Posts

R als Tool im Process Mining

Die Open Source Sprache R ermöglicht eine Vielzahl von Analysemöglichkeiten, die von einer einfachen beschreibenden Darstellung eines Prozesses bis zur umfassenden statistischen Analyse reicht. Dabei können Daten aus einem Manufacturing Execution System, kurz MES, als Basis der Prozessanalyse herangezogen werden. R ist ein Open Source Programm, welches sich für die Lösung von statischen Aufgaben im Bereich der Prozessoptimierung sehr gut eignet, erfordert jedoch auf Grund des Bedienungskonzepts als Scriptsprache, grundlegende Kenntnisse der Programmierung. Aber auch eine interaktive Bedienung lässt sich mit einer Einbindung der Statistikfunktionen in ein Dashboard erreichen. Damit können entsprechend den Anforderungen, automatisierte Analysen ohne Programmierkenntnisse realisiert werden.

Der Prozess als Spagetti Diagramm

Um einen Überblick zu erhalten, wird der Prozess in einem „process value flowchart“, ähnlich einem Spagetti‐ Diagramm dargestellt und je nach Anforderung mit Angaben zu den Key Performance Indicators ergänzt. Im konkreten Fall werden die absolute Anzahl und der relative Anteil der bearbeiteten Teile angegeben. Werden Teile wie nachfolgend dargestellt, aufgrund von festgestellten Mängel bei der Qualitätskontrolle automatisiert ausgeschleust, können darüber Kennzahlen für den Ausschuss ermittelt werden.

Der Prozess in Tabellen und Diagrammen

Im folgenden Chart sind grundlegende Angaben zu den ausgeführten Prozessschritten, sowie deren Varianten dargestellt. Die Statistikansicht bietet eine Übersicht zu den Fällen, den sogenannte „Cases“, sowie zur Dauer und Taktzeit der einzelnen Aktivitäten. Dabei handelt es sich um eine Fertigungsline mit hohem Automatisierungsgrad, bei der jeder Fertigungsschritt im MES dokumentiert wird. Die Tabelle enthält statistische Angaben zur Zykluszeit, sowie der Prozessdauer zu den einzelnen Aktivitäten. In diesem Fall waren keine Timestamps für das Ende der Aktivität vorhanden, somit konnte die Prozessdauer nicht berechnet werden.

Die Anwendung von Six Sigma Tools

R verfügt über eine umfangreiche Sammlung von Bibliotheken zur Datendarstellung, sowie der Prozessanalyse. Darin sind auch Tools aus Six Sigma enthalten, die für die weitere Analyse der Prozesse eingesetzt werden können. In den folgenden Darstellungen wird die Möglichkeit aufgezeigt, zwei Produktionszeiträume, welche über eine einfache Datumseingabe im Dashboard abgegrenzt werden, gegenüber zu stellen. Dabei handelt es sich um die Ausbringung der Fertigung in Stundenwerten, die für jeden Prozessschritt errechnet wird. Das xbar und r Chart findet im Bereich der Qualitätssicherung häufig Anwendung zur ersten Beurteilung des Prozessoutputs.

Zwei weitere Six Sigma typische Kennzahlen zur Beurteilung der Prozessfähigkeit sind der Cp und Cpk Wert und deren Ermittlung ein Bestandteil der R Bibliotheken ist. Bei der Berechnung wird von einer Normalverteilung der Daten ausgegangen, wobei das Ergebnis aus der Überprüfung dieser Annahme im Chart durch Zahlen, als auch grafisch dargestellt wird.

Von Interesse ist auch die Antwort auf die Frage, welchem Trend folgt der Prozess? Bereits aus der Darstellung der beiden Produktionszeiträume im Box‐Whiskers‐Plot könnte man anhand der Mediane auf einen Trend zu einer Verschlechterung der Ausbringung schließen, den der Interquartilsabstand nicht widerspiegelt. Eine weitere Absicherung einer Aussage über den Trend, kann über einen statistischen Vergleichs der Mittelwerte erfolgen.

Der Modellvergleich

Besteht die Anforderung einer direkten Gegenüberstellung des geplanten, mit dem vorgefundenen, sogenannten „Discovered Model“, ist aufgrund der Komplexität beim Modellvergleich, dieser in R mit hohem Programmieraufwand verbunden. Besser geeignet sind dafür spezielle Process Miningtools. Diese ermöglichen den direkten Vergleich und unterstützen bei der Analyse der Ursachen zu den dargestellten Abweichungen. Bei Produktionsprozessen handelt es sich meist um sogenannte „Milestone Events“, die bei jedem Fertigungsschritt durch das MES dokumentiert werden und eine einfache Modellierung des Target Process ermöglichen. Weiterführende Analysen der Prozessdaten in R sind durch einen direkten Zugriff über ein API realisierbar oder es wurde vollständig integriert. Damit eröffnen sich wiederum die umfangreichen Möglichkeiten bei der statistischen Prozessanalyse, sowie der Einsatz von Six Sigma Tools aus dem Qualitätsmanagement. Die Analyse kann durch eine, den Kundenanforderungen entsprechende Darstellung in einem Dashboard vereinfacht werden, ermöglicht somit eine zeitnahe, weitgehend automatisierte Prozessanalyse auf Basis der Produktionsdaten.

Resümee

Process Mining in R ermöglicht zeitnahe Ergebnisse, die bis zur automatisierten Analyse in Echtzeit reicht. Der Einsatz beschleunigt erheblich das Process Controlling und hilft den Ressourceneinsatz bei der Datenerhebung, sowie deren Analyse zu reduzieren. Es kann als stand‐alone Lösung zur Untersuchung des „Discovered Process“ oder als Erweiterung für nachfolgende statistische Analysen eingesetzt werden. Als stand‐alone Lösung eignet es sich für Prozesse mit geringer Komplexität, wie in der automatisierten Fertigung. Besteht eine hohe Diversifikation oder sollen standortübergreifende Prozessanalysen durchgeführt werden, übersteigt der Ressourcenaufwand rasch die Kosten für den Einsatz einer Enterprise Software, von denen mittlerweile einige angeboten werden.

 

Datenschutz, Sicherheit und Ethik beim Process Mining – Regel 4 von 4:

Dieser Artikel ist Teil 4 von 4 aus der Reihe Datenschutz, Sicherheit und Ethik beim Process Mining.

english-flagRead this article in English:
Privacy, Security and Ethics in Process Mining – Rule 4 of 4


Schaffung einer Kooperationskultur

Möglicherweise ist der wichtigste Bestandteil bei der Schaffung eines verantwortungsbewussten Process Mining-Umfeldes der Aufbau einer Kooperationskultur innerhalb Ihrer Organisation. Process Mining kann die Fehler Ihrer Prozesse viel eindeutiger aufzeigen, als das manchen Menschen lieb ist. Daher sollten Sie Change Management-Experten miteinbeziehen wie beispielsweise Lean-Coaches, die es verstehen, Menschen dazu zu bewegen, sich gegenseitig “die Wahrheit“ zu sagen (siehe auch: Erfolgskriterien beim Process Mining).

Darüber hinaus sollten Sie vorsichtig sein, wie Sie die Ziele Ihres Process Mining-Projektes vermitteln und relevante Stakeholder so einbeziehen, dass ihre Meinung gehört wird. Ziel ist es, eine Atmosphäre zu schaffen, in der die Menschen nicht für ihre Fehler verantwortlich gemacht werden (was nur dazu führt, dass sie verbergen, was sie tun und gegen Sie arbeiten), sondern ein Umfeld zu schaffen, in dem jeder mitgenommen wird und wo die Analyse und Prozessverbesserung ein gemeinsames Ziel darstellt, für das man sich engagiert.

Was man tun sollte:

  • Vergewissern Sie sich, dass Sie die Datenqualität überprüfen, bevor Sie mit der Datenanalyse beginnen, bestenfalls durch die Einbeziehung eines Fachexperten bereits in der Datenvalidierungsphase. Auf diese Weise können Sie das Vertrauen der Prozessmanager stärken, dass die Daten widerspiegeln, was tatsächlich passiert und sicherstellen, dass Sie verstanden haben, was die Daten darstellen.
  • Arbeiten Sie auf iterative Weise und präsentieren Sie Ihre Ergebnisse als Ausgangspunkt einer Diskussion bei jeder Iteration. Geben Sie allen Beteiligten die Möglichkeit zu erklären, warum bestimmte Dinge geschehen und seien Sie offen für zusätzliche Fragen (die in der nächsten Iteration aufgegriffen werden). Dies wird dazu beitragen, die Qualität und Relevanz Ihrer Analyse zu verbessern, als auch das Vertrauen der Prozessverantwortlichen in die endgültigen Projektergebnisse zu erhöhen.

Was man nicht tun sollte:

  • Voreilige Schlüsse ziehen. Sie können nie davon ausgehen, dass Sie alles über den Prozess wissen. Zum Beispiel können langsamere Teams die schwierigen Fälle behandeln, es kann gute Gründe geben, von dem Standardprozess abzuweichen und Sie sehen möglicherweise nicht alles in den Daten (beispielsweise Vorgänge, die außerhalb des Systems durchgeführt werden). Indem Sie konstant Ihre Beobachtungen als Ausgangspunkt für Diskussionen anbringen und den Menschen die Möglichkeit einräumen, Ihre Erfahrung und Interpretationen mitzugeben, beginnen Sie, Vertrauen und die Kooperationskultur aufzubauen, die Process Mining braucht.
  • Schlussfolgerungen erzwingen, die ihren Erwartungen entsprechen oder die sie haben möchten, indem Sie die Daten falsch darstellen (oder Dinge darstellen, die nicht wirklich durch die Daten unterstützt werden). Führen Sie stattdessen ganz genau Buch über die Schritte, die Sie bei der Datenaufbereitung und in Ihrer Process-Mining-Analyse ausgeführt haben. Wenn Zweifel an der Gültigkeit bestehen oder es Fragen zu Ihrer Analysebasis gibt, dann können Sie stets zurückkehren und beispielsweise zeigen, welche Filter bei den Daten angewendet wurden, um zu der bestimmten Prozesssicht zu gelangen, die Sie vorstellen.

Statistical Relational Learning – Part 2

In the first part of this series onAn Introduction to Statistical Relational Learning”, I touched upon the basic Machine Learning paradigms, some background and intuition of the concepts and concluded with how the MLN template looks like. In this blog, we will dive in to get an in depth knowledge on the MLN template; again with the help of sample examples. I would then conclude by highlighting the various toolkit available and some of its differentiating features.

MLN Template – explained

A Markov logic network can be thought of as a group of formulas incorporating first-order logic and also tied with a weight. But what exactly does this weight signify?

Weight Learning

According to the definition, it is the log odds between a world where F is true and a world where F is false,

and captures the marginal distribution of the corresponding predicate.

Each formula can be associated with some weight value, that is a positive or negative real number. The higher the value of weight, the stronger the constraint represented by the formula. In contrast to classical logic, all worlds (i.e., Herbrand Interpretations) are possible with a certain probability [1]. The main idea behind this is that the probability of a world increases as the number of formulas it violates decreases.

Markov logic networks with its probabilistic approach combined to logic posit that a world is less likely if it violates formulas unlike in pure logic where a world is false if it violates even a single formula. Consider the case when a formula with high weight i.e. more significance is violated implying that it is less likely in occurrence.

Another important concept during the first phase of Weight Learning while applying an MLN template is “Grounding”. Grounding means to replace each variable/function in predicate with constants from the domain.

Weight Learning – An Example

Note: All examples are highlighted in the Alchemy MLN format

Let us consider an example where we want to identify the relationship between 2 different types of verb-noun pairs i.e noun subject and direct object.

The input predicateFormula.mln file contains

  1. The predicates nsubj(verb, subject) and dobj(verb, object) and
  2. Formula of nsubj(+ver, +s) and dobj(+ver, +o)

These predicates or rules are to learn all possible SVO combinations i.e. what is the probability of a Subject-Verb-Object combination. The + sign ensures a cross product between the domains and learns all combinations. The training database consists of the nsubj and dobj tuples i.e. relations is the evidence used to learn the weights.

When we run the above command for this set of rules against the training evidence, we learn the weights as here:

Note that the formula is now grounded by all occurrences of nsubj and dobj tuples from the training database or evidence and the weights are attached to it at the start of each such combination.

But it should be noted that there is no network yet and this is just a set of weighted first-order logic formulas. The MLN template we created so far will generate Markov networks from all of our ground formulas. Internally, it is represented as a factor graph.where each ground formula is a factor and all the ground predicates found in the ground formula are linked to the factor.

Inference

The definition goes as follows:

Estimate probability distribution encoded by a graphical model, for a given data (or observation).

Out of the many Inference algorithms, the two major ones are MAP & Marginal Inference. For example, in a MAP Inference we find the most likely state of world given evidence, where y is the query and x is the evidence.

which is in turn equivalent to this formula.

Another is the Marginal Inference which computes the conditional probability of query predicates, given some evidence. Some advanced inference algorithms are Loopy Belief Propagation, Walk-SAT, MC-SAT, etc.

The probability of a world is given by the weighted sum of all true groundings of a formula i under an exponential function, divided by the partition function Z i.e. equivalent to the sum of the values of all possible assignments. The partition function acts a normalization constant to get the probability values between 0 and 1.

Inference – An Example

Let us draw inference on the the same example as earlier.

After learning the weights we run inference (with or without partial evidence) and query the relations of interest (nsubj here), to get inferred values.

Tool-kits

Let’s look at some of the MLN tool-kits at disposal to do learning and large scale inference. I have tried to make an assorted list of all tools here and tried to highlight some of its main features & problems.

For example, BUGS i.e. Bayesian Logic uses a Swift Compiler but is Not relational! ProbLog has a Python wrapper and is based on Horn clauses but has No Learning feature. These tools were invented in the initial days, much before the present day MLN looks like.

ProbCog developed at Technical University of Munich (TUM) & the AI Lab at Bremen covers not just MLN but also Bayesian Logic Networks (BLNs), Bayesian Networks & ProLog. In fact, it is now GUI based. Thebeast gives a shell to analyze & inspect model feature weights & missing features.

Alchemy from University of Washington (UoW) was the 1st First Order (FO) probabilistic logic toolkit. RockIt from University of Mannheim has an online & rest based interface and uses only Conjunctive Normal Forms (CNF) i.e. And-Or format in its formulas.

Tuffy scales this up by using a Relational Database Management System (RDBMS) whereas Felix allows Large Scale inference! Elementary makes use of secondary storage and Deep Dive is the current state of the art. All of these tools are part of the HAZY project group at Stanford University.

Lastly, LoMRF i.e. Logical Markov Random Field (MRF) is Scala based and has a feature to analyse different hypothesis by comparing the difference in .mln files!

 

Hope you enjoyed the read. The content starts from basic concepts and ends up highlighting key tools. In the final part of this 3 part blog series I would explain an application scenario and highlight the active research and industry players. Any feedback as a comment below or through a message is more than welcome!

Back to Part I – Statistical Relational Learning

Additional Links:

[1] Knowledge base files in Logical Markov Random Fields (LoMRF)

[2] (still) nothing clever Posts categorized “Machine Learning” – Markov Logic Networks

[3] A gentle introduction to statistical relational learning: maths, code, and examples

Toolkits & Services für Semantische Textanalysen

Named Entity Recognition ist ein Teilgebiet von Information Extraction. Ziel von Information Extraction ist die Gewinnung semantischer Informationen aus Texten (im Gegensatz zum verwandten Gebiet des Information Retrieval, bei dem es um das möglichst intelligente Finden von Informationen, die u.U. vorab mit Information Extraction gewonnen wurden, geht). Named Entity Recognition (kurz NER) bezeichnet die Erkennung von Entitäten wie z.B. Personen, Organisationen oder Orten in Texten.

[box]Beispiel:
Albert Einstein war ein theoretischer Physiker, der am 14. März 1879 in Ulm geboren wurde. Er erhielt 1921 den Nobelpreis für Physik. Isaac Newton, Einstein und Stephen Hawking werden oft als die größten Physiker seit der Antike bezeichnet.”[/box]

Die Disambiguierung von Entitäten ist ein weiterer wichtiger Schritt auf dem Weg zu einem semantischen Verständnis von Texten. Wenn man so in obigem Text erkennen kann, dass “Albert Einstein“, “Er” und “Einstein” die gleiche Person bezeichnen, so kann ein Analyseverfahren z.B. daraus schließen, dass in diesem Text Einstein eine wichtigere Rolle spielt, als Newton, der nur einmal erwähnt wurde. Die Hyperlinks hinter den jeweiligen Entitäten zeigen eine Möglichkeit der semantischen Anreicherung von Texten an – in diesem Fall wurden die Entitäten mit entsprechenden Einträgen bei DBpedia automatisch verlinkt.

Named Entity Recognition dient vorrangig zwei Zwecken:

  • Anreicherung von Texten mit Metadaten
  • Abstraktion von Texten zur besseren Erkennung von Mustern

Punkt 1 dient direkt dem Information Retrieval. Anwender können so z.B. gezielt nach bestimmten Personen suchen, ohne alle möglichen Schreibweisen oder Berufsbezeichnungen auflisten zu müssen.

Punkt 2 dient der Vorverarbeitung von Texten als Input für Machine Learning Verfahren. So ist es (je nach Anwendung!) oft nicht von Bedeutung, welche Person, welcher Ort oder auch welche Uhrzeit in einem Text steht sondern nur die Tatsache, dass Personen, Orte oder Zeiten erwähnt wurden.

Sirrus Shakeri veranschaulicht die zentrale Bedeutung semantischer Analyse in seinem Beitrag From Big Data to Intelligent Applications:

intelligent-applications-cirrus-shakeri

Abbildung 1: Von Big Data zu Intelligent Applications von Cirrus Shakeri

Sein “Semantic Graph” setzt voraus, dass Entitäten mittels “Natural Language Processing” erkannt und zueinander in Beziehung gesetzt wurden.

Es ist interessant zu vermerken, dass Natural Language Processing und Data Mining / Machine Learning über viele Jahre als Alternativen zueinander und nicht als Ergänzungen voneinander gesehen wurden. In der Tat springen die meisten Vorgehensmodelle heutzutage von “Data Preparation” zu “Machine Reasoning”. Wir argumentieren, dass sich in vielen Anwendungen, die auf unstrukturierten Daten basieren, signifikante Qualitätsverbesserungen erzielen lassen, wenn man zumindest NER (inklusive Disambiguierung) in die Pipeline mit einbezieht.

Toolkits und Services für NER

Es existiert eine Vielzahl von Toolkits für Natural Language Processing, die Sie mehr oder weniger direkt in Ihre Programme einbinden können. Exemplarisch seien drei Toolkits für Java, Python und R erwähnt:

Diese Toolkits enthalten Modelle, die auf Korpora für die jeweils unterstützten Sprachen trainiert wurden. Sie haben den Vorteil, dass sie auch vollkommen neue Entitäten erkennen können (wie z.B. neue Politiker oder Fernsehstars, die zur Trainingszeit noch unbekannt waren). Je nach Einstellung haben diese Systeme aber auch eine relativ hohe Falsch-Positiv-Rate.

Wer NER nur ausprobieren möchte oder lediglich gelegentlich kleinere Texte zu annotieren hat, sei auf die folgenden Web Services verwiesen, die auch jeweils eine REST-Schnittstelle anbieten.

DBpedia

Das DBpedia Projekt nutzt die strukturierten Informationen der verschieden-sprachigen Wikipedia Sites für den Spotlight Service. Im Unterschied zu den reinen Toolkits nutzen die nun genannten Werkzeuge zusätzlich zu den trainierten Modellen eine Wissensbasis zur Verringerung der Falsch-Positiv-Rate. Die mehrsprachige Version unter http://dbpedia-spotlight.github.io/demo zeigt die Möglichkeiten des Systems auf. Wählen Sie unter “Language” “German“) und dann über “SELECT TYPES…” die zu annotierenden Entitätstypen. Ein Beispieltext wird automatisch eingefügt. Sie können ihn natürlich durch beliebige andere Texte ersetzen. Im folgenden Beispiel wurden “Organisation”, “Person”, und “Place“ ausgewählt:

DBprediaSpotlight

Abbildung 2: DBpedia Demo (de.dbpedia.org)

Die erkannten Entitäten werden direkt mit ihren DBpedia Datenbankeinträgen verlinkt. Im Beispiel wurden die Orte Berlin, Brandenburg und Preußen sowie die Organisationen Deutsches Reich, Deutsche Demokratische Republik, Deutscher Bundestag und Bundesrat erkannt. Personen wurden in dem Beispieltext nicht erkannt. Die Frage, ob man “Sitz des Bundespräsidenten” als Ort (Sitz), Organisation (das Amt des Bundespräsidenten) und / oder Person (der Bundespräsident) bezeichnen sollte, hängt durchaus vom Anwendungsszenario ab.

OpeNER

Das OpeNER Projekt ist das Ergebnis eines europäischen Forschungsprojekts und erweitert die Funktionalität von DBpedia Spotlight mit weiteren semantischen Analysen. Die Demo unter http://demo2-opener.rhcloud.com/welcome.action (Tab “Live Analysis Demo“, “Named Entity Recognition and Classification” und “Named Entity Linking” auswählen und “Analyse” drücken, dann auf der rechten Seite das Tab “NERC” anwählen) ergibt für den gleichen Beispieltext:

opeNER-projekt

Abbildung 3: OpeNER Projekt (opener-project.eu)

Organisationen sind blau hinterlegt, während Orte orange markiert werden. Auch hier werden erkannte Entitäten mit ihren DBpedia Datenbankeinträgen verknüpft. Die Bedeutung dieser Verknüpfung erkennt man wenn man auf das Tab “Map” wechselt. Berlin wurde als Ort erkannt und über die Geo-Koordinaten (geo:long = 13.4083, geo.lat = 52.5186) im DBpedia Eintrag von Berlin konnte das Wort “Berlin” aus obigem Text automatisch auf der Weltkarte referenziert werden.

Es gibt eine Vielzahl weiterer Services für NLP wie z.B. OpenCalais. Einige dieser Services bieten bestimmte Funktionalitäten (wie z.B. Sentiment Analysis) oder andere Sprachen neben Englisch nur gegen eine Gebühr an.

Listen Tagger

Der Vollständigkeit halber sei noch erwähnt, dass in den meisten Anwendungsszenarien die oben genannten Werkzeuge durch sogenannte Listen-Tagger (englisch Dictionary Tagger) ergänzt werden. Diese Tagger verwenden Listen von Personen, Organisationen oder auch Marken, Bauteilen, Produktbezeichnern oder beliebigen anderen Gruppen von Entitäten. Listen-Tagger arbeiten entweder unabhängig von den oben genannten statistischen Taggern (wie z.B. dem Standford Tagger) oder nachgeschaltet. Im ersten Fall markieren diese Tagger alle Vorkommen bestimmter Worte im Text (z.B. „Zalando“ kann so direkt als Modemarke erkannt werden). Im zweiten Fall werden die Listen genutzt, um die statistisch erkannten Entitäten zu verifizieren. So könnte z.B. der Vorschlag des statistischen Taggers automatisch akzeptiert werden wenn die vorgeschlagene Person auch in der Liste gefunden wird. Ist die Person jedoch noch nicht in der Liste enthalten, dann könnte ein Mitarbeiter gebeten werden, diesen Vorschlag zu bestätigen oder zu verwerfen. Im Falle einer Bestätigung wird die neu erkannte Person dann in die Personenliste aufgenommen während sie im Falle einer Ablehnung in eine Negativliste übernommen werden könnte damit dieser Vorschlag in Zukunft automatisch unterdrückt wird.

Regular Expression Tagger

Manche Entitätstypen folgen klaren Mustern und können mit hoher Zuverlässigkeit durch reguläre Ausdrücke erkannt werden. Hierzu zählen z.B. Kreditkarten- oder Telefon- oder Versicherungsnummern aber auch in vielen Fällen Bauteilbezeichner oder andere firmeninterne Identifikatoren.

Fazit

Natural Language Processing und insbesondere Named Entity Recognition und Disambiguierung sollte Teil der Werkzeugkiste eines jeden Anwenders bei der Analyse von unstrukturierten Daten sein. Es existieren mehrere mächtige Toolkits und Services, die allerdings je nach Anwendungsgebiet kombiniert und verfeinert werden müssen. So erkennt DBpedia Spotlight nur Entitäten, die auch einen Wikipedia Eintrag haben, kann für diese aber reichhaltige Metadaten liefern. Der Stanford Tagger hingegen kann auch vollkommen unbekannte Personennamen aus dem textuellen Kontext erkennen, hat aber bei manchen Texten eine relativ hohe Falsch-Positiv-Rate. Eine Kombination der beiden Technologien und anwendungsspezifischen Listen von Entitäten kann daher zu qualitativ sehr hochwertigen Ergebnissen führen.

Man redet gerne über Daten, genutzt werden sie nicht

Der Big Data Hype ist vorbei und auf dem Anstieg zum „ Plateau of Productivity“. Doch bereits in dieser Phase klafft die Einschätzung von Analysten mit der Verbreitung von Big Data Predictive Analytics/Data Mining noch weit von der Realität in Deutschland auseinander. Dies belegt u.a. eine Studie der T-Systems Multimedia Solutions, zu welcher in der FAZ* der Artikel Man redet gerne über Daten, genutzt werden sie nicht, erschienen ist. Mich überrascht diese Studie nicht,  sondern bestätigt meine langjährige Markterfahrung.

Die Gründe sind vielfältig: keine Zeit, keine Priorität, keine Kompetenz, kein Data Scientist, keine Zuständigkeit, Software zu komplex – Daten und Use-Cases sind aber vorhanden.

Im folgenden Artikel wird die Datenanalyse- und Data-Mining Software der Synop Systems vorgestellt, welche „out-of-the-box“ alle Funktionen bereitstellt, um Daten zu verknüpfen, zu strukturieren, zu verstehen, Zusammenhänge zu entdecken, Muster in Daten zu lernen und Prognose-Modelle zu entwickeln.

Anforderung an „Advanced-Data-Analytics“-Software

Um Advanced-Data-Analytics-Software zu einer hohen Verbreitung zu bringen, sind folgende Aspekte zu beachten:

  1. Einfachheit in der Nutzung der Software
  2. Schnelligkeit in der Bearbeitung von Daten
  3. Analyse von großen Datenmengen
  4. Große Auswahl an vorgefertigten Analyse-Methoden für unterschiedliche Fragestellungen
  5. Nutzung (fast) ohne IT-Projekt
  6. Offene Architektur für Data-Automation und Integration in operative Prozesse

Synop Analyzer – Pionier der In-Memory Analyse

Um diese Anforderungen zu erfüllen, entstand der Synop Analyzer, welcher seit 2013 von der Synop Systems in den Markt eingeführt wird. Im Einsatz ist die Software bei einem DAX-Konzern bereits seit 2010 und zählt somit zum Pionier einer In-Memory-basierenden Data-Mining Software in Deutschland. Synop Analyzer hat besondere Funktionen für technische Daten. Anwender der Software sind aber in vielen Branchen zu finden: Automotive, Elektronik, Maschinenbau, Payment Service Provider, Handel, Versandhandel, Marktforschung.

Die wesentlichen Kernfunktionen des  Synop Analyzer sind:

a. Eigene In-Memory-Datenhaltung:

Optimiert für große Datenmengen und analytische Fragestellungen. Ablauffähig auf jedem Standard-Rechner können Dank der spaltenbasierenden Datenhaltung und der Komprimierung große Datenmengen sehr schnell analysiert werden. Das Einlesen der Daten erfolgt direkt aus Datenbanktabellen der Quellsysteme oder per Excel, CSV, Json oder XML. Unterschiedliche Daten können verknüpf und synchronisiert werden. Hohe Investitionen für Big-Data-Datenbanken entfallen somit. Eine Suche von Mustern von diagnostic error codes (dtc), welche mind. 300 Mal (Muster) innerhalb 100 Mio. Datenzeilen vorkommen, dauert auf einem I5-Proz. ca. 1200 Sek., inkl. Ausgabe der Liste der Muster. Ein Prognosemodel mittels Naive-Bayes für das Produkt „Kreditkarte“ auf 800 Tsd. Datensätzen wird in ca. 3 Sek. berechnet.

b. Vielzahl an Analyse-Methoden

Um eine hohe Anzahl an Fragestellungen zu beantworten, hat der Synop Analyzer eine Vielzahl an vorkonfigurierten Analyse- und Data-Mining-Verfahren (siehe Grafik) implementiert. Daten zu verstehen wird durch Datenvisualisierung stark vereinfacht. Die multivariate Analyse ist quasi interaktives Data-Mining, welches auch von Fachanwendern schnell genutzt wird. Ad hoc Fragen werden unmittelbar beantwortet – es entstehen aber auch neue Fragen dank der interaktiven Visualisierungen. Data-Mining-Modelle errechnen und deren Modellgüte durch eine Testgruppe zu validieren ist in wenigen Minuten möglich. Dank der Performance der In-Memory-Analyse können lange Zeitreihen und alle sinnvollen Datenmerkmale in die Berechnungen einfließen. Dadurch werden mehr Einflussgrößen erkannt und bessere Modelle errechnet. Mustererkennung ist kein Hokuspokus, sondern Dank der exzellenten Trennschärfe werden nachvollziehbare, signifikante Muster gefunden. Dateninkonsistenzen werden quasi per Knopfdruck identifiziert.

synop-systems-module

c. Interaktives User Interface

Sämtliche Analyse-Module sind interaktiv und ohne Programmierung zu nutzen. Direkt nach dem Einlesen werden Grafiken automatisiert, ohne Datenmodellierung, erstellt.  Schulung ist kaum oder minimal notwendig und Anwender können erstmals fundierte statistische Analysen und Data-Mining in wenigen Schritten umsetzen. Data-Miner und Data Scientisten ersparen sich viel Zeit und können sich mehr auf die Interpretation und Ableitung von Handlungsmaßnahmen fokussieren.

d. Einfacher Einstieg – modular und mitwachsend

Der Synop Analyzer ist in unterschiedlichen Versionen verfügbar:

– Desktop-Version: in dieser Version sind alle Kernfunktionen in einer Installation kombiniert. In wenigen Minuten mit den Standard-Betriebssystemen MS-Windows, Apple Mac, Linux installiert. Außer Java-Runtime ist keine weitere Software notwendig. Somit fast, je nach Rechte am PC, ohne IT-Abt. installierbar. Ideal zum Einstieg und Testen, für Data Labs, Abteilungen und für kleine Unternehmen.

– Client/Server-Version: In dieser Version befinden die Analyse-Engines und die Datenhaltung auf dem Server. Das User-Interface ist auf dem Rechner des Anwenders installiert. Eine Cloud-Version ist demnächst verfügbar. Für größere Teams von Analysten mit definierten Zielen.

– Sandbox-Version: entspricht der C/S-Server Version, doch das User-Interface wird spezifisch auf einen Anwenderkreis oder einen Anwendungsfall bereitgestellt. Ein typischer Anwendungsfall ist, dass gewisse Fachbereiche oder Data Science-Teams eine Daten-Sandbox erhalten. In dieser Sandbox werden frei von klassischen BI-Systemen, Ad-hoc Fragen beantwortet und proaktive Analysen erstellt. Die Daten werden per In-Memory-Instanzen bereitgestellt.

Fazit:  Mit dem Synop Analyzer erhalten Unternehmen die Möglichkeit Daten sofort zu analysieren. Aus vorhandenen Daten wird neues Wissen mit bestehenden Ressourcen gewonnen! Der Aufwand für die Einführung ist minimal. Der Preis für die Software liegt ja nach Ausstattung zw. 2.500 Euro und 9.500 Euro. Welche Ausrede soll es jetzt noch geben?

Nur wer früh beginnt, lernt die Hürden und den Nutzen von Datenanalyse und Data-Mining kennen. Zu Beginn wird der Reifegrad klein sein: Datenqualität ist mäßig, Datenzugriffe sind schwierig. Wie in anderen Disziplinen gilt auch hier: Übung macht den Meister und ein Meister ist noch nie von Himmel gefallen.

Text Mining mit R

R ist nicht nur ein mächtiges Werkzeug zur Analyse strukturierter Daten, sondern eignet sich durchaus auch für erste Analysen von Daten, die lediglich in textueller und somit unstrukturierter Form vorliegen. Im Folgenden zeige ich, welche typischen Vorverarbeitungs- und Analyseschritte auf Textdaten leicht durchzuführen sind. Um uns das Leben etwas leichter zu machen, verwenden wir dafür die eine oder andere zusätzliche R-Library.

Die gezeigten Schritte zeigen natürlich nur einen kleinen Ausschnitt dessen, was man mit Textdaten machen kann. Der Link zum kompletten R-Code (.RMD) findet sich am Ende des Artikels.

Sentimentanalyse

Wir verwenden das Anwendungsgebiet der Sentimentanalyse für diese Demonstration. Mittels der Sentimentanalyse versucht man, Stimmungen zu analysieren. Im Prinzip geht es darum, zu erkennen, ob ein Autor mit einer Aussage eine positive oder negative Stimmung oder Meinung ausdrückt. Je nach Anwendung werden auch neutrale Aussagen betrachtet.

Daten einlesen

Datenquelle: ‘From Group to Individual Labels using Deep Features’, Kotzias et. al,. KDD 2015

Die Daten liegen als cvs vor: Die erste Spalte enhält jeweils einen englischen Satz, gefolgt von einem Tab, gefolgt von einer 0 für negatives Sentiment und einer 1 für positives Sentiment. Nicht alle Sätze in den vorgegebenen Daten sind vorklassifiziert.

Wir lesen 3 Dateien ein, fügen eine Spalte mit der Angabe der Quelle hinzu und teilen die Daten dann in zwei Datensätze auf. Der Datensatz labelled enthält alle vorklassifizierten Sätze während alle anderen Sätze in unlabelled gespeichert werden.

Wir haben nun 3000 vorklassifizierte Sätze, die entweder ein positives oder ein negatives Sentiment ausdrücken:

Textkorpus anlegen

Zuerst konvertieren wir den Datensatz in einen Korpus der R-Package tm:

Wir können uns nun einen Eindruck über die Texte verschaffen, bevor wir erste Vorverarbeitungs- und Säuberungsschritte durchführen:

  • Fünf Dokumente mit negativem Sentiment, die das Wort “good” enthalten: Not a good bargain., Not a good item.. It worked for a while then started having problems in my auto reverse tape player., Not good when wearing a hat or sunglasses., If you are looking for a good quality Motorola Headset keep looking, this isn’t it., However, BT headsets are currently not good for real time games like first-person shooters since the audio delay messes me up.
  • Liste der meist verwendeten Worte im Text: all, and, are, but, film, for, from, good, great, had, have, it’s, just, like, movie, not, one, phone, that, the, this, very, was, were, with, you
  • Anzahl der Worte, die nur einmal verwendet werden: 4820, wie z.B.: ‘film’, ‘ive, ’must’, ‘so, ’stagey’, ’titta
  • Histogramm mit Wortfrequenzen:

Plotten wir, wie oft die häufigsten Worte verwendet werden:

Vorverarbeitung

Es ist leicht zu erkennen, dass sogenannte Stoppworte wie z.B. “the”, “that” und “you” die Statistiken dominieren. Der Informationsgehalt solcher Stopp- oder Füllworte ist oft gering und daher werden sie oft vom Korpus entfernt. Allerdings sollte man dabei Vorsicht walten lassen: not ist zwar ein Stoppwort, könnte aber z.B. bei der Sentimentanalyse durchaus von Bedeutung sein.

Ein paar rudimentäre Vorverarbeitungen:

Wir konvertieren den gesamten Text zu Kleinbuchstaben und entfernen die Stoppworte unter Verwendung der mitgelieferten R-Stoppwortliste für Englisch (stopwords(“english”)). Eine weitere Standardoperation ist Stemming, das wir heute auslassen. Zusätzlich entfernen wir alle Sonderzeichen und Zahlen und behalten nur die Buchstaben a bis z:

 

Schlagwortwolke bzw Tag Cloud

Schließlich erzeugen wir eine Tag-Cloud aller Worte, die mindestens 25 mal im Text verwendet werden. Tag-Clouds eignen sich hervorragend zur visuellen Inspektion von Texten, allerdings lassen sich daraus nur bedingt direkte Handlungsanweisungen ableiten:

schlagwortwolke

Word-Assoziationen

Wir können uns für bestimmte Worte anzeigen lassen, wie oft sie gemeinsam mit anderen Worten im gleichen Text verwendet werden:

  • Worte, die häufig gemeinsam mit movie verwendet werden:

  • Worte, die häufig gemeinsam mit product verwendet werden:


 

Text-Mining

Wir erzeugen einen Entscheidungsbaum zur Vorhersage des Sentiments. Entscheidungsbäume sind nicht unbedingt das Werkzeug der Wahl für Text-Mining aber für einen ersten Eindruck lassen sie sich bei kleinen Datensätzen durchaus gewinnbringend einsetzen:

 

Eine Fehlerrate von über 50% auf den Trainingsdaten für positive Sentiments ist natürlich nicht berauschend und daher testen wir zum Schluß noch Support Vector Machines:

Die Ergebnisse sehen deutlich besser aus, müssten aber natürlich noch auf unabhängigen Daten verifiziert werden, um z. B. ein Overfittung zu vermeiden.

Download-Link zum kompletten R-Code für dieses Text-Mining-Beispiel: https://www.data-science-blog.com/download/textMiningTeaser.rmd

Komplexe Abläufe verständlich dargestellt mit Process Mining

Stellen Sie sich vor, dass Ihr Data Science Team dabei helfen soll, die Ursache für eine wachsende Anzahl von Beschwerden im Kundenservice-Prozess zu finden. Sie vertiefen sich in die Daten des Service-Portals und generieren eine Reihe von Charts und Statistiken zur Verteilung der Beschwerden auf die verschiedenen Fachbereiche und Produktgruppen. Aber um das Problem zu lösen, müssen die Schwachstellen im Prozess selbst offengelegt und mit dem Fachbereich kommuniziert werden.

Nach Einbeziehen der CRM-Daten sind Sie mit Process Mining schnell in der Lage etliche unerwünschte Schleifen und Verzögerungen im Prozess zu identifizieren. Und diese Abweichungen werden sogar vollautomatisch als graphische Prozesskarte abgebildet! Der Fachbereichsleiter sieht auf den ersten Blick, wo das Problem liegt, und kann umgehend Verbesserungsmassnahmen einleiten.

Genau hier sehen wir eine zunehmende Begeisterung für Process Mining über alle Branchen hinweg: Der Datenanalyst kann nicht nur schnell Antworten liefern sondern auch die Sprache des Prozessmanagers sprechen und die entdeckten Prozessprobleme eindrücklich visuell machen.

Data Scientists bewegen sich geschickt durch eine ganze Reihe von Technologien. Sie wissen, dass 80% der Arbeit in der Aufbereitung und dem Säubern der Daten besteht. Sie können mit SQL, NoSQL, ETL-Tools, Statistik, Skriptsprachen wie Python, Data-Mining-Werkzeugen und R umgehen. Aber für viele von ihnen ist Process Mining noch nicht Teil der Data-Science-Tool-Box. Read more