen.

Applying Data Science Techniques in Python to Evaluate Ionospheric Perturbations from Earthquakes

Multi-GNSS (Galileo, GPS, and GLONASS) Vertical Total Electron Content Estimates: Applying Data Science techniques in Python to Evaluate Ionospheric Perturbations from Earthquakes

1 Introduction

Today, Global Navigation Satellite System (GNSS) observations are routinely used to study the physical processes that occur within the Earth’s upper atmosphere. Due to the experienced satellite signal propagation effects the total electron content (TEC) in the ionosphere can be estimated and the derived Global Ionosphere Maps (GIMs) provide an important contribution to monitoring space weather. While large TEC variations are mainly associated with solar activity, small ionospheric perturbations can also be induced by physical processes such as acoustic, gravity and Rayleigh waves, often generated by large earthquakes.

In this study Ionospheric perturbations caused by four earthquake events have been observed and are subsequently used as case studies in order to validate an in-house software developed using the Python programming language. The Python libraries primarily utlised are Pandas, Scikit-Learn, Matplotlib, SciPy, NumPy, Basemap, and ObsPy. A combination of Machine Learning and Data Analysis techniques have been applied. This in-house software can parse both receiver independent exchange format (RINEX) versions 2 and 3 raw data, with particular emphasis on multi-GNSS observables from GPS, GLONASS and Galileo. BDS (BeiDou) compatibility is to be added in the near future.

Several case studies focus on four recent earthquakes measuring above a moment magnitude (MW) of 7.0 and include: the 11 March 2011 MW 9.1 Tohoku, Japan, earthquake that also generated a tsunami; the 17 November 2013 MW 7.8 South Scotia Ridge Transform (SSRT), Scotia Sea earthquake; the 19 August 2016 MW 7.4 North Scotia Ridge Transform (NSRT) earthquake; and the 13 November 2016 MW 7.8 Kaikoura, New Zealand, earthquake.

Ionospheric disturbances generated by all four earthquakes have been observed by looking at the estimated vertical TEC (VTEC) and residual VTEC values. The results generated from these case studies are similar to those of published studies and validate the integrity of the in-house software.

2 Data Cleaning and Data Processing Methodology

Determining the absolute VTEC values are useful in order to understand the background ionospheric conditions when looking at the TEC perturbations, however small-scale variations in electron density are of primary interest. Quality checking processed GNSS data, applying carrier phase leveling to the measurements, and comparing the TEC perturbations with a polynomial fit creating residual plots are discussed in this section.

Time delay and phase advance observables can be measured from dual-frequency GNSS receivers to produce TEC data. Using data retrieved from the Center of Orbit Determination in Europe (CODE) site (ftp://ftp.unibe.ch/aiub/CODE), the differential code biases are subtracted from the ionospheric observables.

2.1 Determining VTEC: Thin Shell Mapping Function

The ionospheric shell height, H, used in ionosphere modeling has been open to debate for many years and typically ranges from 300 – 400 km, which corresponds to the maximum electron density within the ionosphere. The mapping function compensates for the increased path length traversed by the signal within the ionosphere. Figure 1 demonstrates the impact of varying the IPP height on the TEC values.

Figure 1 Impact on TEC values from varying IPP heights. The height of the thin shell, H, is increased in 50km increments from 300 to 500 km.

2.2 Phase Smoothing

For dual-frequency GNSS users TEC values can be retrieved with the use of dual-frequency measurements by applying calculations. Calculation of TEC for pseudorange measurements in practice produces a noisy outcome and so the relative phase delay between two carrier frequencies – which produces a more precise representation of TEC fluctuations – is preferred. To circumvent the effect of pseudorange noise on TEC data, GNSS pseudorange measurements can be smoothed by carrier phase measurements, with the use of the carrier phase smoothing technique, which is often referred to as carrier phase leveling.

Figure 2 Phase smoothed code differential delay

2.3 Residual Determination

For the purpose of this study the monitoring of small-scale variations in ionospheric electron density from the ionospheric observables are of particular interest. Longer period variations can be associated with diurnal alterations, and changes in the receiver- satellite elevation angles. In order to remove these longer period variations in the TEC time series as well as to monitor more closely the small-scale variations in ionospheric electron density, a higher-order polynomial is fitted to the TEC time series. This higher-order polynomial fit is then subtracted from the observed TEC values resulting in the residuals. The variation of TEC due to the TID perturbation are thus represented by the residuals. For this report the polynomial order applied was typically greater than 4, and was chosen to emulate the nature of the arc for that particular time series. The order number selected is dependent on the nature of arcs displayed upon calculating the VTEC values after an initial inspection of the VTEC plots.

3 Results

3.1 Tohoku Earthquake

For this particular report, the sampled data focused on what was retrieved from the IGS station, MIZU, located at Mizusawa, Japan. The MIZU site is 39N 08′ 06.61″ and 141E 07′ 58.18″. The location of the data collection site, MIZU, and the earthquake epicenter can be seen in Figure 3.

Figure 3 MIZU IGS station and Tohoku earthquake epicenter [generated using the Python library, Basemap]

Figure 4 displays the ionospheric delay in terms of vertical TEC (VTEC), in units of TECU (1 TECU = 1016 el m-2). The plot is split into two smaller subplots, the upper section displaying the ionospheric delay (VTEC) in units of TECU, the lower displaying the residuals. The vertical grey-dashed lined corresponds to the epoch of the earthquake at 05:46:23 UT (2:46:23 PM local time) on March 11 2011. In the upper section of the plot, the blue line corresponds to the absolute VTEC value calculated from the observations, in this case L1 and L2 on GPS, whereby the carrier phase leveling technique was applied to the data set. The VTEC values are mapped from the STEC values which are calculated from the LOS between MIZU and the GPS satellite PRN18 (on Figure 4 denoted G18). For this particular data set as seen in Figure 4, a polynomial fit of  five degrees was applied, which corresponds to the red-dashed line. As an alternative to polynomial fitting, band-pass filtering can be employed when TEC perturbations are desired. However for the scope of this report polynomial fitting to the time series of TEC data was the only method used. In the lower section of Figure 4 the residuals are plotted. The residuals are simply the phase smoothed delay values (the blue line) minus the polynomial fit line (the red-dashed line). All ionosphere delay plots follow the same layout pattern and all time data is represented in UT (UT = GPS – 15 leap seconds, whereby 15 leap seconds correspond to the amount of leap seconds at the time of the seismic event). The time series shown for the ionosphere delay plots are given in terms of decimal of the hour, so that the format follows hh.hh.

Figure 4 VTEC and residual plot for G18 at MIZU on March 11 2011

3.2 South Georgia Earthquake

In the South Georgia Island region located in the North Scotia Ridge Transform (NSRT) plate boundary between the South American and Scotia plates on 19 August 2016, a magnitude of 7.4 MW earthquake struck at 7:32:22 UT. This subsection analyses the data retrieved from KEPA and KRSA. As well as computing the GPS and GLONASS TEC values, four Galileo satellites (E08, E14, E26, E28) are also analysed. Figure 5 demonstrates the TEC perturbations as computed for the Galileo L1 and L5 carrier frequencies.

Figure 5 VTEC and residual plots at KRSA on 19 August 2016. The plots are from the perspective of the GNSS receiver at KRSA, for four Galileo satellites (a) E08; (b) E14; (c) E24; (d) E26. The y-axes and x-axes in all plots do not conform with one another but are adjusted to fit the data. The y-axes for the residual section of each plot is consistent with one another.

Figure 6 Geometry of the Galileo (E08, E14, E24 and E26) satellites’ projected ground track whereby the IPP is set to 300km altitude. The orange lines correspond to tectonic plate boundaries.

4 Conclusion

The proximity of the MIZU site and magnitude of the Tohoku event has provided a remarkable – albeit a poignant – opportunity to analyse the ocean-ionospheric coupling aftermath of a deep submarine seismic event. The Tohoku event has also enabled the observation of the origin and nature of the TIDs generated by both a major earthquake and tsunami in close proximity to the epicenter. Further, the Python software developed is more than capable of providing this functionality, by drawing on its mathematical packages, such as NumPy, Pandas, SciPy, and Matplotlib, as well as employing the cartographic toolkit provided from the Basemap package, and finally by utilizing the focal mechanism generation library, Obspy.

Pre-seismic cursors have been investigated in the past and strongly advocated in particular by Kosuke Heki. The topic of pre-seismic ionospheric disturbances remains somewhat controversial. A potential future study area could be the utilization of the Python program – along with algorithmic amendments – to verify the existence of this phenomenon. Such work would heavily involve the use of Scikit-Learn in order to ascertain the existence of any pre-cursors.

Finally, the code developed is still retained privately and as of yet not launched to any particular platform, such as GitHub. More detailed information on this report can be obtained here:

Download as PDF

Self Service Data Preparation mit Microsoft Excel

Get & Transform (vormals Power Query), eine kurze Einführung

 Unter Data Preparation versteht man sinngemäß einen Prozeß der Vorbereitung / Aufbereitung von Rohdaten aus meistens unterschiedlichen Datenquellen und -formaten, verbunden mit dem Ziel, diese effektiv für verschiedene Geschäftszwecke / Analysen (Business Fragen) weiterverwenden/bereitstellen zu können. Rohdaten müssen oft vor ihrem bestimmungsgemäßen Gebrauch transformiert (Datentypen), integriert (Datenkonsistenz, referentielle Integrität), sowie zugeordnet (mapping; Quell- zu Zieldaten) werden.
An diesem neuralgischen Punkt werden bereits die Weichen für Datenqualität gestellt.

Unter Datenqualität soll hier die Beschaffenheit / Geeignetheit von Daten verstanden werden, um konkrete Fragestestellungen beantworten zu können (fitness for use):

Kriterien Datenqualität

  • Eindeutigkeit
  • Vollständigkeit
  • Widerspruchsfreiheit / Konsistenz
  • Aktualität
  • Genauigkeit
  • Verfügbarkeit

Datenqualität bestimmt im Wesentlichen die weitere zielgerichtete Verwendung der Daten in Analysen (Modelle) und Berichten (Reporting). Daten werden in entscheidungsrelevante Kennzahlen (Informationen) überführt. Eine Kennzahl ist gegenüber der Datenqualität immer blind, ihre Aussagekraft (Validität) hängt -neben der Definition – in sehr starkem Maße davon ab:

Gütekriterien von Kennzahlen

  • Objektivität := ist die Interpretation unabhängig vom Beobachter / Verwender?
  • Reliabilität := kann das Ergebnis unter sonst gleichen Bedingungen reproduziert werden ?
  • Validität := sagt die Kennzahl das aus, was sie vorgibt, auszusagen ?

Business Fragen entstehen naturgemäß in den Fachbereichen.Daher ist es nur folgerichtig, Data Preparation als einen ersten Analyseschritt innerhalb des Fachbereichs anzusiedeln (Self Service Data Preparation). Dadurch erhält der Fachbereich einen Teil seiner Autonomie zurück. Welche Teilmenge der Daten relevant für Fragestellungen ist, kann nur der Fachbereich beurteilen; der Anforderer von entscheidungsrelevanten Informationen sollte idealerweiseTeil der Entstehung wertiger Daten sein, das fördert zum einen die Akzeptanz des Ergebnisses, zum anderen wirkt es einem „not-invented-here“ Syndrom frühzeitig entgegen.

Im Folgenden wird anhand 4 Schritten skizziert, wie Microsoft Excel bei dem Thema (Self Service) Data Preparation vor allem den Fachbereich unterstützen kann. Eine Beispieldatei können Sie hier (google drive) einsehen. Sie finden die hierfür verwendete Funktionalität (Get & Transform) in Excel 2016 unter:

Reiter Daten -> Abrufen und Transformieren.

Dem interessierten Leser werden im Text vertiefende Informationen über links zu einzelnen typischen Aufgabenstellungen und Lösungswegen angeboten. Eine kurze Einführung in das Thema finden Sie in diesem Blog Beitrag.

1 Einlesen

Datenquellen anbinden (externe, interne)

Dank der neuen Funktionsgruppe „Abrufen und Transformieren“ ist es in Microsoft Excel möglich, verschiedene externe Datenquellen /-formate anzubinden. Zusätzlich können natürlich auch Tabellen der aktiven / offenen Excel Arbeitsmappe als Datenquelle dienen (interne Datenquellen). Diese Datenquellen werden anschließend als sogenannte Arbeitsmappenabfragen abgebildet.

Praxisbeispiele:

Anbindung mehrerer Dateien, welche in einem Ordner bereitgestellt werden

Anbindung von Webinhalten

2 Transformieren

Daten transformieren (Datentypen, Struktur)

Datentypen (Text, Zahl) können anschließend je Arbeitsmappenabfrage und Spalte(n) geändert werden.
Dies ist zB immer dann notwendig, wenn Abfragen über Schlüsselspalten in Beziehung gesetzt werden sollen (siehe Punkt 3). Gleicher Datentyp (Primär- und Fremdschlüssel) in beiden Tabellen ist hier notwendige Voraussetzung.

Des Weiteren wird in dieser Phase typischerweise festgelegt, welche Zeile der Abfrage die Spaltenbeschriftungen enthält.

Praxisbeispiele:

Fehlerbehandlung

Leere Zellen auffüllen

Umgang mit wechselnden Spaltenbeschriftungen

3 Zusammenführen / Anreichern

Daten zusammenführen (SVERWEIS mal anders)

Um unterschiedliche Tabellen / Abfragen über gemeinsame Schlüsselspalten zusammenzuführen, stellt der Excel Abfrage Editor eine Reihe von JOIN-Operatoren zur Verfügung, welche ohne SQL-Kenntnisse nur durch Anklicken ausgewählt werden können.

Praxisbeispiele

JOIN als Alternative zu Excel Formel SVERWEIS()

Daten anreichern (benutzerdefinierte Spalte anfügen)

Bei Bedarf können weitere Daten, welche sich nicht in der originären Struktur der Datenquelle befinden, abgeleitet werden. Die Sprache Language M stellt einen umfangreichen Katalog an Funktionen zur Verfügung. Wie Sie eine Übersicht über die verfügbaren Funktionen erhalten können erfahren Sie hier.

Praxisbeispiele

Geschäftsjahr aus Datum ableiten

Extraktion Textteil aus Text (Trunkation)

Mehrfache Fallunterscheidung, Datenbereinigung /-harmonisierung

4 Laden

Daten laden

Die einzelnen Arbeitsmappenabfragen können abschließend in eine Exceltabelle, eine Verbindung und / oder in das Power Pivot Datemodell zur weiteren Bearbeitung (Modellierung, Kennzahlenbildung) geladen werden.

Praxisbeispiele

Datenverbindung erstellen

Big Data Essentials – Intro

1. Big Data Definition

Data umfasst Nummern, Text, Bilder, Audio, Video und jede Art von Informationen die in Ihrem Computer gespeichert werden können. Big Data umfasst Datenmengen, die eine oder mehrere der folgenden Eigenschaften aufweisen: Hohes Volumen (High Volume), hohe Vielfalt (High Variety) und / oder eine notwendige hohe Geschwindigkeit (High Velocity) zur Auswertung. Diese drei Eigenschaften werden oft auch als die 3V’s von Big Data bezeichnet.

1.1. Volumen: Menge der erzeugten Daten

Volumen bezieht sich auf die Menge der generierten Daten. Traditionelle Datenanalysemodelle erfordern typischerweise Server mit großen Speicherkapazitäten, bei massiver Rechenleistung sind diese Modelle nicht gut skalierbar. Um die Rechenleistung zu erhöhen, müssen Sie weiter investieren, möglicherweise auch in teurere proprietäre Hardware. Die NASA ist eines von vielen Unternehmen, die enorme Mengen an Daten sammeln. Ende 2014 sammelte die NASA alle paar Sekunden etwa 1,73 GB an Daten. Und auch dieser Betrag der Datenansammlung steigt an, so dass die Datenerfassung entsprechend exponentiell mitwachsen muss. Es resultieren sehr hohe Datenvolumen und es kann schwierig sein, diese zu speichern.

1.2. Vielfalt: Unterschiedliche Arten von Daten

Das  traditionelle  Datenmodell (ERM)  erfordert  die  Entwicklung  eines  Schemas,  das  die  Daten in ein Korsett zwingt. Um das Schema zu erstellen, muss man das Format der Daten kennen, die gesammelt werden. Daten  können  wie  XML-Dateien  strukturiert  sein,  halb  strukturiert  wie  E-Mails oder unstrukturiert wie Videodateien.

Wikipedia – als Beispiel – enthält mehr als nur Textdaten, es enthält Hyperlinks, Bilder, Sound-Dateien und viele andere Datentypen mit mehreren verschiedenen Arten von Daten. Insbesondere unstrukturierte   Daten haben   eine   große   Vielfalt.  Es   kann   sehr   schwierig   sein, diese Vielfalt in einem Datenmodell zu beschreiben.

1.3. Geschwindigkeit: Geschwindigkeit, mit der Daten genutzt werden

Traditionelle Datenanalysemodelle wurden für die Stapelverarbeitung (batch processing) entwickelt. Sie sammeln die gesamte Datenmenge und verarbeiten sie, um sie in die Datenbank zu speichern. Erst mit einer Echtzeitanalyse der Daten kann schnell auf Informationen reagiert werden. Beispielsweise können Netzwerksensoren, die mit dem Internet der Dinge (IoT) verbunden sind, tausende von Datenpunkten pro Sekunde erzeugen. Im Gegensatz zu Wikipedia, deren Daten später verarbeitet werden können, müssen Daten von Smartphones und anderen Netzwerkteilnehmern mit entsprechender Sensorik in  Echtzeit  verarbeitet  werden.

2. Geschichte von Big Data

2.1. Google Solution

  • Google File System speichert die Daten, Bigtable organisiert die Daten und MapReduce verarbeitet es.
  • Diese Komponenten arbeiten zusammen auf einer Sammlung von Computern, die als Cluster bezeichnet werden.
  • Jeder einzelne Computer in einem Cluster wird als Knoten bezeichnet.

2.2 Google File System

Das Google File System (GFS) teilt Daten in Stücke ‚Chunks’ auf. Diese ‚Chunks’ werden verteilt und auf verschiedene Knoten in einem Cluster nachgebildet. Der Vorteil ist nicht nur die mögliche parallele Verarbeitung bei der späteren Analysen, sondern auch die Datensicherheit. Denn die Verteilung und die Nachbildung schützen vor Datenverlust.

2.3. Bigtable

Bigtable ist ein Datenbanksystem, das GFS zum Speichern und Abrufen von Daten verwendet. Trotz seines Namens ist Bigtable nicht nur eine sehr große Tabelle. Bigtable ordnet die Datenspeicher mit einem Zeilenschlüssel, einem Spaltenschlüssel und einem Zeitstempel zu. Auf diese Weise können dieselben Informationen über einen längeren Zeitraum hinweg erfasst werden, ohne dass bereits vorhandene Einträge überschrieben werden. Die Zeilen sind dann in den Untertabellen partitioniert, die über einem Cluster verteilt sind. Bigtable wurde entwickelt, um riesige Datenmengen zu bewältigen, mit der Möglichkeit, neue Einträge zum Cluster hinzuzufügen, ohne dass eine der vorhandenen Dateien neu konfiguriert werden muss.

2.4. MapReduce

Als dritter Teil des Puzzles wurde ein Parallelverarbeitungsparadigma namens MapReduce genutzt, um die bei GFS gespeicherten Daten zu verarbeiten. Der Name MapReduce wird aus den Namen von zwei Schritten im Prozess übernommen. Obwohl der Mapreduce-Prozess durch Apache Hadoop berühmt geworden ist, ist das kaum eine neue Idee. In der Tat können viele gängige Aufgaben wie Sortieren und Falten von Wäsche als Beispiele für den MapReduce- Prozess betrachtet werden.

Quadratische Funktion:

  • wendet die gleiche Logik auf jeden Wert an, jeweils einen Wert
  • gibt das Ergebnis für jeden Wert aus
    (map square'(1 2 3 4)) = (1 4 9 16)

Additionsfunktion

  • wendet die gleiche Logik auf alle Werte an, die zusammen genommen werden.
    (reduce + ‘(1 4 9 16)) = 30

Die Namen Map und Reduce können bei der Programmierung mindestens bis in die 70er-Jahre zurückverfolgt werden. In diesem Beispiel sieht man, wie die Liste das MapReduce-Modell verwendet. Zuerst benutzt man Map der Quadratfunktion auf einer Eingangsliste für die Quadratfunktion, da sie abgebildet ist, alle angelegten Eingaben und erzeugt eine einzige Ausgabe pro Eingabe, in diesem Fall (1, 4, 9 und 16). Additionsfunktion reduziert die Liste und erzeugt eine einzelne Ausgabe von 30, der die Summe aller Eingänge ist.

Google nutzte die Leistung von MapReduce, um einen Suchmaschinen-Markt zu dominieren. Das Paradigma kam in der 19. Websearch-Engine zum Einsatz und etablierte sich innerhalb weniger Jahre und ist bis heute noch relevant. Google verwendete MapReduce auf verschiedene Weise, um die Websuche zu verbessern. Es wurde verwendet, um den Seiteninhalt zu indexieren und ein Ranking über die Relevant einer Webseite zu berechnen.

Dieses  Beispiel  zeigt  uns  den MapReduce-Algorithmus, mit dem Google Wordcount auf Webseiten ausführte. Die Map-Methode verwendet als Eingabe einen Schlüssel (key) und einen Wert, wobei der Schlüssel den Namen des Dokuments darstellt  und  der  Wert  der  Kontext  dieses Dokuments ist. Die Map-Methode durchläuft jedes Wort im Dokument und gibt es als Tuple zurück, die aus dem Wort und dem Zähler 1 besteht.

Die   Reduce-Methode   nimmt   als   Eingabe auch  einen  Schlüssel  und  eine  Liste  von  Werten an, in der der Schlüssel ein Wort darstellt. Die  Liste  von  Werten  ist  die  Liste  von  Zählungen dieses Worts. In diesem Beispiel ist der Wert 1. Die Methode “Reduce” durchläuft alle Zählungen. Wenn die Schleife beendet ist, um die Methode zu reduzieren, wird sie als Tuple zurückgegeben, die aus dem Wort und seiner Gesamtanzahl besteht.

 

Shiny Web Applikationen

Jede Person, die irgendwie mit Daten arbeitet, kommt nicht herum, aus Analysen oder Modellen gezogene Erkenntnisse mit anderen zu teilen. Meist haben diese Personen keinen statistischen oder mathematischen Hintergrund. Für diese sollten die Ergebnisse nicht nur verständlich, sondern im besten Fall auch visuell ansprechend aufbereitet sein. Neben recht teuren Softwarelösungen wie Tableau oder QlikView gibt es von R-Studio auch eine (zumindest im kleinen Rahmen) kostenfreie Lösung – R-Shiny.

Shiny ist ein R Paket, mit dessen Hilfe man interaktive Webapplikationen oder Dashboards erstellen kann, bei dem man auf den vollen Funktionsumfang aller R-Pakete zugreifen kann.

Bei der Erstellung für einfache Shiny-Apps sind keine HTML, CSS oder Javascript Kenntnisse nötig. Shiny teilt sich im Prinzip in zwei Programme: Das Front-End wird in der Datei ui.r festgelegt. Alles was im Back-End passiert, wird in der Datei server.r beschrieben. R-Studio übernimmt danach das Rendern des Front- Ends und man erhält eine übliche HTML-Datei, in dessen Backend R läuft.

Die Vorteile der Einfachheit, nur mit R eine funktionale Web-App erstellen können, hat natürlich auch seine Nachteile. Shiny ist, was das Design betrifft, eher limitiert und auch die Platzierung von Inputs wie Slidern, Drop-Downs oder auch Outputs wie Grafiken oder Tabellen ist stark beschränkt.

Eine kaum bekannte und dokumentierte Funktion von R-Shiny ist die Funktion „htmlTemplate“. Mit dieser lassen sich komplett in HTML, CSS und gegebenenfalls Javascript geschriebene Websites mit der vollen Funktionalität von R im Back-End integrieren – und sehen um Längen besser aus als rein in R geschriebene Web-Apps.

Wie man auf diese Art Shiny Apps programmiert zeige ich nun anhand des Folgenden Beispiels. Die folgenden Erklärungen sind mit Absicht kurz gehalten und stellen kein Tutorial dar, sondern sollen vielmehr die Möglichkeiten der Funktion „htmlTemplate“ zeigen.

Zunächst zur ui.R:

Der Code in der ui.R Datei ist recht einfach gehalten. Es werden nur die Bibliotheken geladen, auf die R zugreifen muss. Danach wird das html Template mit dem entsprechenden Namen geladen. Ansonsten werden in dieser Datei nur Input und Output als Variablen festgelegt.

 

In der Server.R Datei wird in diesem Beispiel der bekannte und oft verwendete Datensatz Mtcars verwendet. Zunächst wird mit dem Paket dplyr und der Funktion filter ein neuer Datensatz berechnet, der auf Nutzereingaben reagiert (sliderInput, siehe ui.R). Wenn in R-Shiny in DataFrames Berechnungen durchgeführt werden, müssen diese immer in einem sog. reactive Statement stehen. Danach werden mittels ggplot2 insgesamt drei Plots zu dem Datensatz erstellt.

Plot 1 stellt einen Zusammenhang zwischen Gewicht und Benzinverbrauch mittels linearer Regression dar. Plot 2 zeigt an, wie viele Zylinder die Fahrzeuge aus dem gefilterten Datensatz haben und Plot 3 zeigt die Korrelationen zwischen den Variablen an. Diese drei Plots sollen dem Endnutzer interaktiv zur Verfügung stehen.

 

In dieser HTML Datei wird die Struktur der Web App festgelegt. Diese enthält neben reichlich HTML auch ein paar Zeilen Internal Javascript, mit dem sich die die Diagramme ein- und ausblenden lassen. Das wichtigste in dieser Datei ist jedoch die Funktionsweise, mit der die in der ui.R Datei die Variablen an das Template übergeben werden. Jede template.html muss im Kopf (<head> … /<head>) die Funktion {{ headContent() }} enthalten. Damit werden die für Shiny benötigte Depedencies beim Rendern geladen. Diese übrigen, in der ui.R Datei deklarierten Variablen, werden ebenfalls mittels zwei geschweiften Klammern an das Template übergeben.

 

Nun muss für das Styling der App nur doch eine CSS-Datei geladen werden. Wichtig ist zu beachten, dass externe CSS Dateien bei Shiny immer in einem gesonderten Ordner mit dem Namen „www“ abgespeichert werden müssen. Auf diesen Ordner wird in der HTML Datei nicht gesondert verwiesen. Es reicht der Verweis <link rel=’stylesheet’ href=’style.css’/>.

Für den Upload der Datei müssen server.R, ui.R und template.html auf einer Ebene liegen, während wie bereits erwähnt die CSS Datei in einem gesonderten Ordner namens „www“ abliegen muss.

Die Web App liegt unter folgendem Link ab: https://markuslang1987.shinyapps.io/CustomShiny/

Einiges an der App ist sicherlich Spielerei, der Artikel soll in erster Linie aber die Möglichkeiten zeigen, die man mit einem selbst erstellten HTML Template im Gegensatz zu den recht eingeschränkten Möglichkeiten der normalen Shiny Programmierung zur Verfügung hat. Außerdem möchte ich mit diesem Artikel zeigen, dass Webentwicklung und Data Science/Analytics nicht zwangsläufig komplett voneinander unabhängige Welten sind.

Aika: Ein semantisches neuronales Netzwerk

Wenn es darum geht Informationen aus natürlichsprachigen Texten zu extrahieren, stehen einem verschiedene Möglichkeiten zur Verfügung. Eine der ältesten und wohl auch am häufigsten genutzten Möglichkeiten ist die der regulären Ausdrücke. Hier werden exakte Muster definiert und in einem Textstring gematcht. Probleme bereiten diese allerdings, wenn kompliziertere semantische Muster gefunden werden sollen oder wenn verschiedene Muster aufeinander aufbauen oder miteinander interagieren sollen. Gerade das ist aber der Normalfall bei der Verarbeitung von natürlichem Text. Muster hängen voneinander ab, verstärken oder unterdrücken sich gegenseitig.
Prädestiniert um solche Beziehungen abzubilden wären eigentlich künstliche neuronale Netze. Diese haben nur das große Manko, dass sie keine strukturierten Informationen verarbeiten können. Neuronale Netze bringen von sich aus keine Möglichkeit mit, die relationalen Beziehungen zwischen Worten oder Phrasen zu verarbeiten. Ein weiteres Problem neuronaler Netze ist die Verarbeitung von Feedback-Schleifen, bei denen einzelne Neuronen von sich selbst abhängig sind. Genau diese Probleme versucht der Aika Algorithmus (www.aika-software.org) zu lösen.

Der Aika Algorithmus ist als Open Source Java-Bibliothek implementiert und dient dazu semantische Informationen in Texten zu erkennen und zu verarbeiten. Da semantische Informationen sehr häufig mehrdeutig sind, erzeugt die Bibliothek für jede dieser Bedeutungen eine eigene Interpretation und wählt zum Schluss die am höchsten gewichtete aus. Aika kombiniert dazu aktuelle Ideen und Konzepte aus den Bereichen des maschinellen Lernens und der künstlichen Intelligenz, wie etwa künstliche neuronale Netze, Frequent Pattern Mining und die auf formaler Logik basierenden Expertensysteme. Aika basiert auf der heute gängigen Architektur eines künstlichen neuronalen Netzwerks (KNN) und nutzt diese, um sprachliche Regeln und semantische Beziehungen abzubilden.

Die Knackpunkte: relationale Struktur und zyklische Abhängigkeiten

Das erste Problem: Texte haben eine von Grund auf relationale Struktur. Die einzelnen Worte stehen über ihre Reihenfolge in einer ganz bestimmten Beziehung zueinander. Gängige Methoden, um Texte für die Eingabe in ein KNN auszuflachen, sind beispielsweise Bag-of-Words oder Sliding-Window. Mittlerweile haben sich auch rekurrente neuronale Netze etabliert, die das gesamte Netz in einer Schleife für jedes Wort des Textes mehrfach hintereinander schalten. Aika geht hier allerdings einen anderen Weg. Aika propagiert die relationalen Informationen, also den Textbereich und die Wortposition, gemeinsam mit den Aktivierungen durch das Netzwerk. Die gesamte relationale Struktur des Textes bleibt also erhalten und lässt sich jederzeit zur weiteren Verarbeitung nutzen.

Das zweite Problem ist, dass bei der Verarbeitung von Text häufig nicht klar ist, in welcher Reihenfolge einzelne Informationen verarbeitet werden müssen. Wenn wir beispielsweise den Namen „August Schneider“ betrachten, können sowohl der Vor- als auch der Nachname in einem anderen Zusammenhang eine völlig andere Bedeutung annehmen. August könnte sich auch auf den Monat beziehen. Und genauso könnte Schneider eben auch den Beruf des Schneiders meinen. Einfache Regeln, um hier dennoch den Vor- und den Nachnamen zu erkennen, wären: „Wenn das nachfolgende Wort ein Nachname ist, handelt es sich bei August um einen Vornamen“ und „Wenn das vorherige Wort ein Vorname ist, dann handelt es sich bei Schneider um einen Nachnamen“. Das Problem dabei ist nur, dass unsere Regeln nun eine zyklische Abhängigkeit beinhalten. Aber ist das wirklich so schlimm? Aika erlaubt es, genau solche Feedback-Schleifen abzubilden. Wobei die Schleifen sowohl positive, als auch negative Gewichte haben können. Negative rekurrente Synapsen führen dazu, dass zwei sich gegenseitig ausschließende Interpretationen entstehen. Der Trick ist nun zunächst nur Annahmen zu treffen, also etwa dass es sich bei dem Wort „Schneider“ um den Beruf handelt und zu schauen wie das Netzwerk auf diese Annahme reagiert. Es bedarf also einer Evaluationsfunktion und einer Suche, die die Annahmen immer weiter variiert, bis schließlich eine optimale Interpretation des Textes gefunden ist. Genau wie schon der Textbereich und die Wortposition werden nun auch die Annahmen gemeinsam mit den Aktivierungen durch das Netzwerk propagiert.

Die zwei Ebenen des Aika Algorithmus

Aber wie lassen sich diese Informationen mit den Aktivierungen durch das Netzwerk propagieren, wo doch der Aktivierungswert eines Neurons für gewöhnlich nur eine Fließkommazahl ist? Genau hier liegt der Grund, weshalb Aika unter der neuronalen Ebene mit ihren Neuronen und kontinuierlich gewichteten Synapsen noch eine diskrete Ebene besitzt, in der es eine Darstellung aller Neuronen in boolscher Logik gibt. Aika verwendet als Aktivierungsfunktion die obere Hälfte der Tanh-Funktion. Alle negativen Werte werden auf 0 gesetzt und führen zu keiner Aktivierung des Neurons. Es gibt also einen klaren Schwellenwert, der zwischen aktiven und inaktiven Neuronen unterscheidet. Anhand dieses Schwellenwertes lassen sich die Gewichte der einzelnen Synapsen in boolsche Logik übersetzen und entlang der Gatter dieser Logik kann nun ein Aktivierungsobjekt mit den Informationen durch das Netzwerk propagiert werden. So verbindet Aika seine diskrete bzw. symbolische Ebene mit seiner subsymbolischen Ebene aus kontinuierlichen Synapsen-Gewichten.

Die Logik Ebene in Aika erlaubt außerdem einen enormen Effizienzgewinn im Vergleich zu einem herkömmlichen KNN, da die gewichtete Summe von Neuronen nur noch für solche Neuronen berechnet werden muss, die vorher durch die Logikebene aktiviert wurden. Im Falle eines UND-verknüpfenden Neurons bedeutet das, dass das Aktivierungsobjekt zunächst mehrere Ebenen einer Lattice-Datenstruktur aus UND-Knoten durchlaufen muss, bevor das eigentliche Neuron berechnet und aktiviert werden kann. Diese Lattice-Datenstruktur stammt aus dem Bereich des Frequent Pattern Mining und enthält in einem gerichteten azyklischen Graphen alle Teilmuster eines beliebigen größeren Musters. Ein solches Frequent Pattern Lattice kann in zwei Richtungen betrieben werden. Zum Einen können damit bereits bekannte Muster gematcht werden, und zum Anderen können auch völlig neue Muster damit erzeugt werden.

Da es schwierig ist Netze mit Millionen von Neuronen im Speicher zu halten, nutzt Aika das Provider Architekturpattern um selten verwendete Neuronen oder Logikknoten in einen externen Datenspeicher (z.B. eine Mongo DB) auszulagern, und bei Bedarf nachzuladen.

Ein Beispielneuron

Hier soll nun noch beispielhaft gezeigt werden wie ein Neuron innerhalb des semantischen Netzes angelegt werden kann. Zu beachten ist, dass Neuronen sowohl UND- als auch ODER-Verknüpfungen abbilden können. Das Verhalten hängt dabei alleine vom gewählten Bias ab. Liegt der Bias bei 0.0 oder einem nur schwach negativen Wert reicht schon die Aktivierung eines positiven Inputs aus um auch das aktuelle Neuron zu aktivieren. Es handelt sich dann um eine ODER-Verknüpfung. Liegt der Bias hingegen tiefer im negativen Bereich dann müssen mitunter mehrere positive Inputs gleichzeitig aktiviert werden damit das aktuelle Neuron dann auch aktiv wird. Jetzt handelt es sich dann um eine UND-Verknüpfung. Der Bias Wert kann der initNeuron einfach als Parameter übergeben werden. Um jedoch die Berechnung des Bias zu erleichtern bietet Aika bei den Inputs noch den Parameter BiasDelta an. Der Parameter BiasDelta nimmt einen Wert zwischen 0.0 und 1.0 entgegen. Bei 0.0 wirkt sich der Parameter gar nicht aus. Bei einem höheren Wert hingegen wird er mit dem Betrag des Synapsengewichts multipliziert und von dem Bias abgezogen. Der Gesamtbias lautet in diesem Beispiel also -55.0. Die beiden positiven Eingabesynapsen müssen also aktiviert werden und die negative Eingabesynapse darf nicht aktiviert werden, damit dieses Neuron selber aktiv werden kann. Das Zusammenspiel von Bias und Synpasengewichten ist aber nicht nur für die Aktivierung eines Neurons wichtig, sondern auch für die spätere Auswahl der finalen Interpretation. Je stärker die Aktivierungen innerhalb einer Interpretation aktiv sind, desto höher wird diese Interpretation gewichtet.
Um eine beliebige Graphstruktur abbilden zu können, trennt Aika das Anlegen der Neuronen von der Verknüpfung mit anderen Neuronen. Mit createNeuron(“E-Schneider (Nachname)”) wird also zunächst einmal ein unverknüpftes Neuron erzeugt, das dann über die initNeuron Funktion mit den Eingabeneuronen wortSchneiderNeuron, kategorieVornameNeuron und unterdrueckendesNeuron verknüpft wird. Über den Parameter RelativeRid wird hier angegeben auf welche relative Wortposition sich die Eingabesynapse bezieht. Die Eingabesynpase zu der Kategorie Vorname bezieht sich also mit -1 auf die vorherige Wortposition. Der Parameter Recurrent gibt an ob es sich bei dieser Synpase um eine Feedback-Schleife handelt. Über den Parameter RangeMatch wird angegeben wie sich der Textbereich, also die Start- und die Endposition zwischen der Eingabe- und der Ausgabeaktivierung verhält. Bei EQUALS sollen die Bereiche also genau übereinstimmen, bei CONTAINED_IN reicht es hingegen wenn der Bereich der Eingabeaktivierung innerhalb des Bereichs der Ausgabeaktivierung liegt. Dann kann noch über den Parameter RangeOutput angegeben werden, dass der Bereich der Eingabeaktivierung an die Ausgabeaktivierung weiterpropagiert werden soll.

Fazit

Mit Aika können sehr flexibel umfangreiche semantische Modelle erzeugt und verarbeitet werden. Aus Begriffslisten verschiedener Kategorien, wie etwa: Vor- und Nachnamen, Orten, Berufen, Strassen, grammatikalischen Worttypen usw. können automatisch Neuronen generiert werden. Diese können dann dazu genutzt werden, Worte und Phrasen zu erkennen, einzelnen Begriffen eine Bedeutung zuzuordnen oder die Kategorie eines Begriffs zu bestimmen. Falls in dem zu verarbeitenden Text mehrdeutige Begriffe oder Phrasen auftauchen, kann Aika für diese jeweils eigene Interpretationen erzeugen und gewichten. Die sinnvollste Interpretation wird dann als Ergebnis zurück geliefert.

Lineare Regression in Python mit Scitkit-Learn

Die lineare Regressionsanalyse ist ein häufiger Einstieg ins maschinelle Lernen um stetige Werte vorherzusagen (Prediction bzw. Prädiktion). Hinter der Regression steht oftmals die Methode der kleinsten Fehlerquadrate und die hat mehr als eine mathematische Methode zur Lösungsfindung (Gradientenverfahren und Normalengleichung). Alternativ kann auch die Maximum Likelihood-Methode zur Regression verwendet werden. Wir wollen uns in diesem Artikel nicht auf die Mathematik konzentrieren, sondern uns direkt an die Anwendung mit Python Scikit-Learn machen:

Haupt-Lernziele:

  • Einführung in Machine Learning mit Scikit-Learn
  • Lineare Regression mit Scikit-Learn

Neben-Lernziele:

  • Datenvorbereitung (Data Preparation) mit Pandas und Scikit-Learn
  • Datenvisualisierung mit der Matplotlib direkt und indirekt (über Pandas)

Was wir inhaltlich tun:

Der Versuch einer Vorhersage eines Fahrzeugpreises auf Basis einer quantitativ-messbaren Eigenschaft eines Fahrzeuges.


Die Daten als Download

Für dieses Beispiel verwende ich die Datei “Automobil_data.txt” von Kaggle.com. Die Daten lassen sich über folgenden Link downloaden, nur leider wird ein (kostenloser) Account benötigt:
https://www.kaggle.com/toramky/automobile-dataset/downloads/automobile-dataset.zip
Sollte der Download-Link unerwartet mal nicht mehr funktionieren, freue ich mich über einen Hinweis als Kommentar 🙂

Die Entwicklungsumgebung

Ich verwende hier die Python-Distribution Anaconda 3 und als Entwicklungs-Umgebung Spyder (in Anaconda enthalten). Genauso gut funktionieren jedoch auch Jupyter Notebook, Eclipse mit PyDev oder direkt die IPython QT-Console.


Zuerst einmal müssen wir die Daten in unsere Python-Session laden und werden einige Transformationen durchführen müssen. Wir starten zunächst mit dem Importieren von drei Bibliotheken NumPy und Pandas, deren Bedeutung ich nicht weiter erläutern werde, somit voraussetze.

Wir nutzen die Pandas-Bibliothek, um die “Automobile_data.txt” in ein pd.DataFrame zu laden.

Schauen wir uns dann die ersten fünf Zeilen in IPython via dataSet.head().

Hinweis: Der Datensatz hat viele Spalten, so dass diese in der Darstellung mit einem Backslash \ umgebrochen werden.

Gleich noch eine weitere Ausgabe dataSet.info(), die uns etwas über die Beschaffenheit der importierten Daten verrät:

Einige Spalten entsprechen hinsichtlich des Datentypes nicht der Erwartung. Für die Spalten ‘horsepower’ und ‘peak-rpm’ würde ich eine Ganzzahl (Integer) erwarten, für ‘price’ hingegen eine Fließkommazahl (Float), allerdings sind die drei Spalten als Object deklariert. Mit Trick 17 im Data Science, der Anzeige der Minimum- und Maximum-Werte einer zu untersuchenden Datenreihe, kommen wir dem Übeltäter schnell auf die Schliche:

Datenbereinigung

Für eine Regressionsanalyse benötigen wir nummerische Werte (intervall- oder ratioskaliert), diese möchten wir auch durch richtige Datentypen-Deklaration herstellen. Nun wird eine Konvertierung in den gewünschten Datentyp jedoch an den (mit ‘?’ aufgefüllten) Datenlücken scheitern.

Schauen wir uns doch einmal die Datenreihen an, in denen in der Spalte ‘peak-rpm’ Fragezeichen stehen:

Zwei Datenreihen sind vorhanden, bei denen ‘peak-rpm’ mit einem ‘?’ aufgefüllt wurde. Nun könnten wir diese Datenreihen einfach rauslöschen. Oder mit sinnvollen (im Sinne von wahrscheinlichen) Werten auffüllen. Vermutlichen haben beide Einträge – beide sind OHC-Motoren mit 4 Zylindern – eine ähnliche Drehzahl-Angabe wie vergleichbare Motoren. Mit folgendem Quellcode, gruppieren wir die Spalten ‘engine-type’ und ‘num-of-cylinders’ und bilden für diese Klassen den arithmetischen Mittelwert (.mean()) für die ‘peak-rpm’.

Und schauen wir uns das Ergebnis an:

Ein Vier-Zylinder-OHC-Motor hat demnach durchschnittlich einen Drehzahl-Peak von 5155 Umdrehungen pro Minute. Ohne nun (fahrlässigerweise) auf die Verteilung in dieser Klasse zu achten, nehmen wir einfach diesen Schätzwert, um die zwei fehlende Datenpunkte zu ersetzen.

Wir möchten jedoch die Original-Daten erhalten und legen ein neues DataSet (dataSet_c) an, in welches wir die Korrekturen vornehmen:

Nun können wir die fehlenden Peak-RPM-Einträge mit unserem Schätzwert ersetzen:

Was bei einer Drehzahl-Angabe noch funktionieren mag, ist für anderen Spalten bereits etwas schwieriger: Die beiden Spalten ‘price’ und ‘horsepower’ sind ebenfalls vom Typ Object, da sie ‘?’ enthalten. Verzichten wir einfach auf die betroffenen Zeilen:

Datenvisualisierung mit Pandas

Wir wollen uns nicht lange vom eigentlichen Ziel ablenken, dennoch nutzen wir die Visualisierungsfähigkeiten der Pandas-Library (welche die Matplotlib inkludiert), um uns dann die Anzahlen an Einträgen nach Hersteller der Fahrzeuge (Spalte ‘make’) anzeigen zu lassen:

Oder die durchschnittliche PS-Zahl nach Hersteller:

Vorbereitung der Regressionsanalyse

Nun kommen wir endlich zur Regressionsanalyse, die wir mit Scikit-Learn umsetzen möchten. Die Regressionsanalyse können wir nur mit intervall- oder ratioskalierten Datenspalten betreiben, daher beschränken wir uns auf diese. Die “price”-Spalte nehmen wir jedoch heraus und setzen sie als unsere Zielgröße fest.

Interessant ist zudem die Betrachtung vorab, wie die einzelnen nummerischen Attribute untereinander korrelieren. Dafür nehmen wir auch die ‘price’-Spalte wieder in die Betrachtung hinein und hinterlegen auch eine Farbskala mit dem Preis (höhere Preise, hellere Farben).

Die lineare Korrelation ist hier sehr interessant, da wir auch nur eine lineare Regression beabsichtigen.

Wie man in dieser Scatter-Matrix recht gut erkennen kann, scheinen einige Größen-Paare nahezu perfekt zu korrelieren, andere nicht.

Korrelation…

  • …nahezu perfekt linear: highway-mpg vs city-mpg (mpg = Miles per Gallon)
  • … eher nicht gegeben: highway-mpg vs height
  • … nicht linear, dafür aber nicht-linear: highway-mpg vs price

Nun, wir wollen den Preis eines Fahrzeuges vorhersagen, wenn wir eine andere quantitative Größe gegeben haben. Auf den Preis bezogen, erscheint mir die Motorleistung (Horsepower) einigermaßen linear zu korrelieren. Versuchen wir hier die lineare Regression und setzen somit die Spalte ‘horsepower’ als X und ‘price’ als y fest.

Die gängige Konvention ist übrigens, X groß zu schreiben, weil hier auch mehrere x-Dimensionen enthalten sein dürfen (multivariate Regression). y hingegen, ist stets nur eine Zielgröße (eine Dimension).

Die lineare Regression ist ein überwachtes Verfahren des maschinellen Lernens, somit müssen wir unsere Prädiktionsergebnisse mit Test-Daten testen, die nicht für das Training verwendet werden dürfen. Scitkit-Learn (oder kurz: sklearn) bietet hierfür eine Funktion an, die uns das Aufteilen der Daten abnimmt:

Zu beachten ist dabei, dass die Daten vor dem Aufteilen in Trainings- und Testdaten gut zu durchmischen sind. Auch dies übernimmt die train_test_split-Funktion für uns, nur sollte man im Hinterkopf behalten, dass die Ergebnisse (auf Grund der Zufallsauswahl) nach jedem Durchlauf immer wieder etwas anders aussehen.

Lineare Regression mit Scikit-Learn

Nun kommen wir zur Durchführung der linearen Regression mit Scitkit-Learn, die sich in drei Zeilen trainieren lässt:

Aber Vorsicht! Bevor wir eine Prädiktion durchführen, wollen wir festlegen, wie wir die Güte der Prädiktion bewerten wollen. Die gängigsten Messungen für eine lineare Regression sind der MSE und R².

MSE = \frac{\sum_{i=1}^n (y_i - \hat{y_i})^2}{n}

Ein großer MSE ist schlecht, ein kleiner gut.

R^2 = 1 - \frac{MSE}{Var(y)}= \frac{\frac{1}{n} \cdot \sum_{i=1}^n (y_i - \hat{y_i})^2}{\frac{1}{n} \cdot \sum_{i=1}^n (y_i - \hat{\mu_y})^2}

Ein kleines R² ist schlecht, ein großes R² gut. Ein R² = 1.0 wäre theoretisch perfekt (da der Fehler = 0.00 wäre), jedoch in der Praxis unmöglich, da dieser nur bei absolut perfekter Korrelation auftreten würde. Die Klasse LinearRegression hat eine R²-Messmethode implementiert (score(x, y)).

Die Ausgabe (ein Beispiel!):

Nach jedem Durchlauf ändert sich mit der Datenaufteilung (train_test_split()) das Modell etwas und auch R² schwankt um eine gewisse Bandbreite. Berauschend sind die Ergebnisse dabei nicht, und wenn wir uns die Regressionsgerade einmal ansehen, wird auch klar, warum:

Bei kleineren Leistungsbereichen, etwa bis 100 PS, ist die Preis-Varianz noch annehmbar gering, doch bei höheren Leistungsbereichen ist die Spannweite deutlich größer. (Nachträgliche Anmerkung vom 06.05.2018: relativ betrachtet, bleibt der Fehler über alle Wertebereiche ungefähr gleich [relativer Fehler]. Die absoluten Fehlerwerte haben jedoch bei größeren x-Werten so eine Varianz der möglichen y-Werte, dass keine befriedigenden Prädiktionen zu erwarten sind.)

Egal wie wir eine Gerade in diese Punktwolke legen, wir werden keine befriedigende Fehlergröße erhalten.

Nehmen wir einmal eine andere Spalte für X, bei der wir vor allem eine nicht-lineare Korrelation erkannt haben: “highway-mpg”

Wenn wir dann das Training wiederholen:

Die R²-Werte sind nicht gerade berauschend, und das erklärt sich auch leicht, wenn wir die Trainings- und Testdaten sowie die gelernte Funktionsgerade visualisieren:

Die Gerade lässt sich nicht wirklich gut durch diese Punktwolke legen, da letztere eher eine Kurve als eine Gerade bildet. Im Grunde könnte eine Gerade noch einigermaßen gut in den Bereich von 22 bis 43 mpg passen und vermutlich annehmbare Ergebnisse liefern. Die Wertebereiche darunter und darüber jedoch verzerren zu sehr und sorgen zudem dafür, dass die Gerade auch innerhalb des mittleren Bereiches zu weit nach oben verschoben ist (ggf. könnte hier eine Ridge-/Lasso-Regression helfen).

Richtig gute Vorhersagen über nicht-lineare Verhältnisse können jedoch nur mit einer nicht-linearen Regression erreicht werden.

Nicht-lineare Regression mit Scikit-Learn

Nicht-lineare Regressionsanalysen erlauben es uns, nicht-lineare korrelierende Werte-Paare als Funktion zu erlernen. Im folgenden Scatter-Plot sehen wir zum einen die gewohnte lineare Regressionsgerade (y = a * x + b) in rot, eine polinominale Regressionskurve dritten Grades (y = a * x³ + b * x² + c * x + d) in violet sowie einen Entscheidungsweg einer Entscheidungsbaum-Regression in gelb.

Nicht-lineare Regressionsanalysen passen sich dem Verlauf der Punktwolke sehr viel besser an und können somit in der Regel auch sehr gute Vorhersageergebnisse liefern. Ich ziehe hier nun jedoch einen Gedankenstrich, liefere aber den Quellcode für die lineare Regression als auch für die beiden nicht-linearen Regressionen mit:

Python Script Regression via Scikit-Learn

Weitere Anmerkungen

  • Bibliotheken wie Scitkit-Learn erlauben es, machinelle Lernverfahren schnell und unkompliziert anwenden zu können. Allerdings sollte man auch verstehen, wei diese Verfahren im Hintergrund mathematisch arbeiten. Diese Bibliotheken befreien uns also nicht gänzlich von der grauen Theorie.
  • Statt der “reinen” lineare Regression (LinearRegression()) können auch eine Ridge-Regression (Ridge()), Lasso-Regression (Lasso()) oder eine Kombination aus beiden als sogenannte ElasticNet-Regression (ElasticNet()). Bei diesen kann über Parametern gesteuert werden, wie stark Ausreißer in den Daten berücksichtigt werden sollen.
  • Vor einer Regression sollten die Werte skaliert werden, idealerweise durch Standardisierung der Werte (sklearn.preprocessing.StandardScaler()) oder durch Normierung (sklearn.preprocessing.Normalizer()).
  • Wir haben hier nur zwei-dimensional betrachtet. In der Praxis ist das jedoch selten ausreichend, auch der Fahrzeug-Preis ist weder von der Motor-Leistung, noch von dem Kraftstoffverbrauch alleine abhängig – Es nehmen viele Größen auf den Preis Einfluss, somit benötigen wir multivariate Regressionsanalysen.