Einführung in WEKA

Waikato Environment for Knowledge Analysis, kurz WEKA, ist ein quelloffenes, umfangreiches, plattformunabhängiges Data Mining Softwarepaket. WEKA ist in Java geschrieben und wurde an der WAIKATO Iniversität entwickelt. In WEKA sind viele wichtige Data Mining/Machine Learning Algorithmen implementiert und es gibt extra Pakete, wie z. B. LibSVM für Support Vector Machines, welches nicht in WEKA direkt implementiert wurde. Alle Einzelheiten zum Installieren und entsprechende Download-Links findet man unter auf der Webseite der Waikato Universität. Zusammen mit der Software wird ein Manual und ein Ordner mit Beispiel-Datensätzen ausgeliefert. WEKA arbeitet mit Datensätzen im sogenannten attribute-relation file format, abgekürzt arff. Das CSV-Format wird aber ebenfalls unterstützt. Eine Datei im arff-Format ist eine ASCI-Textdatei, welche aus einem Header- und einem Datateil besteht. Im Header muss der Name der Relation und der Attribute zusammen mit dem Typ stehen, der Datenteil beginnt mit einem @data-Schlüsselwort. Als Beispiel sei hier ein Datensatz mit zwei Attributen und nur zwei Instanzen gegeben.

WEKA unterstützt auch direktes Einlesen von Daten aus einer Datenbank (mit JDBC) oder URL. Sobald das Tool installiert und gestartet ist, landet man im Hauptmenü von WEKA – WEKA GUI Chooser 1.

Abbildung 1: WEKA GUI Chooser

Abbildung 1: WEKA GUI Chooser

Der GUI Chooser bietet den Einstieg in WEKA Interfaces Explorer, Experimenter, KnowledgeFlow und simple CLI an. Der Explorer ist ein graphisches Interface zum Bearbeiten von Datensätzen, Ausführen von Algorithmen und Visualisieren von den Resultaten. Es ist ratsam, dieses Interface als Erstes zu betrachten, wenn man in WEKA einsteigen möchte. Beispielhaft führen wir jetzt ein paar Algorithmen im Explorer durch.

Der Explorer bietet mehrere Tabs an: Preprocess, Classify, Cluster, Associate, Select attributes und Visualize. Im Preprocess Tab hat man die Möglichkeit Datensätze vorzubereiten. Hier sind zahlreiche Filter zum Präprozessieren von Datensätzen enthalten. Alle Filter sind in supervised und unsupervised unterteilt, je nachdem, ob das Klassenattribut mitbetrachtet werden soll oder nicht. Außerdem kann man entweder Attribute oder Instanzen betrachten, mit Attributen lässt man Filter spaltenweise arbeiten und bei Instanzen reihenweise. Die Auswahl der Filter ist groß, man kann den ausgewählten Datensatz diskretisieren, normalisieren, Rauschen hinzufügen etc. Unter Visualize können z. B. die geladenen Datensätze visualisert werden. Mit Select attributes kann man mithilfe von Attribut Evaluator und Search Method ein genaueres Ergebnis erzielen. Wenn man im Preprocess den Datensatz lädt, erhält man einen Überblick über den Datensatz und dessen Visualisierung. Als Beispiel wird hier der Datensatz diabetes.arff genommen, welcher mit WEKA zusammen ausgeliefert wird. Dieser Datensatz enthält 768 Instanzen mit je 9 Attributen, wobei ein Attribut das Klassenattribut ist. Die Attribute enthalten z. B. Informationen über die Anzahl der Schwangerschaften, diastolischer Blutdruck, BMI usw. Alle Attribute, außer dem Klassenattribut, sind numerisch. Es gibt zwei Klassen tested negativ und tested positiv, welche das Resultat des Testens auf diabetes mellitus darstellen. über Preprocess -> Open File lädt man den Datensatz in WEKA und sieht alle relevanten Informationen wie z. B. Anzahl und Name der Attribute. Nach dem Laden kann der Datensatz klassifiziert werden.

Abbildung 2: Diabetes.arff Datensatz geladen in WEKA

Abbildung 2: Diabetes.arff Datensatz geladen in WEKA

Hierzu einfach auf Classify klicken und unter Choose den gewünschten Algorithmus auswählen. Für diesen Datensatz wählen wir jetzt den Algorithmus kNN (k-Nearest Neighbour). Der Algorithmus klassifiziert das Testobjekt anhand der Klassenzugehörigkeit von den k Nachbarobjekten, die am nähsten zu dem Testobjekt liegen. Die Distanz zwischen den Objekten und dem Testobjekt wird mit einer Ähnlichkeitsmetrik bestimmt, meistens als euklidische oder Manhattan-Distanz. In WEKA ist der Algorithmus unter lazy iBk zu finden. Wenn man auf das Feld neben dem Algorithmusnamen in WEKA mit rechter Maustaste klickt, kann man unter show properties die Werte für den ausgewählten Algorithmus ändern, bei iBk kann man u.A. den Wert für k ändern. Für den ausgewählten Datensatz diabetes.arff stellen wir beispielsweise k = 3 ein und führen die 10-fache Kreuzvalidierung durch, indem wir unter Test Options die Cross Validation auswählen. Nach der Klassifikation werden die Ergebnisse in einer Warhheitsmatrix präsentiert. In unserem Fall sieht diese wie folgt aus:

Die Anzahl der richtig klassifizierten Instanzen beträgt 72.6563 %. Wenn man in der Result list auf den entsprechenden Algorithmus einen Rechtsklick macht, kann man z. B. noch den Fehler der Klassifizierung visualisieren. Entsprechend lassen sich im Explorer unter Cluster Clustering-Algorithmen und unter Associate Assoziationsalgorithmen auf einen ausgewählten Datensatz anwenden. Die restlichen Interfaces von WEKA bieten z. T. die gleiche Funktionalität oder erweitern die Möglichkeiten des Experimentierens, fordern aber mehr Erfahrung und Wissen von dem User. Das Experimenter Interface dient dazu, mehrere Datensätze mit mehreren Algorithmen zu analysieren. Mit diesem Interface kann man groß-skalierte Experimente durchführen. Simple CLI bietet dem User eine Kommandozeile, statt einem graphischen Interface, an.

Erfolgskriterien für Process Mining

Process Mining ist viel mehr als die automatische Erstellung von Prozessmodellen

Process Mining ist auf dem Vormarsch. Durch Process Mining können Unternehmen erkennen, wie ihre Prozesse in Wirklichkeit ablaufen [1]. Die Ergebnisse liefern erstaunliche Einblicke in die Prozessabläufe, die Sie anderweitig nicht bekommen können. Jedoch gibt es auch einige Dinge, die schiefgehen können. In diesem Artikel geben Ihnen Frank van Geffen und Anne Rozinat Tipps, Ratschläge und Hinweise auf typische Fallstricke, damit Ihr erstes Process-Mining-Projekt so erfolgreich wie möglich wird. Read more

Handeln in Netzwerken ohne Enmesh-Effekt

Die Interaktion in Netzwerken ist mit der Entstehung von sozialen Netzwerken, der Einkauf in Online-Shops, die Finanzierungen mit Crowd-Funding oder die nächste Mitfahrgelegenheit ein wesentlicher Bestandteil in unserem Alltag geworden. Insbesondere in der Share Economy hat sich die Bildung von Netzwerken als Erfolgsfaktor digitaler Geschäftsmodelle bereits fest etabliert. Je nach Geschäftsmodell kommt hierbei im Allgemeinen folgende Fragestellung auf:

Was hängt miteinander zusammen und welcher Effekt löst die Verbindung aus?

Effekte können das Wachsen oder Schrumpfen beschleunigen bzw. zu Strukturveränderungen des Netzwerks selbst führen. Eine Besonderheit ist der mögliche Multiplikator-Effekt bis hin zum Erreichen des Tipping-Points, der zu einen überproportionalen Wachstum, nach Erreichen einer kritischen Masse hervorgerufen wird. Aus der Geschäftsperspektive sind vor allem die Wachstumseffekte für eine schnelle Umsatzgenerierung interessant. Daher ist das Erkennen solcher Effekte wesentlich für den Geschäftserfolg.

Aufgrund der Komplexität und der Dynamik solcher Netzwerke ist der Einsatz von Data Mining Methoden zur Erkennung solcher Effekte, anhand von Mustern oder Regeln, hilfreich. In diesem Blog-Beitrag wird der Effekt von Netzwerken anhand von Produktverkäufen erläutert. Diese können beim Einkauf in Online-Shops oder im stationären Handel stattfinden. Hierbei unterscheiden sich die Konsumentengewohnheiten deutlich vom gewählten Kanal des Einkaufs oder welche Produkte eingekauft werden. Ob es um Lebensmittel, Kleidung oder Autos geht, das Kaufverhalten kann sich deutlich unterscheiden ob hierbei regelmäßige oder Spontankäufe vorliegen. Auch wer mögliche Zielgruppen darstellt ist ein wesentlicher Faktor. All diese Überlegungen werden im analytischen Customer Relationship Management zusammengefasst und bilden eine Reihe an Methoden zur Analyse dieser Phänomene (u.a. Customer-Lifetime-Value, Klassifikation, Churn-Analyse).

Aus den benannten Eigenheiten ist ein Verständnis über das Geschäft entscheidend für die Auswahl geeigneter Data Mining Methoden und dessen Interpretation von Erkenntnissen. Bevor es jedoch zur Interpretation kommt, werden die erforderlichen Vorabschritte über einen strukturierten Prozess für die Analyse in diesem Beitrag vorgestellt.

Data Mining Prozess

Ein ausgewählter Prozess bildet der KDD-Prozess (Knowledge Discovery in Databases) nach Fayyad, Piatetsky-Shapiro und Smyth. Alternative Herangehensweisen wie CRISP-DM (Cross Industry Standard Process for Data Mining) oder SEMMA (Sample, Explore, Modify, Model, Asses) können hierbei zu ähnlichen Ergebnissen führen.

Der KDD-Prozess unterteilt Data Mining Vorhaben in die folgenden Schritte:

  1. Bereitstellung des Domänenwissen und Aufstellung der Ziele
  2. Datenauswahl
  3. Datenbereinigung und -verdichtung (Transformation)
  4. Modellauswahl
  5. Data Mining
  6. Interpretation der Erkenntnissen

Je nach Umfang des Data Mining Vorhaben können sich die sechs Schritte weiter ausdifferenzieren. Jedoch wird sich in diesem Beitrag auf diese sechs Schritte fokussiert.

Domänenwissen und Zielstellung

Aus der obigen Einleitung wurde dargestellt, dass ein Domänenwissen essentiell für das Data Mining Vorhaben darstellt. Aus diesem Grund muss vor Beginn des Projekts ein reger Austausch über die Zielstellung zwischen Data Scientists und Entscheidungsträger stattfinden. Insbesondere die explorative Natur von Analysevorhaben kann dazu genutzt werden, um neue Muster zu identifizieren. Hierbei haben diese Muster jedoch nur einen Neuigkeitswert, wenn diese von den Entscheidungsträgern als originell und wertstiftend interpretiert werden. Daher müssen beide Seiten einen möglichst tiefen Einblick in das Geschäft und möglicher Analysen geben, da ansonsten das Projekt im „Shit-In, Shit-Out“-Prinzip mündet. Dies gilt gleichermaßen für die bereitgestellten Daten.

In diesem Beitrag geht es um den Kauf von Produkten durch Konsumenten. Dabei wird die Platzierung von Produkten in Online-Shops und stationären Handel im Wesentlichen durch den Betreiber bzw. Anbieter bestimmt. Während in Online-Shops die Produkte durch Recommendation-Engines zusätzlich  platziert werden können ist im stationären Handel ein höherer Aufwand durch Point-of-Interest (POI) Platzierungen erforderlich. Jedoch gilt als Vision in der digitalen Transformation, das die Produkte durch das Konsumentenverhalten platziert werden sollen. Hierbei wird davon ausgegangen das die konsumentengetriebene Platzierung den höchstmöglichen Cross-Selling-Effekt erzielt. Dies lässt sich in einer Zielstellung für das Data Mining Vorhaben zusammenfassen:

Steigerung des Umsatzes durch die Steigerung des Cross-Selling-Effekts anhand einer konsumentengetriebenen Platzierung von Produkten

In dieser Zielstellung wird der Cross-Selling-Effekt als Treiber für die Umsatzsteigerung hervorgehoben. Hierbei wird davon ausgegangen, das gemeinsam platzierte Produkte, das Interesse von Konsumenten steigert auch beide Produkte zu kaufen. Dies führt zu einem insgesamt gesteigerten Umsatz anstatt, wenn beide Produkte nicht gemeinsam beworben oder platziert werden. Aus der Zielstellung lässt sich anschließend die Auswahl der Daten und erforderliche Aufbereitungsschritte ableiten.

Datenauswahl, -bereinigung und -verdichtung

Der Umsatz ist die Zielvariable für die Entscheidungsträger und dient als Kennzahl zur Messung der Zielstellung. Für den Cross-Selling-Effekt müssen die Verbindungen von gemeinsam gekauften Produkten identifiziert werden. Dies stellt das grundlegende Netzwerk da und wird durch das Konsumverhalten bestimmt.

Als Datengrundlage wird daher der Warenkorb mit den gemeinsam gekauften Produkten herangezogen. Dieser dient als Entscheidungsgrundlage und es lassen sich einerseits die erzielten Umsätze und Zusammenhänge zwischen den Produkten erkennen.

Aufgrund der Vertraulichkeit solcher Projekte und umfangreichen Datenaufbereitungsschritten wird zur Vereinfachung ein synthetisches Beispiel herangezogen. Insbesondere die erforderlichen Schritte zur Erreichung einer hohen Datenqualität ist ein eigener Beitrag wert und wird von diesem Beitrag abgegrenzt. Dies ermöglicht den Fokus auf die Kernerkenntnisse aus dem Projekt ohne von den detaillierten Schritten und Teilergebnissen abgelenkt zu werden.

Generell besteht ein Warenkorb aus den Informationen gekaufter Produkte, Stückzahl und Preis. Diese können noch weitere Informationen, wie bspw. Mehrwertsteuer, Kasse, Zeitpunkt des Kaufs, etc. enthalten. Für dieses Projekt sieht die allgemeine Struktur wie folgt aus:

Dabei wird jeder Warenkorb mit einem eindeutigen Schlüssel („key“) und den enthaltenen Produktinformationen versehen. In den Rohdaten können sich eine Menge von Datenqualitätsfehlern verbergen. Angefangen von fehlenden Informationen, wie bspw. der Produktmenge aufgrund von Aktionsverkäufen, uneindeutigen Produktbezeichnungen wegen mangelnder Metadaten, Duplikaten aufgrund fehlgeschlagener Datenkonsolidierungen, beginnt die Arbeit von Data Scientists oft mühselig.

In dieser Phase können die Aufwände für die Datenaufbereitung oft steigen und sollten im weiteren Projektvorgehen gesteuert werden. Es gilt eine ausreichende Datenqualität in dem Projekt zu erzielen und nicht eine vollständige Datenqualität des Datensatzes zu erreichen. Das Pareto-Prinzip hilft als Gedankenstütze, um im besten Fall mit 20% des Aufwands auch 80% der Ergebnisse zu erzielen und nicht umgedreht. Dies stellt sich jedoch oft als Herausforderung dar und sollte ggf. in einem Vorabprojekt vor dem eigentlichen Data-Mining Vorhaben angegangen werden.

Modellauswahl und Data Mining

Nach der Datenaufbereitung erfolgen die eigentliche Modellauswahl und Ausführung der Analyseprozesse. Aus der Zielstellung wurde der Umsatz als Kennzahl abgeleitet. Diese Größe bildet eine Variable für das Modell und der anschließenden Diskussion der Ergebnisse. Das dahinterstehende Verfahren ist eine Aggregation der Umsätze von den einzelnen Produkten.

Der Cross-Selling-Effekt ist dagegen nicht einfach zu aggregieren sondern durch ein Netzwerk zu betrachten. Aus Sicht der Netzwerkanalyse bilden die Produkte die Knoten und die gemeinsamen Käufe die Kanten in einem Graphen. Ein Graph hat den Vorteil die Verbindungen zwischen Produkten aufzuzeigen, kann jedoch auch zu einer endlosen Verstrickung führen in der sich bei einer anschließenden Visualisierung nichts erkennen lässt. Dieser Enmesh-Effekt tritt insbesondere bei einer hohen Anzahl an zu verarbeitenden Knoten und Kanten auf. Wenn wir in eine Filiale oder Online-Shop schauen ist dieser Enmesh-Effekt durchaus gegeben, wenn wir anfangen die Produkte zu zählen und einen Blick auf die täglichen Käufe und erzeugten Kassenbons bzw. Bestellungen werfen. Der Effekt wird umso größer wenn wir nicht nur eine Filiale sondern global verteilte Filialen betrachten.

Aus diesem Grund müssen die Knoten und Verbindungen mit den angemessenen Ergebniswerten hinterlegt und visuell enkodiert werden. Auch eine mögliche Aggregation (Hierarchie), durch bspw. einem Category Management ist in Betracht zu ziehen.

Die Modellauswahl bildet daher nicht nur die Auswahl des geeigneten Analysemodells sondern auch dessen geeignete Visualisierung. In dem Beitragsbeispiel wird die Assoziationsanalyse als Modell herangezogen. In diesem Verfahren wird die Suche nach Regeln durch die Korrelation zwischen gemeinsam gekauften Produkten eruiert. Die Bedeutung einer Regel, bspw. „Produkt 1 wird mit Produkt 2 gekauft“ wird anhand des Lifts angegeben. Aus der Definition des Lifts lässt sich erkennen, dass dieses Verfahren für die Messung des Cross-Selling-Effekts geeignet ist. Hierbei können  unterschiedliche Algorithmen mit unterschiedlichen Ausgangsparametern herangezogen werden (z.B. AIS, Apriori, etc.). Entscheidend ist dabei nicht nur eine Modellkonstellation zu wählen sondern sich auf eine Menge von Modellen zu beziehen. Dabei kann das Modell mit den vielversprechendsten Ergebnissen ausgewählt werden.

Nach der Ausführung des Analyseverfahrens und der Bereinigung sowie -verdichtung der Warenkorbdaten ergeben sich einerseits die aggregierten Produktumsätze als auch die berechneten Modelldaten.

Neben den Lift dienen die Hilfsvariablen Support und Confidence auch als Kenngrößen, um einen Aufschluss auf die Validität der errechneten Ergebnisse zu geben. Diese beiden Werte können dazu genutzt werden, einzelnen Knoten aufgrund ihrer unwesentlichen Bedeutung zu entfernen und damit das Netzwerk auf die wesentlichen Produktverbindungen zu fokussieren.

 

Diese beiden Zieldatensätze werden für die Ergebnispräsentation und der Interpretation herangezogen. Generell findet in den Phasen der Datenauswahl bis zum Data Mining ein iterativer Prozess statt, bis die Zielstellung adäquat beantwortet und gemessen werden kann. Dabei können weitere Datenquellen hinzukommen oder entfernt werden.

Interpretation der Erkenntnisse

Bevor die Ergebnisse interpretiert werden können muss eine Visualisierung auch die Erkenntnisse verständlich präsentieren. Dabei kommt es darauf die originellsten und nützlichsten Erkenntnisse in den Vordergrund zu rücken und dabei das bereits Bekannte und Wesentliche des Netzwerks nicht zur vergessen. Nichts ist schlimmer als das die investierten Mühen in Selbstverständnis und bereits bekannten Erkenntnissen in der Präsentation vor den Entscheidungsträgern versickern.

Als persönliche Empfehlung bietet sich Datenvisualisierung als geeignetes Medium für die Aufbereitung von Erkenntnissen an. Insbesondere die Darstellung in einem „Big Picture“ kann dazu genutzt werden, um bereits bekannte und neue Erkenntnisse zusammenzuführen. Denn in der Präsentation geht es um eine Gradwanderung zwischen gehandhabter Intuition der Entscheidungsträger und dem Aufbrechen bisheriger Handlungspraxis.

In der folgenden Visualisierung wurden die Produkte mit ihren Umsätzen kreisförmig angeordnet. Durch die Sortierung lässt sich schnell erkennen welches Produkt die höchsten Umsätze anhand der Balken erzielt. Der Lift-Wert wurde als verbindende Linie zwischen zwei Produkten dargestellt. Dabei wird die Linie dicker und sichtbarer je höher der Lift-Wert ist.

netzwerk-visualisierung-javascript-cross-selling

Abbildung 1: Netzwerkvisualisierung von erkannten Regeln zu gekauften Produkten (ein Klick auf die Grafik führt zur interaktiven JavaScript-Anwendung)

[box type=”info” style=”rounded”]Dieser Link (Klick) führt zur interaktiven Grafik (JavaScript) mit Mouse-Hover-Effekten.[/box]

Es wurde versucht die Zieldatensätze in einem Big Picture zusammenzuführen, um das Netzwerk in seiner Gesamtheit darzustellen. Hieraus lässt sich eine Vielzahl von Erkenntnissen ablesen:

  1. Das „Produkt 37“ erzielt den höchsten Umsatz, zeigt jedoch keinen Cross-Selling-Effekt von gemeinsam gekauften Produkten.
  2. Dagegen das „Produkt 23“ erzielte weniger Umsatz, wird jedoch häufig mit anderen Produkten gemeinsam gekauft.
  3. Das „Produkt 8“ weist zwei starke Regeln (Assoziationen) für „Produkt 45 & 56“ auf. Ggf. lassen sich diese Produkte in Aktionen zusammenanbieten.

Im Erstellungsprozess der Ergebnispräsentation ergab sich die Erfahrungspraxis flexibel eine geeignete Visualisierung zu erstellen anstatt die Erkenntnisse in vordefinierte Visualisierungen oder Diagramme zur pressen. Dies kann einerseits den Neuigkeitswert erhöhen und die Informationen anschließend besser transportieren aber auf der anderen Seite den Aufwand zur Erstellung der Visualisierung und das Verständnis für die neu erstellte Visualisierung mindern.

Ein Blick hinter die Bühne zeigt, dass die Visualisierung mit D3.js erstellt wurde. Dies bietet ein geeignetes Framework für die Flexibilität zur Erstellung von Datenpräsentationen. Wer sich nach Bibliotheken in R oder Python umschaut, wird auch in diesen Technologiebereichen fündig. Für R-Entwickler existierten die Packages „statnet“ und „gplots“ zur Verarbeitung und Visualisierung von Netzwerkdaten. Für Ptyhon-Entwickler steht graph-tool als sehr leistungsfähiges Modul, insb. für große Mengen an Knoten und Kanten zur Verfügung.

In unserem Vorhaben haben wir uns für D3.js aufgrund der möglichen Implementierung von Interaktionsmöglichkeiten, wie bspw. Highlighting von Verbindungen, entschieden. Dies ermöglicht auch eine bessere Interaktion mit den Entscheidungsträgern, um relevante Details anhand der Visualisierung darzustellen.

Ein Abriss in die Entwicklung der D3-Visualisierung zeigt, dass die Daten durch eine Verkettung von Methoden zur Enkodierung von Daten implementiert werden. Hierbei wird bspw. den Produkten ein Rechteck mit der berechneten Größe, Position und Farbe (.attr()) zugewiesen.

Insbesondere die Höhe des Balkens zur Darstellung des Umsatzes wird mit der Implementierung von Skalen erleichtert.

Für die verbindenden Linien wurde auch ein visuelles Clustering anhand eines Edge-Bundling herangezogen. Dies führt gemeinsame Verbindungen zusammen und reduziert den Enmesh-Effekt.

* Das vollständige Beispiel kann dem zip-File (siehe Download-Link unten) entnommen werden. Die Ausführung reicht mit einem Klick auf die index.html Datei zur Darstellung im Browser aus.
Eine kritische Betrachtung der Ergebnisvisualisierung zeigt auf, dass die Anordnung der Produkte (Knoten) das interpretieren der Darstellung vereinfacht aber auch hier der Enmesh-Effekt fortschreitet je höher die Anzahl an Verbindungen ist. Dies wurde mit verschiedenen Mitteln im Analyseverfahren (Modellparameter, Entfernen von Produkten aufgrund eines geringen Supprt/Confidence Wertes oder Pruning) als auch in der der Darstellung (Transparenz, Linienstärke Edge-Bundling) reduziert.

Fazit

Als Quintessenz lässt sich festhalten, dass eine Auseinandersetzung mit Netzwerken auch Überlegungen über Komplexität im gesamten Data-Mining Vorhaben mit sich bringt. Dabei unterscheiden sich diese Überlegungen zwischen Data Scientists und Entscheidungsträger nach dem Kontext. Während Data Scientists über das geeignete Analyseverfahren und Visualisierung nachdenken überlegt der Entscheidungsträger welche Produkte wesentlich für sein Geschäft sind. Auf beiden Seiten geht es darum, die entscheidenden Effekte herauszuarbeiten und die Zielstellung gemeinsam voranzutreiben. Im Ergebnis wurde die Zielstellung durch die Darstellung der Produktumsätze und der Darstellung des Cross-Selling-Impacts in einem Netzwerk als Big Picture aufbereitet. Hieraus können Entscheidungsträger interaktiv, die geeigneten Erkenntnisse für sich interpretieren und geeignete Handlungsalternativen ableiten. Dabei hängt jedoch die Umsetzung einer konsumentengetriebenen Produktplatzierung vom eigentlichen Geschäftsmodell ab.

Während sich diese Erkenntnisse im Online-Geschäft einfach umsetzen lassen, ist dies eine Herausforderungen für den stationären Handel. Die Produktplatzierung in Filialen kann aufgrund der begrenzten Fläche als auch den Gewohnheiten von Konsumenten nur bedingt verändert werden. Daher können auch Mischformen aus bspw. „Online-Schauen, Offline-Kaufen“ eruiert werden.

Nach der Entscheidung erfolgt sogleich auch die Überlegung nach den Konsequenzen, Veränderungen und Einfluss auf das Geschäft. Hieraus bildet sich für Data Scientists und Entscheidungsträger eine Kette von Überlegungen über erkannte Muster in Netzwerken, Implikation und möglicher Prognosefähigkeit. Letzteres ist eine besondere Herausforderung, da die Analyse der Dynamik vom Netzwerk im Vordergrund steht. Die Suche nach einer kritischen Masse oder Tipping-Point kann zu möglichen Veränderungen führen, die aufgrund des Informationsmangels nur schwer vorhersagbar sind. Dies kann vom Ablegen bisheriger Gewohnheiten zu negativen Kundenfeedback aber auch positiver Wirkung gesteigerter Absätze rangieren.

Hierbei zeigt sich das evolutionäre als auch das disruptive Potenzial von Data Mining-Vorhaben unabhängig davon welche Entscheidung aus den Erkenntnissen abgeleitet wird. Data Scientists schaffen neue Handlungsalternativen anstatt auf bestehende Handlungspraxen zu verharren. Die Eigenschaft sich entsprechend der Dynamik von Netzwerken zu verändern ist umso entscheidender „Wie“ sich ein Unternehmen verändern muss, um im Geschäft bestehen zu bleiben. Dies gelingt nur in dem sich auf das Wesentliche fokussiert wird und so der Enmesh-Effekt erfolgreich durch einen Dialog zwischen Entscheidungsträger und Data Scientists in einer datengetriebenen Geschäftswelt gemeistert wird.

Quellcode Download

Der vollständige und sofort einsatzbereite Quellcode steht als .zip-Paket zum Download bereit.
Bitte hierbei beachten, dass die meisten Browser die Ausführung von JavaScript aus lokalen Quellen standardmäßig verhindern. JavaScript muss daher in der Regel erst manuell aktiviert werden.

Machine Learning mit Python – Minimalbeispiel

Maschinelles Lernen (Machine Learning) ist eine Gebiet der Künstlichen Intelligenz (KI, bzw. AI von Artificial Intelligence) und der größte Innovations- und Technologietreiber dieser Jahre. In allen Trendthemen – wie etwa Industrie 4.0 oder das vernetzte und selbstfahrende Auto – spielt die KI eine übergeordnete Rolle. Beispielsweise werden in Unternehmen viele Prozesse automatisiert und auch Entscheidungen auf operativer Ebene von einer KI getroffen, zum Beispiel in der Disposition (automatisierte Warenbestellungen) oder beim Festsetzen von Verkaufspreisen.

Aufsehen erregte Google mit seiner KI namens AlphaGo, einem Algortihmus, der den Weltmeister im Go-Spiel in vier von fünf Spielen besiegt hatte. Das Spiel Go entstand vor mehr als 2.500 Jahren in China und ist auch heute noch in China und anderen asiatischen Ländern ein alltägliches Gesellschaftsspiel. Es wird teilweise mit dem westlichen Schach verglichen, ist jedoch einfacher und komplexer zugleich (warum? das wird im Google Blog erläutert). Machine Learning kann mit einer Vielzahl von Methoden umgesetzt werden, werden diese Methoden sinnvoll miteinander kombiniert, können durchaus äußerst komplexe KIs erreicht werden.  Der aktuell noch gängigste Anwendungsfall für Machine Learning ist im eCommerce zu finden und den meisten Menschen als die Produktvorschläge von Amazon.com bekannt: Empfehlungsdienste (Recommender System).

Klassifikation via K-Nearest Neighbour Algorithmus

Ein häufiger Zweck des maschinellen Lernens ist, technisch gesehen, die Klassifikation von Daten in Abhängigkeit von anderen Daten. Es gibt mehrere ML-Algorithmen, die eine Klassifikation ermöglichen, die wohl bekannteste Methode ist der k-Nearest-Neighbor-Algorithmus (Deutsch:„k-nächste-Nachbarn”), häufig mit “kNN” abgekürzt. Das von mir interviewte FinTech StartUp Number26 nutzt diese Methodik beispielsweise zur Klassifizierung von Finanztransaktionen.

Um den Algorithmus Schritt für Schritt aufbauen zu können, müssen wir uns

Natürlich gibt es in Python, R und anderen Programmiersprachen bereits fertige Bibliotheken, die kNN bereits anbieten, denen quasi nur Matrizen übergeben werden müssen. Am bekanntesten ist wohl die scikit-learn Bibliothek für Python, die mehrere Nächste-Nachbarn-Modelle umfasst. Mit diesem Minimalbeispiel wollen wir den grundlegenden Algorithmus von Grund auf erlernen. Wir wollen also nicht nur machen, sondern auch verstehen.

Vorab: Verwendete Bibliotheken

Um den nachstehenden Python-Code (Python 3.x, sollte allerdings auch mit Python 2.7 problemlos funktionieren) ausführen zu können, müssen folgende Bibliotheken  eingebunden werden:

Übrigens: Eine Auflistung der wohl wichtigsten Pyhton-Bibliotheken für Datenanalyse und Datenvisualisierung schrieb ich bereits hier.

Schritt 1 – Daten betrachten und Merkmale erkennen

Der erste Schritt ist tatsächlich der aller wichtigste, denn erst wenn der Data Scientist verstanden hat, mit welchen Daten er es zu tun hat, kann er die richtigen Entscheidungen treffen, wie ein Algorithmus richtig abgestimmt werden kann und ob er für diese Daten überhaupt der richtige ist.

In der Realität haben wir es oft mit vielen verteilten Daten zu tun, in diesem Minimalbeispiel haben wir es deutlich einfacher: Der Beispiel-Datensatz enthält Informationen über Immobilien über vier Spalten.

  • Quadratmeter: Größe der nutzbaren Fläche der Immobilie in der Einheit m²
  • Wandhoehe: Höhe zwischen Fußboden und Decke innerhalb der Immobilie in der Einheit m
  • IA_Ratio: Verhältnis zwischen Innen- und Außenflächen (z. B. Balkon, Garten)
  • Kategorie: Enthält eine Klassifizierung der Immobilie als “Haus”, “Wohnung” und “Büro”

 

beispiel-txt-file

[box]Hinweis für Python-Einsteiger: Die Numpy-Matrix ist speziell für Matrizen-Kalkulationen entwickelt. Kopfzeilen oder das Speichern von String-Werten sind für diese Datenstruktur nicht vorgesehen![/box]

Aufgerufen wird diese Funktion dann so:

Die Matrix mit den drei Spalten (Quadratmeter, Wandhohe, IA_Ratio) landen in der Variable “dataSet”.

Schritt 2 – Merkmale im Verhältnis zueinander perspektivisch betrachten

Für diesen Anwendungsfall soll eine Klassifizierung (und gewissermaßen die Vorhersage) erfolgen, zu welcher Immobilien-Kategorie ein einzelner Datensatz gehört. Im Beispieldatensatz befinden sich vier Merkmale: drei Metriken und eine Kategorie (Wohnung, Büro oder Haus). Es stellt sich zunächst die Frage, wie diese Merkmale zueinander stehen. Gute Ideen der Datenvisualisierung helfen hier fast immer weiter. Die gängigsten 2D-Visualisierungen in Python wurden von mir bereits hier zusammengefasst.

[box]Hinweis: In der Praxis sind es selten nur drei Dimensionen, mit denen Machine Learning betrieben wird. Das Feature-Engineering, also die Suche nach den richtigen Features in verteilten Datenquellen, macht einen wesentlichen Teil der Arbeit eines Data Scientists aus – wie auch beispielsweise Chief Data Scientist Klaas Bollhoefer (siehe Interview) bestätigt.[/box]

Die beiden Scatter-Plots zeigen, das Häuser (blau) in allen Dimensionen die größte Varianz haben. Büros (gelb) können größer und höher ausfallen, als Wohnungen (rot), haben dafür jedoch tendenziell ein kleineres IA_Ratio. Könnten die Kategorien (blau, gelb, rot) durch das Verhältnis innerhalb von einem der beiden Dimensionspaaren in dem zwei dimensionalen Raum exakt voneinander abgegrenzt werden, könnten wir hier stoppen und bräuchten auch keinen kNN-Algorithmus mehr. Da wir jedoch einen großen Überschneidungsbereich in beiden Dimensionspaaren haben (und auch Wandfläche zu IA_Ratio sieht nicht besser aus),

Eine 3D-Visualisierung eignet sich besonders gut, einen Überblick über die Verhältnisse zwischen den drei Metriken zu erhalten: (die Werte wurden hier bereits normalisiert, liegen also zwischen 0,00 und 1,00)

3D Scatter Plot in Python [Matplotlib]

Es zeigt sich gerade in der 3D-Ansicht recht deutlich, dass sich Büros und Wohnungen zum nicht unwesentlichen Teil überschneiden und hier jeder Algorithmus mit der Klassifikation in Probleme geraten wird, wenn uns wirklich nur diese drei Dimensionen zur Verfügung stehen.

Schritt 3 – Kalkulation der Distanzen zwischen den einzelnen Punkten

Bei der Berechnung der Distanz in einem Raum hilft uns der Satz des Pythagoras weiter. Die zu überbrückende Distanz, um von A nach B zu gelangen, lässt sich einfach berechnen, wenn man entlang der Raumdimensionen Katheten aufspannt.

c = \sqrt{a^2+ b^2}

Die Hypotenuse im Raum stellt die Distanz dar und berechnet sich aus der Wurzel aus der Summe der beiden Katheten im Quadrat. Die beiden Katheten bilden sich aus der Differenz der Punktwerte (q, p) in ihrer jeweiligen Dimension.Bei mehreren Dimensionen gilt der Satz entsprechend:

Distanz = \sqrt{(q_1-p_1)^2+(q_2-p_2)^2+…+(q_n-p_n)^2}

Um mit den unterschiedlichen Werte besser in ihrer Relation zu sehen, sollten sie einer Normalisierung unterzogen werden. Dabei werden alle Werte einer Dimension einem Bereich zwischen 0.00 und 1.00 zugeordnet, wobei 0.00 stets das Minimum und 1.00 das Maximum darstellt.

NormWert = \frac{Wert - Min}{Wertspanne} = \frac{Wert - Min}{Max - Min}

Die Funktion kann folgendermaßen aufgerufen werden:

Schritt 4 & 5 – Klassifikation durch Eingrenzung auf k-nächste Nachbarn

Die Klassifikation erfolgt durch die Kalkulation entsprechend der zuvor beschriebenen Formel für die Distanzen in einem mehrdimensionalen Raum, durch Eingrenzung über die Anzahl an k Nachbarn und Sortierung über die berechneten Distanzen.

Über folgenden Code rufen wir die Klassifikations-Funktion auf und legen die k-Eingrenzung fest, nebenbei werden Fehler gezählt und ausgewertet. Hier werden der Reihe nach die ersten 30 Zeilen verarbeitet:

Nur 30 Testdatensätze auszuwählen ist eigentlich viel zu knapp bemessen und hier nur der Übersichtlichkeit geschuldet. Besser ist für dieses Beispiel die Auswahl von 100 bis 300 Datensätzen. Die Ergebnisse sind aber bereits recht ordentlich, allerdings fällt dem Algorithmus – wie erwartet – noch die Unterscheidung zwischen Wohnungen und Büros recht schwer.

0 – klassifiziert wurde: Buero, richtige Antwort: Buero
1 – klassifiziert wurde: Wohnung, richtige Antwort: Wohnung
2 – klassifiziert wurde: Buero, richtige Antwort: Buero
3 – klassifiziert wurde: Buero, richtige Antwort: Buero
4 – klassifiziert wurde: Wohnung, richtige Antwort: Wohnung
5 – klassifiziert wurde: Wohnung, richtige Antwort: Wohnung
6 – klassifiziert wurde: Wohnung, richtige Antwort: Wohnung
7 – klassifiziert wurde: Wohnung, richtige Antwort: Buero
8 – klassifiziert wurde: Wohnung, richtige Antwort: Wohnung
9 – klassifiziert wurde: Wohnung, richtige Antwort: Wohnung
10 – klassifiziert wurde: Wohnung, richtige Antwort: Wohnung
11 – klassifiziert wurde: Wohnung, richtige Antwort: Wohnung
12 – klassifiziert wurde: Buero, richtige Antwort: Buero
13 – klassifiziert wurde: Wohnung, richtige Antwort: Buero
14 – klassifiziert wurde: Wohnung, richtige Antwort: Wohnung
15 – klassifiziert wurde: Wohnung, richtige Antwort: Wohnung
16 – klassifiziert wurde: Buero, richtige Antwort: Buero
17 – klassifiziert wurde: Wohnung, richtige Antwort: Wohnung
18 – klassifiziert wurde: Haus, richtige Antwort: Haus
19 – klassifiziert wurde: Wohnung, richtige Antwort: Wohnung
20 – klassifiziert wurde: Wohnung, richtige Antwort: Wohnung
21 – klassifiziert wurde: Buero, richtige Antwort: Buero
22 – klassifiziert wurde: Buero, richtige Antwort: Buero
23 – klassifiziert wurde: Buero, richtige Antwort: Buero
24 – klassifiziert wurde: Wohnung, richtige Antwort: Wohnung
25 – klassifiziert wurde: Wohnung, richtige Antwort: Wohnung
26 – klassifiziert wurde: Wohnung, richtige Antwort: Wohnung
27 – klassifiziert wurde: Wohnung, richtige Antwort: Wohnung
28 – klassifiziert wurde: Wohnung, richtige Antwort: Wohnung
29 – klassifiziert wurde: Buero, richtige Antwort: Buero
Error Count: 2

Über weitere Tests wird deutlich, dass k nicht zu niedrig und auch nicht zu hoch gesetzt werden darf.

 Datensätze  k Fehler
 150 1   25
 150 3   23
 150 5   21
 150 20   26

Ein nächster Schritt wäre die Entwicklung eines Trainingprogramms, dass die optimale Konfiguration (k-Eingrenzung, Gewichtung usw.) ermittelt.

Fehlerraten herabsenken

Die Fehlerquote ist im Grunde niemals ganz auf Null herabsenkbar, sonst haben wir kein maschinelles Lernen mehr, sondern könnten auch feste Regeln ausmachen, die wir nur noch einprogrammieren (hard-coding) müssten. Wer lernt, macht auch Fehler! Dennoch ist eine Fehlerquote von 10% einfach zu viel für die meisten Anwendungsfälle. Was kann man hier tun?

  1. Den Algorithmus verbessern (z. B. optimale k-Konfiguration und Gewichtung finden)
  2. mehr Merkmale finden (= mehr Dimensionen)
  3. mehr Daten hinzuziehen (gut möglich, dass alleine dadurch z. B. Wohnungen und Büros besser unterscheidbar werden)
  4. einen anderen Algorithmus probieren (kNN ist längst nicht für alle Anwendungen ideal!)

Das Problem mit den Dimensionen

Theoretisch kann kNN mit undenklich vielen Dimensionen arbeiten, allerdings steigt der Rechenaufwand damit auch ins unermessliche. Der k-nächste-Nachbar-Algorithmus ist auf viele Daten und Dimensionen angewendet recht rechenintensiv.

In der Praxis hat nicht jedes Merkmal die gleiche Tragweite in ihrer Bedeutung für die Klassifikation und mit jeder weiteren Dimension steigt auch die Fehleranfälligkeit, insbesondere durch Datenfehler (Rauschen). Dies kann man sich bei wenigen Dimensionen noch leicht bildlich vorstellen, denn beispielsweise könnten zwei Punkte in zwei Dimensionen nahe beieinander liegen, in der dritten Dimension jedoch weit auseinander, was im Ergebnis dann eine lange Distanz verursacht. Wenn wir beispielsweise 101 Dimensionen berücksichtigen, könnten auch hier zwei Punkte in 100 Dimensionen eng beieinander liegen, läge jedoch in der 101. Dimension (vielleicht auch auf Grund eines Datenfehlers) eine lange Distanz vor, wäre die Gesamtdistanz groß. Mit Gewichtungen könnten jedoch als wichtiger einzustufenden Dimensionen bevorzugt werden und als unsicher geltende Dimensionen entsprechend entschärft werden.

Je mehr Dimensionen berücksichtigt werden sollen, desto mehr Raum steht zur Verfügung, so dass um wenige Datenpunkte viel Leerraum existiert, der dem Algorithmus nicht weiterhilft. Je mehr Dimensionen berücksichtigt werden, desto mehr Daten müssen zu Verfügung gestellt werden, im exponentiellen Anstieg – Wo wir wieder beim Thema Rechenleistung sind, die ebenfalls exponentiell ansteigen muss.

Weiterführende Literatur


Machine Learning in Action

 


Introduction to Machine Learning with Python

Einführung in Data Science: Grundprinzipien der Datenanalyse mit Python

Datenvisualisierung in Python [Tutorial]

Python ist eine der wichtigsten Programmiersprachen in der Data Science Szene. Der Einstieg in diese Programmiersprache fällt zum Beispiel im Vergleich zur Programmiersprache R etwas einfacher, da Python eine leicht zu verstehende Syntax hat. Was jedoch beim Einstieg zur größeren Hürde werden kann, ist der Umgang mit den unüberschaubar vielen Bibliotheken. Die wichtigsten Bibliotheken für Data Science / Data Analytics stellte ich bereits in diesem Artikel kurz vor. Hier ist es wichtig, einfach erstmal anzufangen – Warum nicht mit den ersten Datenvisualisierungen?

Natürlich gibt es sehr viele tolle und schön anzusehende Visualisierungen, die teilweise sehr speziell sind. In einem anderen Artikel stellte ich beispielsweise die 3D-Visualisierung von Graphen mit Python und UbiGraph vor. Dieser Artikel hier gilt aber vor allem Einsteigern, die erste Diagramme hergezaubert bekommen möchten.

Damit wir beginnen können, müssen im Python-Skript zuerst zwei wichtige Bibliotheken eingebunden werden:

import matplotlib.pyplot as pyplot

import pandas as pandas

Beide Bibliotheken können direkt gedownloaded werden, sind aber auch im Anaconda Framework enthalten (Empfehlung: Anaconda für Python 2.7).

Die Bibliothek matplotlib (library) ist mit Sicherheit die gängigste zur Visualisierung von Daten. Die Bibliothek pandas ist eine der verbreitetsten, die für den Zugriff, die Manipulation und Analyse von Daten eingesetzt wird. In diesen einfachsten Beispielen benutzen wir pandas nur zum Zugriff auf Daten.

Für die Visualisierung benötigen wir natürlich auch ein Beispiel-Dataset (Tabelle). Eine solche kann sich jeder selber erstellen, wer die nachfolgenden Code-Beispiele aber nachstellen möchte, kann diese Daten verwenden:

Diese 20 Zeilen können einfach via Copy + Paste in eine Datei kopiert werden, die dann als data-science-blog-python-beispiel.txt abgespeichert werden kann.

Der Zugriff von Python aus erfolgt dann mit pandas wie folgt:

dataset = pandas.read_csv("data-science-blog-python-beispiel.txt", sep="|", header=0, encoding="utf8")

Kreisdiagramm

Ein Kreisdiagramm (Pie Chart) lässt sich basierend auf diesen Daten beispielsweise wie folgt erstellen:

kreisdiagramm

Balkendiagramm

Balkendiagramme können einfachste Größenverhältnisse aufzeigen.

balkendiagram

Gestapeltes Balkendiagramm

Mit nur wenig Erweiterung wird aus dem einfachen Balkendiagramm ein gestapeltes.

balkendiagram-gestapelt

Histogramm (Histogram)

Histogramme sind ein wichtiges Diagramm der Statistik, mit dem sich Verteilungen aufzuzeigen lassen.

histogramm

Lininediagramm

Der Beispieldatensatz gibt kein gutes Szenario her, um ein korrektes Liniendiagramm darstellen zu können; aber dennoch hier ein How-To für ein Liniendiagramm:

line-diagam

Kastengrafik (Box Plot)

Ein Box Plot zeigt sehr gut Schwerpunkte in einer Verteilung.

box-plot-diagam

Punktverteilungsdiagramm (Scatter Plot)

punktdiagramm

Blasendiagramm (Bubble Chart)

Das Punktdiagramm kann leicht durch hinzufügen einer dritten Dimension zu einem Bubble-Chart erweitert werden. In dieser Darstellung mit logarithmischen x-/y-Achsen (log).

bubblechart

 

3D-Visualisierung von Graphen

Die Graphentheorie ist ein wichtiger Teil vieler Methoden und Anwendungsgebiete für Big Data Analytics. Graphen sind mathematisch beschreibbare Strukturen, ohne die im Ingenieurwesen nichts funktionieren würde. Ein Graph besteht aus zwei Knoten (Ecken, engl. Vertex), die über eine Kante (engl. Edge) verbunden sind.

Auf Graphen stoßen Data Scientists beispielsweise bei der Social Media Analyse, beim Aufbau von Empfehlungssystemen (das Amazon-Prinzip) oder auch bei Prozessanalysen (Process Mining). Aber auch einige Big Data Technologien setzen ganz grundlegend auf Graphen, beispielsweise einige NoSQL-Datenbanken wie die Graphendatenbank Neo4j und andere.

Graphen können nicht nur einfache Verkettungen, sondern komplexe Netzwerke abbilden. Das Schöne daran ist, dass Graphen nicht ganz so abstrakt sind, wie viele andere Bereiche der Mathematik, sondern sich wunderbar visualisieren lassen und wir auch in unserem Vorstellungsvermögen recht gut mit ihnen “arbeiten” können.

ubigraph-node-visualization2

Mit der Visualisierung von Graphen, können wir uns Muster vor Augen führen und ein visuelles Data Mining betreiben. Iterative und auch rekursive Vorgänge sowie Abhängigkeiten zwischen einzelnen Objekten/Zuständen können visuell einfach besser verstanden werden. Bei besonders umfangreichen und zugleich vielfältigen Graphen ist eine Visualisierung in drei bzw. vier Dimensionen (x-, y-, z-Dimensionen + Zeit t) nicht nur schöner anzusehen, sondern kann auch sehr dabei helfen, ein Verständnis (z. B. über Graphen-Cluster) zu erhalten. Read more

Datenvisualisierung – Eine Wissenschaft für sich… oder auch zwei

Techniken für die Visualisierung und visuelle Analyse von Datenmengen gehören heute in vielen Unternehmen zu den essentiellen Werkzeugen, um große Datensätze zu untersuchen und sie greifbarer zu gestalten. Während die Anwendungssoftware dazu ständig weiterentwickelt wird, sind die dahinterliegenden Methoden ein beliebtes Forschungsthema in der Wissenschaft. Es gibt zahlreiche Tagungen, Workshops und Fachjournale, in denen neue Erkenntnisse, Verfahren und technische Innovationen ausgetauscht werden.
Interessant ist aber, dass sich in den vergangenen Jahrzehnten zwei große unabhängige Strömungen in der Forschung zum Thema Datenvisualisierung ausgeprägt haben. – Beide hängen mit dem übergeordneten Thema zusammen, begreifen sich jedoch sehr unterschiedlich. Read more

Lieferantenkonsolidierung durch Analyse unstrukturierter Einkaufsdaten

Häufig ist in der Einkaufspraxis eine Beschaffung gleicher Artikel und Warengruppen bei den verschiedensten Lieferanten festzustellen. Eine schlechte Datenqualität sowie intransparente Prozesse sind ein ausschlaggebender Grund dafür, dass die Einkaufsleitung Möglichkeiten der Bündelung bei wenigen Lieferanten nicht vollständig erkennt und deren Einsparpotenziale nicht im vollen Umfang realisiert werden können. Schuld daran sind oft mehrere Faktoren, wie mangelhafte Soll-Prozesse, fehlende interne Richtlinien, inkonsistente Stammdaten und pauschale Buchungen über “Dummy”-Werte sowie falsch konfigurierte IT-Systeme. Data Quality Analytics, eine Sammlung von auf die Datenbasis anzuwendende analytische Testverfahren, können typische sowie untypische Datenfehler sowie Inkonsistenzen ausfindig gemacht und zudem bereinigt werden.

Sollten die Bestellungen über pauschale Dummy-Positionen (beispielsweise “Betriebsmittel” oder “Fremdleistungen”) verbucht werden, können Bündelungspotenziale vom strategischen Einkauf nicht so einfach erkannt werden. Hinzu kommt häufig eine mangelhafte Pflege von Matieralstammdaten. Sind in den Bewegungsdaten – hierzu zählen insbesondere Daten über Aufträge, Bestellungen, Wareneingänge, Lagerverbräuche, Rechnungen und Zahlungen – jedoch wenigstens vereinzelt Texte über die Position (z. B. Artikelname) vorhanden, können über Textalgorithmen besonders hervorstechende Wörter aus diesen semi-strukturierten Daten extrahiert, nach bestimmten Kontextmodellen gefiltert und aggregiert werden. Wenn beispielsweise in einzelnen Positionstexten Begriffe vorkommen, die bestimmte Voraussetzungen erfüllen – beispielsweise ein Matching der jeweiligen Begriffe untereinander oder mit Wortlisten (z. B. dem Duden) – kann über eine Netzwerkanalyse ermittelt werden, über welche Lieferanten und verantwortliche Stellen gleichartige Positionen bezogen werden. In der einfachsten Variante werden die Begriffe gefiltert, die über mehrere Positonstexte wiederholt vorkommen.  Aus dem gesamten Buchungsstoff können so automatisiert Bündelungspotenziale im vollen Umfang über ein Vorschlagssystem aufgedeckt werden. Dies funktioniert auch dann, wenn der Einkauf über mehrere Betriebe mit unterschiedlichen IT-Systemen betrachtet werden soll. Diese neuartigen Analyseformen ermöglichen für den Einkauf neue Kostensenkungspotenzialeoftmals im zweistelligen Prozentbereich – die vom strategischen Einkauf verhältnismäßig leicht zu realisieren sind.