Einstieg in Natural Language Processing – Teil 1: Natürliche vs. Formale Sprachen
Dies ist Artikel 1 von 4 der Artikelserie Einstieg in Natural Language Processing – Artikelserie.
Versuche und erste Ansätze, Maschinen beizubringen menschliche Sprache zu verstehen, gibt es bereits seit den 50er Jahren. Trotz der jahrzehntelangen Forschung und Entwicklung gelingt dies bis heute nicht umfassend. Woran liegt dies?
Um diese Frage zu beantworten, hilft es, sich die Unterschiede zwischen „natürlichen“, also sich selbstständig entwickelnden, typischerweise von Menschen gesprochenen Sprachen und den von Computern interpretieren formalen Sprachen klar zu machen. Formale Sprachen, wie zum Beispiel Python zum Ausführen der Codebeispiele in dieser Artikelserie, HTML (Hyper Text Markup Language) zur Darstellung von Webseiten und andere typische Programmier- und Skriptsprachen, sind üblicherweise sehr streng strukturiert.
Alle diese Sprachen weisen eine Reihe von Gemeinsamkeiten auf, welche es Computern einfach machen, sie korrekt zu interpretieren (also den Informationsinhalt zu “verstehen”). Das vermutlich auffälligste Merkmal formaler Sprachen ist eine relativ strikte Syntax, welche (wenn überhaupt) nur geringe Abweichungen von einem Standard erlaubt. Wie penibel die jeweilige Syntax oft einzuhalten ist, wird am ehesten deutlich, wenn diese verletzt wird:
1 2 3 4 5 6 7 |
>>> print('Correct Syntax') Correct Syntax >>> print{'Wrong Syntax'} print{'Wrong Syntax'} ^ SyntaxError: invalid syntax |
Solche so genannten “Syntax Error” gehören daher zu den häufigsten Fehlern beim Schreiben von Quellcode.
Ganz anders dagegen sieht es in der Kommunikation mit natürlichen Sprachen aus. Zwar fördert falsche Komma-Setzung in der Regel nicht die Leserlichkeit eines Textes, jedoch bleibt dieser in der Regel trotzdem verständlich. Auch macht es keinen Unterschied ob ich sage „Es ist heiß heute.“ oder „Heute ist es heiß.“. Genau wie in der deutschen Sprache funktioniert dieses Beispiel auch im Englischen sowie in anderen natürlichen Sprachen. Insbesondere Spanisch ist ein Beispiel für eine Sprache mit extrem variabler Satzstellung. Jedoch kann in anderen Fällen eine andere Reihenfolge der selben Worte deren Bedeutung auch verändern. So ist „Ist es heute heiß?“ ganz klar eine Frage, obwohl exakt die selben Worte wie in den Beispielsätzen oben vorkommen.
Ein weiterer wichtiger, hiermit verwandter Unterschied ist, dass es bei formalen Sprachen in der Regel einen Ausdruck gibt, welcher eine spezifische Bedeutung besitzt, während es in natürlichen Sprachen oft viele Synonyme gibt, die ein und dieselbe Sache (oder zumindest etwas sehr ähnliches) ausdrücken. Ein wahrer boolscher Wert wird in Python als
1 |
True |
geschrieben. Es gibt keine andere Möglichkeit, diesen Wert auszudrücken (zumindest nicht ohne irgend eine Art von Operatoren wie das Doppelgleichheitszeichen zu benutzen und damit z. B. “0 == 0” zu schreiben). Anders hingegen zum Beispiel in der Deutschen Sprache: Wahr, richtig, korrekt, stimmt, ja, …
Um einen Vorstellung davon zu bekommen, wie verbreitet Synonyme in natürlichen Sprachen sind, lässt sich die Internetseite https://www.openthesaurus.de verwenden. Beispielshalber findet man dutzende Synonyme für das Wort „schnell“ hier: https://www.openthesaurus.de/synonyme/schnell
Eine weitere große Schwierigkeit, welche in den meisten natürlichen Sprachen und nahezu allen Arten von Texten zu finden ist, stellen verschiedene grammatikalische Formen eines Wortes dar. So sind die Worte bin, wäre, sind, waren, wirst, werden… alles Konjugationen desselben Verbs, nämlich sein. Eine durchaus beeindruckende Übersicht über die verwirrende Vielfalt von Konjugationen dieses kleinen Wörtchens, findet sich unter: https://www.verbformen.de/konjugation/sein.htm.
Dieses Problem wird um so schwerwiegender, da viele Verben, insbesondere die am häufigsten genutzten, sehr unregelmäßige Konjugationsformen besitzen und damit keiner generellen Regel folgen. Daher ist computerintern oft ein Mapping für jede mögliche Konjugationsform bei vielen Verben die einzige Möglichkeit, an die Grundform zu kommen (mehr dazu in Teil 3 dieser Artikelserie).
Die Liste der sprachlichen Schwierigkeiten beim computergestützten Auswerten natürlicher Sprache ließe sich an diesem Punkt noch beliebig weiter fortsetzen:
- Rechtschreibfehler
- falsche Grammatik
- Smileys
- der „Substantivverkettungswahn“ im Deutschen
- mehrdeutige Worte und Abkürzungen
- abwegige Redewendungen (z. B. “ins Gras beißen”)
- Ironie
- und, und, und …
Ob und welche Rolle jede dieser Schwierigkeiten im einzelnen spielt, hängt natürlich sehr stark von den jeweiligen Texten ab und kann nicht pauschalisiert werden – ein typischer Chatverlauf wird ganz andere Probleme bereithalten als ein Wikipedia-Artikel. Wie man einige dieser Probleme in der Praxis vereinfachen oder sogar lösen kann und welche Ansätze und Methoden zur Verfügung stehen und regelmäßig zur Anwendung kommen wird im nächsten Teil dieser Artikelserie an praktischen Codebeispielen genauer unter die Lupe genommen.
NLTK vs. Spacy – Eine kurze Übersicht
Möchte man einen (oder auch einige) Text(e) mit den Methoden des natural language processings untersuchen um die darin verwendete Sprache auswerten oder nach bestimmten Informationen suchen, so sind insbesondere die Pakete NLTK und spaCy zu empfehlen (bei sehr vielen Texten sieht das schon wieder anders aus und wird am Ende der Artikelserie mit dem Paket gensim vorgestellt); beide bieten eine unglaubliche Vielzahl von Analysemöglichkeiten, vorgefertigten Wortsets, vortrainierte Stemmer und Lemmatiser, POS Tagger und, und, und…
Ist man vor allem an den Ergebnissen der Analyse selbst interessiert, so bietet sich spaCy an, da hier bereits mit wenigen Zeilen Code viele interessante Informationen generiert werden können.
Wer dagegen gerne selber bastelt oder wissen möchte wie die einzelnen Tools und Teilschritte genau funktionieren oder sich seine eigenen Stemmer, Tagger ect. trainieren will, ist vermutlich mit NLTK besser beraten. Zwar ist hier oft mehr Quellcode für das gleiche Ergebnis notwendig, allerdings kann das Preprocessing der Texte hierbei relativ einfach exakt den eigenen Vorstellungen angepasst werden. Zudem bietet NLTK eine Vielzahl von Beispieltexten und bereits fertig getagte Daten, mit welchen eigene Tagger trainiert und getestet werden können.
Leave a Reply
Want to join the discussion?Feel free to contribute!