Interview mit Prof. Dr. Kai Uwe Barthel über Data Science mit Deep Learning

Einfache Verfahren werden oft schon als Machine Learning verkauft

Data Science Blog: Was bedeutet Deep Learning denn eigentlich im Kontrast zu Machine Learning? Wo beginnt Deep Learning und – als obligatorische Frage – ist Deep Learning ein überzogenes Buzzword?

Machine Learning ist im Prinzip der Oberbegriff aller Verfahren, bei denen Computer zu einer bestimmten Fragestellung selber den Algorithmus zur Lösung generieren können. Heute wird der Begriff „Machine Learning“ sicherlich etwas verschwenderisch verwendet. Zum Teil werden oft schon einfachere Verfahren wie beispielsweise Decision Trees oder K-means-Clustering als Machine Learning „verkauft“. Das eigentliche Machine Learning verwendet unterschiedliche Arten künstlicher neuronaler Netze. Einfache Aufgaben lassen sich mit kleinen neuronalen Netzen mit zwei bis vier Schichten lösen, dies reicht beispielsweise für die Erkennung von handschriftlichen Ziffern.

Deep Learning verwendet neuronale Netze mit deutlich mehr Schichten (bis hin zu Hunderten). Erst mit diesen vielen Schichten, die insgesamt Tausende bis Millionen von Netzwerkgewichten (zu lernende Parameter) haben, werden Lösungen für wirklich komplexe Aufgaben möglich.

Deep Learning ist ein Unterbereich von Machine Learning. Für mich ist Deep Learning kein Buzzword, denn die Lösungsmöglichkeiten von komplexen Aufgaben sind tiefgreifend. Es hat sich in den letzten Jahren einiges getan, so dass wirklich hochkomplizierte Aufgaben lösbar geworden sind.

Data Science Blog: Deep Learning gilt allerdings auch als Blackbox. Für den Menschen nachvollziehbare Entscheidungen von der Maschine sind somit nicht mehr möglich. Wie nachteilig wirkt sich das auf den Einsatz aus?

Die einzelnen Bestandteile eines künstlichen neuronalen Netzes sind recht simpel. Aus diesen elementaren Teilen werden neue Lösungsmodelle zusammengesetzt. Die Summe dieser Bestandteile und deren Interaktion wird jedoch schnell sehr hoch, so dass die Netze tatsächlich nicht mehr detailliert nachvollziehbar sind. Es stimmt also, dass künstliche neuronale Netze ab einer gewissen Größe zur Blackbox werden. Und es gibt auch Beispiele, mit denen solche Netze in die Irre geführt werden können. Nichtsdestotrotz liefern diese Netze die besten Ergebnisse, so dass dieser Nachteil in Kauf genommen wird – denn was wären die Alternativen?  Gerade im Bereich der Analyse und der Visualisierung der Funktionsweise von neuronalen Netzen gibt es viele Forschungsansätze, die das Verständnis mittelfristig deutlich verbessern werden. In vielen Bereichen sind die Klassifikationsergebnisse, die mit ausreichend vielen Beispielen trainiert wurden, besser als menschliche Experten. Hinzu kommt, dass menschliche Experten oft auch nicht genau begründen können, warum Sie zu einer bestimmten Eischätzung kommen, letztlich gleichen sie eine konkrete Fragestellung mit ihren umfangreichen Erfahrungen ab, was eine recht ähnliche Herangehensweise ist.

Data Science Blog: Welche Anwendungsszenarien für künstliche neuronale Netze gibt es?

Eine häufig verwendete Definition dessen, was Deep Learning an Aufgaben bewältigen kann, lautet: Es sind die Aufgaben, die ein Mensch in einer Sekunde lösen kann, ohne darüber nachdenken zu müssen. Wir können ein Netz darauf trainieren und es auf eine Aufgabe sozusagen „abrichten“. Im Unternehmen können künstliche neuronale Netze z. B. auffällige Verhaltensweisen von Maschinen identifizieren. Für mich geht es im Wesentlichen darum, der Maschine beizubringen, Bilder zu verstehen.

Das Verständnis von akustischen Signalen und Bildern ist schon lange ein Ziel der Informatik, es wird jedoch erst seit kurzem in zufriedenstellendem Ausmaß erreicht. Mit künstlichen neuronalen Netzen können Bilder vom Computer analysiert und Aussagen über ihre Inhalte gemacht werden. In den ersten Terminator-Filmen mit Arnold Schwarzenegger war es noch Science Fiction, dass die Welt aus Kamerabildern heraus analysiert und verstanden wurde. Inzwischen ist dies möglich. Was sicherlich noch eine Weile dauern wird, sind die Lösungen von Aufgaben, die eine zeitliche Planung oder ein strategisches Vorgehen benötigen.

Data Science Blog: Für welche Anwendungen in der Industrie ist Deep Learning schon gegenwärtig nutzbar?

Als Beispiel sei hier die industrielle Bildverarbeitung genannt. Bis vor kurzem war dies eine Sequenz von fein abgestimmten Schritten, wobei mit genau vordefinierten Bedingungen, wie etwa dem Bildhintergrund und einer bestimmten Beleuchtung, gearbeitet wurde. Dann wurde von einem Bildverarbeitungsexperten eine Kaskade von speziellen Bildverarbeitungsalgorithmen aufgesetzt, die das spezifische Problem lösten. Dies Prinzip hat meist sehr gut funktioniert, aber diese Ansätze ließen sich nicht gut generalisieren und mussten für jedes neue Problem wieder neu angepasst werden.

Beim Deep Learning ist die Situation eine ganz andere. Hier geht es darum, genügend Beispiele an Bildern und den dazugehörigen Ergebnissen zu haben. Das System lernt dann alleine, wie aus den Bildern bzw. Pixeln mit welchen Operationen die gewünschten Ergebnisse vorhergesagt werden können.

Für jeden, dem das noch zu abstrakt ist: Auch sehr spezifische Aufgaben aus der Industrie können mit neuronalen Netzen bewältigt werden. In der Fertigung und Montage können z.B. Nachfüllbehälter für Schrauben mit Kameras ausgestattet werden. Die Algorithmen erkennen dann über die Kamerabilder nicht nur zuverlässig, ob sich noch genügend viele Schrauben im Behälter befinden, sondern z. B. auch, um welche Schrauben es sich genau handelt.

Letztendlich spielt Deep Learning gerade in vielen Industrieanwendungen eine Rolle, so auch in der Spracherkennung oder dem Konzept des autonomen Fahrens. Das Hauptproblem beim Deep Learning ist nicht so sehr die Frage nach dem optimalen Netzwerk, sondern es besteht eher darin, genügend gute Beispiele zu haben, anhand derer die Netzwerke dann trainiert werden können.

Data Science Blog: Welche Entwicklungen der vergangenen Jahre ermöglichten die enormen Erfolge in Sachen Deep Learning?

Deep Learning wird in der Regel nicht mit CPUs, der zentralen Recheneinheit eines Computers, durchgeführt, sondern über GPUs, also speziell für Grafikberechnung ausgelegte Prozessoren – übrigens auch dann, wenn keine Bilder sondern andere Daten analysiert werden sollen. GPUs sind spezialisiert auf die Berechnung von Fließkommazahlen und können Matrizenmultiplikationen parallelisieren und somit etliche Male schneller als die CPU durchführen. Die heutige Hardware ermöglicht die notwendige Rechenleistung für künstliche neuronale Netze bereitzustellen.

Zum anderen benötigen Deep Learning Algorithmen sehr große Mengen an Trainingsdaten. Um ein neuronales Netz auf Bilder zu trainieren, um beispielsweise Katzen von Hunden zu unterscheiden, braucht es tausende Bilder mit Katzen und Hunden aus unterschiedlichen Perspektiven, Farben und Formen. Wir profitieren davon, dass sich diverse Menschen die Mühe gemacht haben, Millionen von Beispielbildern exakt zu beschriften und der Wissenschaft für das Training zur Verfügung zu stellen.

Benjamin Aunkofer

Benjamin Aunkofer ist Lead Data Scientist bei DATANOMIQ und Hochschul-Dozent für Data Science und Data Strategy. Darüber hinaus arbeitet er als Interim Head of Business Intelligence und gibt Seminare/Workshops zu den Themen BI, Data Science und Machine Learning für Unternehmen.

0 replies

Leave a Reply

Want to join the discussion?
Feel free to contribute!

Leave a Reply

Your email address will not be published. Required fields are marked *

6879 Views