Must-have Skills to Master Data Science

The need to process a massive amount of data sets is making Data Science the most-demanded job across diverse industry verticals. In today’s times, organizations are actively looking for Data Scientists.

But What does a Data Scientist do?

Data Scientist design data models, create various algorithms to extract the data the organization needs, and then they analyze the gathered data and communicate the data insights with the business stakeholders.

If you are looking forward to pursuing a career in Data Science, then this blog is for you 🙂

Data Scientists often come from many different educational and work experience backgrounds but few skills are common and essential.

Let’s have a look at all the essential skills required to become a Data Scientist:

  1. Multivariable Calculus & Linear Algebra
  2. Probability & Statistics
  3. Programming Skills (Python & R)
  4. Machine Learning Algorithms
  5. Data Visualization
  6. Data Wrangling
  7. Data Intuition

Let’s dive deeper into all these skills one by one.

Multivariable Calculus & Linear Algebra:

Having a solid understanding of math concepts is very helpful for a Data Scientist.

Key Concepts:

  • Matrices
  • Linear Algebra Functions
  • Derivatives and Gradient
  • Relational Algebra

Probability & Statistics:

Probability and Statistics play a major role in Data Science for estimation and prediction purposes.

Key concepts required:

  • Probability Distributions
  • Conditional Probability
  • Bayesian Thinking
  • Descriptive Statistics
  • Random Variables
  • Hypothesis Testing and Regression
  • Maximum Likelihood Estimation

Programming Skills (Python & R):

Python :

Start with Python Fundamentals using a jupyter notebook, which comes pre-packaged with Python libraries.

Important Python Libraries used:

  • NumPy (For Data Exploration)
  • Pandas (For Data Exploration)
  • Matplotlib (For Data Visualization)

R:

It is a programming language and software environment used for statistical computing and graphics. 

Key Concepts required:

  • R Languages fundamentals and basic syntax
  • Vectors, Matrices, Factors
  • Data frames
  • Basic Graphics

Machine Learning Algorithms

Machine Learning is an innovative and essential field in the industry. There are quite a few algorithms out there, major ones are as follows –

  • Linear Regression
  • Logistic Regression
  • Decision Trees
  • Random Forest
  • Naïve Bayes
  • Support Vector Machines
  • Dimensionality Reduction
  • K-means
  • Artificial Neural Networks

Data Visualization:

Data visualization is very essential when it comes to analyzing a massive amount of information and data. 

To make data-driven decisions, data visualization tools, and technologies are essential in the world of Data Science.

Data Visualization tools:

  • Tableau
  • Microsoft Power Bi
  • E Charts
  • Datawrapper
  • HighCharts

Data Wrangling:

Data wrangling, this term refers to the process of cleaning and refining the messy and complex data available into a more usable format. 

It is considered one of the most crucial parts of working with data.

Important Steps to Data Wrangling:

  1. Discovering
  2. Structuring
  3. Cleaning
  4. Enriching
  5. Validating
  6. Documenting

Tools used:

  • Tabula
  • Google DataPrep
  • Data Wrangler
  • CSVkit

Data Wrangling can be done using Python and R.

Data Intuition:

Data Intuition in Data Science is an intuitive understanding of concepts. It’s one of the most significant skills required to become a Data Scientist.

It’s about recognizing patterns where none are observable on the surface.

This is something that you need to develop. It is a skill that will only come with experience.

A Data Scientist should know which Data Science methods to apply to the problem at hand.

Conclusion:

 As you can see, all these skills – from programming to algorithmic methods, work with one another to build on top of each other for gathering deeper data insights.

There are a wide number of courses available online for developing these skills and to help you become a true talent in this data industry.

Sure, this journey isn’t an easy one to follow but it’s not impossible. With sheer determination and consistency, you will be able to cross all the hurdles in your Data Science career path.

Image Source: Pixabay (https://pixabay.com/photos/classroom-school-education-learning-2093744/)

The Data Surrounding Higher Education and COVID-19

Just a few short weeks ago, it would have seemed impossible for some microscopic pathogen to upend our lives as we knew it, but the novel Coronavirus has proven us breathtakingly wrong.

It has suddenly and unexpectedly changed everything we had thought was most stable and predictable in our lives, from the ways that we work to the ways we interact with one another. It’s even changed the way we learn, as colleges and universities across the nation shutter their doors.

But what is the real impact of COVID-19 on higher education? How are college students really faring in the face of the pandemic, and what can we do to support them now and in the post-pandemic life to come?

The Scramble is On

Probably the most significant challenge that schools, educators, and students alike are facing is that no one really saw this coming, so now we’re trying to figure out how to protect students’ education while also protecting their physical health. We’re having to make decisions that impact millions of students and faculty and do that with no preparation whatsoever.

To make matters worse, faculties are having to convert their classes to a forum the majority have never even used before. Before the lockdown, more than 70% of faculty in higher education had zero experience with online teaching. Now they’re being asked to convert their entire semester’s course schedule from an in-class to an online format, and they’re having to do it in a matter of weeks if not days.

For students who’ve never taken a distance learning course before, these impromptu, online, cobbled-together courses are hardly the recipe for academic success. The challenge is even greater for lab-based courses, where content mastery depends on hands-on work and laboratory applications. To solve this problem, some of the newly-minted distance ed instructors are turning to online lab simulations to help students make do until the real thing is open to them again.

Making Do

It’s not just the schools and the faculty that have been caught off guard by the sudden need to learn while under lockdown. Students are also having to hustle to make sure they have the technology they need to move their college experience online. Unfortunately, for many students, that’s not always easy, and for some, it’s downright impossible.

Studies show that large swaths of the student population: first-generation college students, community college students, immigrants, and lower-income students, typically rely on on-campus facilities to access the technology they need to do their work. When physical campuses close and the community libraries and hotspots with them, so too does the chance for many students to take their learning online.

Students in urban environments face particular risks. Even if they are able to access the technology they need to engage in distance learning, they may find it impossible to socially isolate. The need to access a hotspot or wi-fi connection might put them in unsafe proximity to other students, not to mention the millions of workers now forced to telecommute.

The Good News

America’s millions of new online learners and teachers may have a tough row to hoe, but the news isn’t all bad. Online education is by no means a new thing. By 2017, nearly 7 million students were enrolled in at least one distance education course according to a recent survey by the National Center for Education Statistics.

It isn’t as though the technology to provide a secure, user-friendly learning experience doesn’t exist. The financial industry, for example, has played a leading role in developing private, responsive, and highly-customizable technology solutions to meet practically any need a client or stakeholder may have.

The solutions used for the financial sector can be built on and modified for the online learning experience to ensure the privacy of students, educators, and institutions while providing real-time access to learning tools and content to classmates and teachers.

A New Path?

As challenging as it may be, transitioning to online learning not only offers opportunities for the present, but it may well open up new paths for the future. While our world may finally be approaching the downward slope of the curve and while we may be seeing the light at the end of the tunnel, until there’s a vaccine, we haven’t likely seen the last of COVID-19.

And even when we lay the COVID beast to rest, infectious disease, unfortunately, is a fact of human life. For students just starting to think about their career paths, this lockdown may well be the push they need to find a career that’s well-suited to this “new normal.”

For instance, careers in data science transition perfectly from onsite to at-home work, and as epidemiological superheroes like Dr. Fauci and Dr. Birx have shown, they are often involved in important, life-saving work. These are also careers that can be pursued largely, if not exclusively, online. Whether you’re a complete newbie or a veteran to the field, there is a large range of degree and certification programs available online to launch or advance your data science career.

It might be that your college-with-corona experience is pointing your life in a different direction, toward education rather than data science. With a doctorate in education, your future career path is virtually unlimited. You might find yourself teaching, researching, leading universities or developing education policy.

What matters most is that with an EdD, you can make a difference in the lives of students and teachers, just as your teachers and administrators are making a difference in your life. You can be the guiding and comforting force for students in a time of crisis and you can use your experiences today to pay it forward tomorrow.

Top 7 MBA Programs to Target for Business Analytics 

Business Analytics refers to the science of collecting, analysing, sorting, processing and compiling various available data pertaining to different areas and facets of business. It also includes studying and scrutinising the information for useful and deep insights into the functioning of a business which can be used smartly for making important business-related decisions and changes to the existing system of operations. This is especially helpful in identifying all loopholes and correcting them.

The job of a business analyst is spread across every domain and industry. It is one of the highest paying jobs in the present world due to the sheer shortage of people with great analytical minds and abilities. According to a report published by Ernst & Young in 2019, there is a 50% rise in how firms and enterprises use analytics to drive decision making at a broad level. Another reason behind the high demand is the fact that nowadays a huge amount of data is generated by all companies, large or small and it usually requires a big team of analysts to reach any successful conclusion. Also, the nature and high importance of the role compels every organisation and firm to look for highly qualified and educated professionals whose prestigious degrees usually speak for them.

An MBA in Business Analytics, which happens to be a branch of Business Intelligence, also prepares one for a successful career as a management, data or market research analyst among many others. Below, we list the top 7 graduate school programs in Business Analytics in the world that would make any candidate ideal for this high paying job.

1 New York University – Stern School of Business

Location: New York City, United States

Tuition Fees: $74,184 per year

Duration:  2 years (full time)

With a graduate acceptance rate of 23%, the NYU Stern School makes it to this list due to the diversity of the course structure that it offers in its MBA program in Business Analytics. One can specialise and learn the science behind econometrics, data mining, forecasting, risk management and trading strategies by being a part of this program. The School prepares its students and offers employability in fields of investment banking, marketing, consulting, public finance and strategic planning. Along with opportunities to study abroad for small durations, the school also offers its students ample chances to network with industry leaders by means of summer internships and career workshops. It is a STEM designated two-year, full time degree program.

2 University of Pennsylvania – Wharton School Business 

Location: Philadelphia, United States

Tuition fees: $81,378 per year

Duration: 20 months (full time, including internship)

The only Ivy-League school in the list with one of the best Business Analytics MBA programs in the world, Wharton has an acceptance rate of 19% only. The tough competition here is also characterised by the high range of GMAT scores that most successful applicants have – it lies between 540 and 790, averaging at a very high threshold of 732. Most of Wharton’s graduating class finds employment in a wide range of sectors including consulting, financial services, technology, real estate and health care among many others. The long list of Wharton’s alumni includes some of the biggest business entities in the world, them being – Warren Buffet, Elon Musk, Sundar Pichai, Ronald Perelman and John Scully.

The best part about Wharton’s program structure is its focus on building leadership and a strong sense of teamwork in every student.

3 Carnegie Mellon University – Tepper School of Business

Location: Pittsburgh, United States

Tuition Fees: $67,575

Duration: 18 months (online)

The Tepper School of Business in Carnegie Mellon University is the only graduate school in the list that offers an online Master of Science program in Business Analytics. The primary objectives of the program is to equip students with creative problem solving expertise and deep analytic skills. The highlights of the program include machine learning, programming in Python and R, corporate communication and the knowledge of various business domains like marketing, finance, accounting and operations.

The various sub courses offered within the program include statistics, data management, data analytics in finance, data exploration and optimization for prescriptive analytics. There are several special topics offered too, like Ethics in Artificial Intelligence and People Analytics among many others.

4 Massachusetts Institute of Technology – Sloan School of Management

Location: Cambridge, United States

Tuition Fees: $136,480

Duration: 12 months

The Master of Business Analytics program at MIT Sloan is a relatively new program but has made it to this list due to MIT’s promise and commitment of academic and all-rounder excellence. The program is offered in association with MIT’s Operations Research Centre and is customised for students who wish to pursue a career in the industry of data sciences. The program is easily comprehensible for students from any educational background. It is a STEM designated program and the curriculum includes several modules like machine learning, usage of analytics software tools like Python, R, SQL and Julia. It also includes courses on ethics, data privacy and a capstone project.

5 University of Chicago – Graham School

Location: Chicago, United States

Tuition Fees: $4,640 per course

Duration: 12 months (full time) or 4 years (part time)

The Graham School in the University of Chicago is mainly interested in candidates who show love and passion for analytics. An incoming class at Graham usually consists of graduates in science or social science, professionals in an early career who wish to climb higher in the job ladder and mid-career professionals who wish to better their analytical skills and enhance their decision-making prowess.

The curriculum at Graham includes introduction to statistics, basic levels of programming in analytics, linear and matrix algebra, machine learning, time series analysis and a compulsory core course in leadership skills. The acceptance rate of the program is relatively higher than the previous listed universities at 34%.

6 University of Warwick – Warwick Business School

Location: Coventry, United Kingdom

Tuition Fees: $34,500

Duration: 12 months (full time)

The only school to make it to this list from the United Kingdom and the only one outside of the United States, the Warwick Business School is ranked 7th in the world by the QS World Rankings for their Master of Science degree in Business Analytics. The course aims to build strong and impeccable quantitative consultancy skills in its candidates. One can also look forward to improving their business acumen, communication skills and commercial research experience after graduating out of this program.

The school has links with big corporates like British Airways, IBM, Proctor and Gamble, Tesco, Virgin Media and Capgemini among others where it offers employment for its students.

7 Columbia University – School of Professional Studies

Location: New York City, United States 

Tuition Fees: $2,182 per point

Duration: 1.5 years full time (three terms)

The Master of Sciences program in Applied Analytics at Columbia University is aimed for all decision makers and also favours candidates with strong critical thinking and logical reasoning abilities. The curriculum is not very heavy on pure stats and data sciences but it allows students to learn from extremely practical and real-life experiences and examples. The program is a blend of several online and on-campus classes with several week-long courses also. A large number of industry experts and guest lectures take regular classes, conduct workshops and seminars for exposing the students to the real-world scenario of Business Analytics. This also gives the students a solid platform to network and broaden their perspective.

Several interesting courses within the paradigm of the program includes storytelling with data, research design, data management and a capstone project.

The admission to every school listed above is extremely competitive and with very limited intake. However, as it is rightly said, hard work is the key to success, one can rest guaranteed that their career will never be the same if they make it into any of these programs.

Data Scientist: Rock the Tech World

It’s almost 2020! Are you a data Rockstar or a laggard?

IDC agrees to the fact that the global data, 33 zettabytes in 2018 is predicted to grow to 175 zettabytes by 2025. That’s like ten times bigger the amount of data seen in 2017.

Isn’t this an exciting analysis? 

Hold on! Are all the industries set for a digitally transformed future? 

A digital transformed future is an opportunity of historic proportions. The way data is consumed today changes the way we work, live, and play. Businesses across the globe are now using data to transform themselves to adapt to these changes, become agile, improve customer experience, and to introduce new business models. 

With the full dependency on online channels, connectivity with friends and family around the world has increased the consumption of data. Today, the entire economy is reliant on data. Without data, you’re lost. 

Leverage the benefits of the data era

At the outset, with not many big data industries to be found, we can still agree to the fact that the knowledge for data skills is still early for professionals in the big data realm.

  • Big data assisting the humanitarian aid 
    • Case study: During a disaster

Be it natural or conflict-driven – if the response is driven quickly, it minimizes problems that are predicted to happen. In such instances, big data could be of great help in helping improve the responses of the aid organizations. 

Data scientists can easily use analytics and algorithms to provide actionable insights that can be used during emergencies to identify patterns in the data that is generated by online connected devices or from other related sources. 

During a 2015 refugee crisis in Germany, the Sweden Migration Board saw 10,000 asylum seekers every week up from 2,500 asylum seekers they saw in a month. A critical situation where other organizations could have faced challenges in dealing with the problem. However, with the help of big data this agency could cope up with the challenges. The challenges were addressed by ensuring extra staff was hired and of securing housing started early. Big data was of aid to this agency, meaning since they were users of this the preprocessing technology for quite a long time, the predictions were given well ahead of time. 

Earlier the results were not easy to extract due to obstruction such as not finding the relevant data. However, now with the launch of open data initiatives, the process has become easy. 

  • Tapping into talents of data scientist 

The Defence Science and Technology Laboratory (Dstl) along with other government partners launched “The Data Science Challenge.” This is done to harness the skills of data science professionals, to check their capability of tackling real-world problems people face daily. 

The challenge is part of a wider program set out majorly in the Defence Innovation Initiative.

It is an open data science challenge that welcome entrants from all facets of background and specialization to demonstrate their skills. The challenge is to acknowledge that the best of minds need not necessarily be the ones that work for you. 

 

  • The challenge comprises of two competitions each offering an award of £40,000
  1. First competition – this analyzes the ability to analyze data that is in documents i.e. media reports. This helps the data scientist have a deeper understanding of a political situation like it occurs for those on the ground level and even for those assisting it from afar. 
  2. Second competition – the second test involves creating possible ways to detect and classify vehicles like buses, cars, and motorbikes easily from aerial imagery. A solution to be used for aiding the safe journey of vehicles going through conflict zones.  

What makes the data world significant?

In all aspects, the upshot of the paradigm shift is that data has become a critical influencer in businesses as well as our lives. Internet of things (IoT) and embedded devices are already pacing their way in boosting the big data world. 

Some great key findings based on research by IDC: –

  • 75% of the population that interacts with data is estimated to stay connected by 2025.
  • The number of embedded devices that can be found on driverless cars, manufacturing floors, and smart buildings is estimated to grow from less than one per person to more than four in the next decade. 
  • In 2025, the amount of real-time data created in the data sphere is estimated to be over 25% while IoT real-time data will be more than 95%. 

With the data science industry becoming the top-end of the pyramid, a certified data scientist plays an imperative role today. 

In recent times, it is seen that big data has emerged to be the célèbre in the tech industry, generating several job opportunities.

What do you consider yourself to be today? 

Defining a data scientist is tough and finding one is tougher!

 

The importance of being Data Scientist

Header-Image by Clint Adair on Unsplash.

The incredible results of Machine Learning and Artificial Intelligence, Deep Learning in particular, could give the impression that Data Scientist are like magician. Just think of it. Recognising faces of people, translating from one language to another, diagnosing diseases from images, computing which product should be shown for us next to buy and so on from numbers only. Numbers which existed for centuries. What a perfect illusion. But it is only an illusion, as Data Scientist existed as well for centuries. However, there is a difference between the one from today compared to the one from the past: evolution.

The main activity of Data Scientist is to work with information also called data. Records of data are as old as mankind, but only within the 16 century did it include also numeric forms — as numbers started to gain more and more ground developing their own symbols. Numerical data, from a given phenomenon — being an experiment or the counts of sheep sold by week over the year –, was from early on saved in tabular form. Such a way to record data is interlinked with the supposition that information can be extracted from it, that knowledge — in form of functions — is hidden and awaits to be discovered. Collecting data and determining the function best fitting them let scientist to new insight into the law of nature right away: Galileo’s velocity law, Kepler’s planetary law, Newton theory of gravity etc.

Such incredible results where not possible without the data. In the past, one was able to collect data only as a scientist, an academic. In many instances, one needed to perform the experiment by himself. Gathering data was tiresome and very time consuming. No sensor which automatically measures the temperature or humidity, no computer on which all the data are written with the corresponding time stamp and are immediately available to be analysed. No, everything was performed manually: from the collection of the data to the tiresome computation.

More then that. Just think of Michael Faraday and Hermann Hertz and there experiments. Such endeavour where what we will call today an one-man-show. Both of them developed parts of the needed physics and tools, detailed the needed experiment settings, conducting the experiment and collect the data and, finally, computing the results. The same is true for many other experiments of their time. In biology Charles Darwin makes its case regarding evolution from the data collected in his expeditions on board of the Beagle over a period of 5 years, or Gregor Mendel which carry out a study of pea regarding the inherence of traits. In physics Blaise Pascal used the barometer to determine the atmospheric pressure or in chemistry Antoine Lavoisier discovers from many reaction in closed container that the total mass does not change over time. In that age, one person was enough to perform everything and was the reason why the last part, of a data scientist, could not be thought of without the rest. It was inseparable from the rest of the phenomenon.

With the advance of technology, theory and experimental tools was a specialisation gradually inescapable. As the experiments grow more and more complex, the background and condition in which the experiments were performed grow more and more complex. Newton managed to make first observation on light with a simple prism, but observing the line and bands from the light of the sun more than a century and half later by Joseph von Fraunhofer was a different matter. The small improvements over the centuries culminated in experiments like CERN or the Human Genome Project which would be impossible to be carried out by one person alone. Not only was it necessary to assign a different person with special skills for a separate task or subtask, but entire teams. CERN employs today around 17 500 people. Only in such a line of specialisation can one concentrate only on one task alone. Thus, some will have just the knowledge about the theory, some just of the tools of the experiment, other just how to collect the data and, again, some other just how to analyse best the recorded data.

If there is a specialisation regarding every part of the experiment, what makes Data Scientist so special? It is impossible to validate a theory, deciding which market strategy is best without the work of the Data Scientist. It is the reason why one starts today recording data in the first place. Not only the size of the experiment has grown in the past centuries, but also the size of the data. Gauss manage to determine the orbit of Ceres with less than 20 measurements, whereas the new picture about the black hole took 5 petabytes of recorded data. To put this in perspective, 1.5 petabytes corresponds to 33 billion photos or 66.5 years of HD-TV videos. If one includes also the time to eat and sleep, than 5 petabytes would be enough for a life time.

For Faraday and Hertz, and all the other scientist of their time, the goal was to find some relationship in the scarce data they painstakingly recorded. Due to time limitations, no special skills could be developed regarding only the part of analysing data. Not only are Data Scientist better equipped as the scientist of the past in analysing data, but they managed to develop new methods like Deep Learning, which have no mathematical foundation yet in spate of their success. Data Scientist developed over the centuries to the seldom branch of science which bring together what the scientific specialisation was forced to split.

What was impossible to conceive in the 19 century, became more and more a reality at the end of the 20 century and developed to a stand alone discipline at the beginning of the 21 century. Such a development is not only natural, but also the ground for the development of A.I. in general. The mathematical tools needed for such an endeavour where already developed by the half of the 20 century in the period when computing power was scars. Although the mathematical methods were present for everyone, to understand them and learn how to apply them developed quite differently within every individual field in which Machine Learning/A.I. was applied. The way the same method would be applied by a physicist, a chemist, a biologist or an economist would differ so radical, that different words emerged which lead to different langues for similar algorithms. Even today, when Data Science has became a independent branch, two different Data Scientists from different application background could find it difficult to understand each other only from a language point of view. The moment they look at the methods and code the differences will slowly melt away.

Finding a universal language for Data Science is one of the next important steps in the development of A.I. Then it would be possible for a Data Scientist to successfully finish a project in industry, turn to a new one in physics, then biology and returning to industry without much need to learn special new languages in order to be able to perform each tasks. It would be possible to concentrate on that what a Data Scientist does best: find the best algorithm. In other words, a Data Scientist could resolve problems independent of the background the problem was stated.

This is the most important aspect that distinguish the Data Scientist. A mathematician is limited to solve problems in mathematics alone, a physicist is able to solve problems only in physics, a biologist problems only in biology. With a unique language regarding the methods and strategies to solve Machine Learning/A.I. problems, a Data Scientist can solve a problem independent of the field. Specialisation put different branches of science at drift from each other, but it is the evolution of the role of the Data Scientist to synthesize from all of them and find the quintessence in a language which transpire beyond all the field of science. The emerging language of Data Science is a new building block, a new mathematical language of nature.

Although such a perspective does not yet exists, the principal component of Machine Learning/A.I. already have such proprieties partially in form of data. Because predicting for example the numbers of eggs sold by a company or the numbers of patients which developed immune bacteria to a specific antibiotic in all hospital in a country can be performed by the same prediction method. The data do not carry any information about the entities which are being predicted. It does not matter anymore if the data are from Faraday’s experiment, CERN of Human Genome. The same data set and its corresponding prediction could stand literary for anything. Thus, the result of the prediction — what we would call for a human being intuition and/or estimation — would be independent of the domain, the area of knowledge it originated.

It also lies at the very heart of A.I., the dream of researcher to create self acting entities, that is machines with consciousness. This implies that the algorithms must be able to determine which task, model is relevant at a given moment. It would be to cumbersome to have a model for every task and and every field and then try to connect them all in one. The independence of scientific language, like of data, is thus a mandatory step. It also means that developing A.I. is not only connected to develop a new consciousness, but, and most important, to the development of our one.

Accelerate your AI Skills Today: A Million Dollar Job!

The skyrocketing salaries ($1m per year) of AI engineers is not a hype. It is the fact of current corporate world, where you will witness a shift that is inevitable.

We’ve already set our feet at the edge of the technological revolution. A revolution that is at the verge of altering the way we live and work. As the fact suggests, humanity has fundamentally developed human production in three revolutions, and we’re now entering the fourth revolution. In its scope, the fourth revolution projects a transformation that is unlike anything we humans have ever experienced.

  • The first revolution had the world transformed from rural to urban
  • the emergence of mass production in the second revolution
  • third introduced the digital revolution
  • The fourth industrial revolution is anxious to integrate technologies into our lives.

And all thanks to artificial intelligence (AI). An advanced technology that surrounds us, from virtual assistants to software that translates to self-driving cars.

The rise of AI at an exponential rate has disrupted almost every industry. So much so that AI is being rated as one-million-dollar profession.

Did this grab your attention? It did?

Now, what if we were to tell you that the salary compensation for AI experts has grown dramatically. AI and machine learning are fields that have a mountain of demand in the tech industry today but has sparse supply.

AI field is growing at a quicker pace and salaries are skyrocketing! Read it for yourself to know what AI experts, AI researchers and any other AI talent are commanding today.

  • A top-class AI research laboratory, OpenAI says that techies in the AI field are projected to earn a salary compensation ranging between $300 to $500k for fresh graduates. However, expert professionals could earn anywhere up to $1m.
  • Whopping salary package of above 100 million yen that amounts to $1m is being offered to AI geniuses by a Japanese firm, Start Today. A firm that operates a fashion shopping website named Zozotown.

Does this leave you with a question – Is this a right opportunity for you to jump in the field and make hay while the sun is shining? 

And the answer to this question is – yes, it is the right opportunity for any developer seeking a role in the AI industry. It can be your chance to bridge the skill shortage in the AI field either by upskilling or reskilling yourself in the field of AI.

There are a wide varieties of roles available for an AI enthusiast like you. And certain areas are like AI Engineers and AI Researchers are high in demand, as there are not many professionals who have robust AI knowledge.

According to a job report, “The Future of Jobs 2018,” a prediction was made suggesting that machines and algorithms will create around 133 million new job roles by 2022.

AI and machine learning will dominate the tech world. The World Economic Forum says that several sectors have started embracing AI and machine learning to tackle challenges in certain fields such as advertising, supply chain, manufacturing, smart cities, drones, and cybersecurity.

Unraveling the AI realm

From chatbots to financial planners, AI is impacting the way businesses function on a day-today basis. AI makes the work simpler, as it provides variables, which makes the work more streamlined.

Alright! You know that

  • the demand for AI professionals is rising exponentially and that there is just a trickle of supply
  • the AI professionals are demanding skyrocketing salaries

However, beyond that how much more do you know about AI?

Considering the fact that our lives have already been touched by AI (think Alexa, and Siri), it is just a matter of time when AI will become an indispensable part of our lives.

As Gartner predicts that 2020 will be an important year for business growth in AI. Thus, it is possible to witness significant sparks for employment growth. Though AI predicts to diminish 1.8 million jobs, it is also said to replace it with 2.3 million jobs that will be created. As we look forward to stepping into 2020, AI-related job roles are set to make positive progress of achieving 2 million net-new employments by 2025.

With AI promising to score fat paychecks that would reach millions, AI experts are struggling to find new ways to pick up nouveau skills. However, one of the biggest impacts that affect the job market today is the scarcity of talent in this field.

The best way to stay relevant and employable in AI is probably by “reskilling,” and “upskilling.” And  AI certifications is considered ideal for those in the current workforce.

Looking to upskill yourself – here’s how you can become an AI engineer today.

Top three ways to enhance your artificial intelligence career:

  1. Acquire skills in Statistics and Machine Learning: If you’re getting into the field of machine learning, it is crucial that you have in-depth knowledge of statistics. Statistics is considered a prerequisite to the ML field. Both the fields are tightly related. Machine learning models are created to make accurate predictions while statistical models do the job of interpreting the relationship between variables. Many ML techniques heavily rely on the theory obtained through statistics. Thus, having extensive knowledge in statistics help initiate the first step towards an AI career.
  2. Online certification programs in AI skills: Opting for AI certifications will boost your credibility amongst potential employers. Certifications will also enhance your earning potential and increase your marketability. If you’re looking for a change and to be a part of something impactful; join the AI bandwagon. The IT industry is growing at breakneck speed; it is now that businesses are realizing how important it is to hire professionals with certain skillsets. Specifically, those who are certified in AI are becoming sought after in the job market.
  3. Hands-on experience: There’s a vast difference in theory and practical knowledge. One needs to familiarize themselves with the latest tools and technologies used by the industry. This is possible only if the individual is willing to work on projects and build things from scratch.

Despite all the promises, AI does prove to be a threat to job holders, if they don’t upskill or reskill themselves. The upcoming AI revolution will definitely disrupt the way we work, however, it will leave room for humans to perform more creative jobs in the future corporate world.

So a word of advice is to be prepared and stay future ready.

The Data Scientist Job and the Future

A dramatic upswing of data science jobs facilitating the rise of data science professionals to encounter the supply-demand gap.

By 2024, a shortage of 250,000 data scientists is predicted in the United States alone. Data scientists have emerged as one of the hottest careers in the data world today. With digitization on the rise, IoT and cognitive technologies have generated a large number of data sets, thus, making it difficult for an organization to unlock the value of these data.

With the constant rise in data science, those fail to upgrade their skill set may be putting themselves at a competitive disadvantage. No doubt data science is still deemed as one of the best job titles today, but the battles for expert professionals in this field is fierce.

The hiring market for a data science professional has gone into overdrive making the competition even tougher. New online institutions have come up with credible certification programs for professionals to get skilled. Not to forget, organizations are in a hunt to hire candidates with data science and big data analytics skills, as these are the top skills that are going around in the market today. In addition to this, it is also said that typically it takes around 45 days for these job roles to be filled, which is five days longer than the average U.S. market.

Data science

One might come across several definitions for data science, however, a simple definition states that it is an accumulation of data, which is arranged and analyzed in a manner that will have an effect on businesses. According to Google, a data scientist is one who has the ability to analyze and interpret complex data, being able to make use of the statistic of a website and assist in business decision making. Also, one needs to be able to choose and build appropriate algorithms and predictive models that will help analyze data in a viable manner to uncover positive insights from it.

A data scientist job is now a buzzworthy career in the IT industry. It has driven a wider workforce to get skilled in this job role, as most organizations are becoming data-driven. It’s pretty obnoxious being a data professional will widen job opportunities and offer more chances of getting lucrative salary packages today. Similarly, let us look at a few points that define the future of data science to be bright.

  • Data science is still an evolving technology

A career without upskilling often remains redundant. To stay relevant in the industry, it is crucial that professionals get themselves upgraded in the latest technologies. Data science evolves to have an abundance of job opportunities in the coming decade. Since, the supply is low, it is a good call for professionals looking to get skilled in this field.

  • Organizations are still facing a challenge using data that is generated

Research by 2018 Data Security Confidence from Gemalto estimated that 65% of the organizations could not analyze or categorized the data they had stored. However, 89% said they could easily analyze the information prior they have a competitive edge. Being a data science professional, one can help organizations make progress with the data that is being gathered to draw positive insights.

  • In-demand skill-set

Most of the data scientists possess to have the in-demand skill set required by the current industry today. To be specific, since 2013 it is said that there has been a 256% increase in the data science jobs. Skills such as Machine Learning, R and Python programming, Predictive analytics, AI, and Data Visualization are the most common skills that employers seek from the candidates of today.

  • A humongous amount of data growing everyday

There are around 5 billion consumers that interact with the internet on a daily basis, this number is set to increase to 6 billion in 2025, thus, representing three-quarters of the world’s population.

In 2018, 33 zettabytes of data were generated and projected to rise to 133 zettabytes by 2025. The production of data will only keep increasing and data scientists will be the ones standing to guard these enterprises effectively.

  • Advancement in career

According to LinkedIn, data scientist was found to be the most promising career of 2019. The top reason for this job role to be ranked the highest is due to the salary compensation people were being awarded, a range of $130,000. The study also predicts that being a data scientist, there are high chances or earning a promotion giving a career advancement score of 9 out of 10.

Precisely, data science is still a fad job and will not cease until the foreseeable future.

Closing the AI-skills gap with Upskilling

Closing the AI-skills gap with Upskilling

Artificial Intelligent or as it is fancily referred as AI, has garnered huge popularity worldwide.  And given the career prospects it has, it definitely should. Almost everyone interested in technology sector has them rushing towards it, especially young and motivated fresh computer science graduates. Compared to other IT-related jobs AI pays way higher salary and have opportunities. According to a Glassdoor report, Data Scientist, one of the many related jobs, is the number one job with good salary, job openings and more. AI-related jobs include Data Scientists, Analysts, Machine Learning Engineer, NLP experts etc.

AI has found applications in almost every industry and thus it has picked up demand. Home assistants – Siri, Ok Google, Amazon Echo — chatbots, and more some of the popular applications of AI.

Increasing adoption of AI across Industry

The advantages of AI like increased productivity has increased its adoption among companies. According to Gartner, 37 percent of enterprise currently use AI in one way or the other. In fact, in the last four year adoption of AI technologies among companies has increased by 270 percent. In telecommunications, for instance, 52 percent of companies have chatbots deployed for better and smoother customer experience. Now, about 49 percent of businesses are now on their way to alter business models to integrate and adopt AI-driven processes. Further, industry leaders have gone beyond and voiced their concerns about companies that are lagging in AI adoption.

Unfortunately, it has been extremely difficult for employers to find right skilled or qualified candidates for AI-related positions. A reports suggests that there are total 300,000 AI professionals are available worldwide, while there’s demand for millions. In a recent survey conducted by Ernst & Young, 51 percent AI professionals told that lack of talent was the biggest impediment in AI adoption.

Further, O’Reilly, in 2018 conducted a survey, which found the lack of AI skills, among other things, was the major reason that was holding companies back from implementing AI.
The major reason for this is the lack of skills among people who aspire to get into AI-related jobs. According to a report, there demand for millions for jobs in AI. However, only a handful of qualified people are available.

Bridging the skill gap in AI-related jobs

Top companies and government around the world have taken up initiatives to close this gap. Google and Amazon, for instance, have dedicated facilities which trains in AI skills.  Google’s Brain Toronto is a dedicated facility to expand their talent in AI.  Similarly, Amazon has facility near University of Cambridge which is dedicated to AI. Most companies either already have a facility or are in the process of setting up one.

In addition to this, governments around the world are also taking initiatives to address the skill gap. For instance, government across the world are pushing towards AI advancement and are develop collaborative plans which aims at delivering more AI skilled professionals. Recently, the white house launched ai.gov which is further helping to promote AI in the US. The website will offer updates related to AI projects across different sectors.

Other than these, companies have taken this upon themselves to reskills their employees and prepare them for future roles. According to a report from Towards Data Science, about 63 percent of companies have in-house training programs to train employees in AI-related skills.

Overall, though there is demand for AI professionals, lack of skilled talent is a major problem.

Roles in Artificial Intelligence
Artificial Intelligence is the most dominant role for which companies hire across artificial Intelligence. Other than that, following are some of the popular roles:

  1. Machine learning Engineer: These are the people who make machines learn with complex algorithms. On advance level, Machine learning engineers are required to have good knowledge of computer vision. According to Indeed, in the last year, demand for Machine Learning Engineer has grown by 344 percent.
  2. NLP Experts: These experts are equipped with the understanding of making machines computer understand human language. Their expertise includes knowledge of how machines understand human language. Text-to-speech technologies are the common areas which require NLP experts. Demand for engineers who can program computers to understand human speech is growing continuously. It was the fast growing skills in Upwork’s list of in-demand freelancing skills. In Q4, 2016, it had grown 200 percent and since then has been on continuously growing.
  3. Big Data Engineers: This is majorly an analytics role. These gather huge amount of data available from sources and analyze it to derive insights and understand patter, which may be further used for machine learning, prediction modelling, natural language processing. In Mckinsey annual report 2018, it had reported that there was shortage of 190,000 big data professionals in the US alone.

Other roles like Data Scientists, Analysts, and more also in great demand. Then, again due to insufficient talent in the market, companies are struggling to hire for these roles.

Self-learning and upskilling
Artificial Intelligence is a continuously growing field and it has been advancing at a very fast pace, and it makes extremely difficult to keep up with in-demand skills. Hence, it is imperative to keep yourself up with demand of the industry, or it is just a matter of time before one becomes redundant.

On an individual level, learning new skills is necessary. One has to be agile and keep learning, and be ready to adapt new technologies. For this, AI training programs and certifications are ideal.  There are numerous AI programs which individuals can take to further learn new skills. AI certifications can immensely boost career opportunities. Certification programs offer a structured approach to learning which benefits in learning mostly practical and executional skills while keeping fluff away. It is more hands-on. Plus, certifications programs qualify only when one has passed practical test which is very advantageous in tech. AI certifications like AIE (Artificial Intelligence Engineer) are quite popular.

Online learning platforms also offer good a resource to learn artificial intelligence. Most schools haven’t yet adapted their curriculum to skill for AI, while most universities and grad schools are in their way to do so. In the meantime, online learning platforms offer a good way to learn AI skills, where one can start from basic and reach to advance skills.

Business Intelligence Organizations

I am often asked how the Business Intelligence department should be set up and how it should interact and collaborate with other departments. First and foremost: There is no magic recipe here, but every company must find the right organization for itself.

Before we can talk about organization of BI, we need to have a clear definition of roles for team members within a BI department.

A Data Engineer (also Database Developer) uses databases to save structured, semi-structured and unstructured data. He or she is responsible for data cleaning, data availability, data models and also for the database performance. Furthermore, a good Data Engineer has at least basic knowledge about data security and data privacy. A Data Engineer uses SQL and NoSQL-Technologies.

A Data Analyst (also BI Analyst or BI Consultant) uses the data delivered by the Data Engineer to create or adjust data models and implementing business logic in those data models and BI dashboards. He or she needs to understand the needs of the business. This job requires good communication and consulting skills as well as good developing skills in SQL and BI Tools such like MS Power BI, Tableau or Qlik.

A Business Analyst (also Business Data Analyst) is a person form any business department who has basic knowledge in data analysis. He or she has good knowledge in MS Excel and at least basic knowledge in data analysis and BI Tools. A Business Analyst will not create data models in databases but uses existing data models to create dashboards or to adjust existing data analysis applications. Good Business Analyst have SQL Skills.

A Data Scientist is a Data Analyst with extended skills in statistics and machine learning. He or she can use very specific tools and analytical methods for finding pattern in unknow or big data (Data Mining) or to predict events based on pattern calculated by using historized data (Predictive Analytics). Data Scientists work mostly with Python or R programming.

Organization Type 1 – Central Approach (Data Lab)

The first type of organization is the data lab approach. This organization form is easy to manage because it’s focused and therefore clear in terms of budgeting. The data delivery is done centrally by experts and their method and technology knowledge. Consequently, the quality expectation of data delivery and data analysis as well as the whole development process is highest here. Also the data governance is simple and the responsibilities clearly adjustable. Not to be underestimated is the aspect of recruiting, because new employees and qualified applicants like to join a central team of experts.

However, this form of organization requires that the company has the right working attitude, especially in the business intelligence department. A centralized business intelligence department acts as a shared service. Accordingly, customer-oriented thinking becomes a prerequisite for the company’s success – and customers here are the other departments that need access to the capacities of those centralized data experts. Communication boundaries must be overcome and ways of simple and effective communication must be found.

Organization Type 2 – Stakeholder Focus Approach

Other companies want to shift more responsibility for data governance, and especially data use and analytics, to those departments where data plays a key role right now. A central business intelligence department manages its own projects, which have a meaning for the entire company. The specialist departments, which have a special need for data analysis, have their own data experts who carry out critical projects for the specialist department. The central Business Intelligence department does not only provide the technical delivery of data, but also through methodical consulting. Although most of the responsibility lies with the Business Intelligence department, some other data-focused departments are at least co-responsible.

The advantage is obvious: There are special data experts who work deeper in the actual departments and feel more connected and responsible to them. The technical-business focus lies on pain points of the company.

However, this form of Ogranization also has decisive disadvantages: The danger of developing isolated solutions that are so special in some specific areas that they will not really work company-wide increases. Typically the company has to deal with asymmetrical growth of data analytics
know-how. Managing data governance is more complex and recruitment is becoming more difficult as the business intelligence department is weakened and smaller, and data professionals for other departments need to have more business focus, which means they are looking for more specialized profiles.

Organization Type 3 – Decentral Approach

Some companies are also taking a more extreme approach in the other direction. The Business Intelligence department now has only Data Engineers building and maintaining the data warehouse or data lake. As a result, the central department only provides data; it is used and analyzed in all other departments, specifically for the respective applications.

The advantage lies in the personal responsibility of the respective departments as „pain points“ of the company are in focus in belief that business departments know their problems and solutions better than any other department does. Highly specialized data experts can understand colleagues of their own department well and there is no no shared service mindset neccessary, except for the data delivery.

Of course, this organizational form has clear disadvantages since many isolated solutions are unavoidable and the development process of each data-driven solution will be inefficient. These insular solutions may work with luck for your own department, but not for the whole company. There is no one single source of truth. The recruiting process is more difficult as it requires more specialized data experts with more business background. We have to expect an asymmetrical growth of data analytics know-how and a difficult data governance.

 

The 6 most in-demand AI jobs and how to get them

A press release issued in December 2017 by Gartner, Inc explicitly states, 2020 will be a pivotal year in Artificial Intelligence-related employment dynamics. It states AI will become “a positive job motivator”.

However, the Gartner report also sounds some alarm bells. “The number of jobs affected by AI will vary by industry-through 2019, healthcare, the public sector and education will see continuously growing job demand while manufacturing will be hit the hardest. Starting in 2020, AI-related job creation will cross into positive territory, reaching two million net-new jobs in 2025,” the press release adds.

This phenomenon is expected to strike worldwide, as a report carried by a leading Indian financial daily, The Hindu BusinessLine states. “The year 2018 will see a sharp increase in demand for professionals with skills in emerging technologies such as Artificial Intelligence (AI) and machine learning, even as people with capabilities in Big Data and Analytics will continue to be the most sought after by companies across sectors, say sources in the recruitment industry,” this news article says.

Before we proceed, let us understand what exactly does Artificial Intelligence or AI mean.

Understanding Artificial Intelligence

Encyclopedia Britannica explains AI as: “The ability of a digital computer or computer-controlled robot to perform tasks commonly associated with human beings.” Classic examples of AI are computer games that can be played solo on a computer. Of these, one can be a human while the other is the reasoning, analytical and other intellectual property a computer. Chess is one example of such a game. While playing Chess with a computer, AI will analyze your moves. It will predict and reason why you made them and respond accordingly.

Similarly, AI imitates functions of the human brain to a very great extent. Of course, AI can never match the prowess of humans but it can come fairly close.

What this means?

This means that AI technology will advance exponentially. The main objective for developing AI will not aim at reducing dependence on humans that can result in loss of jobs or mass retrenchment of employees. Having a large population of unemployed people is harmful to economy of any country. Secondly, people without money will not be able to utilize most functions that are performed through AI, which will render the technology useless.

The advent and growing popularity of AI can be summarized in words of Bill Gates. According to the founder of Microsoft, AI will have a positive impact on people’s lives. In an interview with Fox Business, he said, people would have more spare time that would eventually lead to happier life. However he cautions, it would be long before AI starts making any significant impact on our daily activities and jobs.

Career in AI

Since AI primarily aims at making human life better, several companies are testing the technology. Global online retailer Amazon is one amongst these. Banks and financial institutions, service providers and several other industries are expected to jump on the AI bandwagon in 2018 and coming years. Hence, this is the right time to aim for a career in AI. Currently, there exists a great demand for AI professionals. Here, we look at the top six employment opportunities in Artificial Intelligence.

Computer Vision Research Engineer

 A Computer Vision Research Engineer’s work includes research and analysis, developing software and tools, and computer vision technologies. The primary role of this job is to ensure customer experience that equals human interaction.

Business Intelligence Engineer

As the job designation implies, the role of a Business Intelligence Engineer is to gather data from multiple functions performed by AI such as marketing and collecting payments. It also involves studying consumer patterns and bridging gaps that AI leaves.

Data Scientist

A posting for Data Scientist on recruitment website Indeed describes Data Scientist in these words: “ A mixture between a statistician, scientist, machine learning expert and engineer: someone who has the passion for building and improving Internet-scale products informed by data. The ideal candidate understands human behavior and knows what to look for in the data.

Research and Development Engineer (AI)

Research & Development Engineers are needed to find ways and means to improve functions performed through Artificial Intelligence. They research voice and text chat conversations conducted by bots or robotic intelligence with real-life persons to ensure there are no glitches. They also develop better solutions to eliminate the gap between human and AI interactions.

Machine Learning Specialist

The job of a Machine Learning Specialist is rather complex. They are required to study patterns such as the large-scale use of data, uploads, common words used in any language and how it can be incorporated into AI functions as well as analyzing and improving existing techniques.

Researchers

Researchers in AI is perhaps the best-paid lot. They are required to research into various aspects of AI in any organization. Their role involves researching usage patterns, AI responses, data analysis, data mining and research, linguistic differences based on demographics and almost every human function that AI is expected to perform.

As with any other field, there are several other designations available in AI. However, these will depend upon your geographic location. The best way to find the demand for any AI job is to look for good recruitment or job posting sites, especially those specific to your region.

In conclusion

Since AI is a technology that is gathering momentum, it will be some years before there is a flood of people who can be hired as fresher or expert in this field. Consequently, the demand for AI professionals is rather high. Median salaries these jobs mentioned above range between US$ 100,000 to US$ 150,000 per year.

However, before leaping into AI, it is advisable to find out what other qualifications are required by employers. As with any job, some companies need AI experts that hold specific engineering degrees combined with additional qualifications in IT and a certificate that states you hold the required AI training. Despite, this is the best time to make a career in the AI sector.