Flexible ABC Analyse mit Excel Power Pivot und DAX

Eine klassische Methode im Bereich des Controllings ist sicherlich die ABC-Analyse, auch Paretoprinzip oder 80/20-Regel genannt. Das Paretoprinzip beschreibt ein statistisches Phänomen, bei dem eine kleine Anzahl hoher Werte (Kategorie A)  mehr zum Gesamtwert beiträgt als eine große Anzahl kleiner Werte (Kategorie C). Vilfredo Pareto (1848 – 1923)  entdeckte dieses Prinzip, als er die Bodenverteilung in Italien untersuchte. Er fand heraus, daß ca. 20 % der Bevölkerung ca. 80 % des Bodenbesitzes besitzen.

Im Folgenden soll mit Hilfe von Excel Power Pivot (ein Mitglied der Microsoft Power BI Familie) und DAX Formeln (Data Analysis Expressions) ein Weg aufgezeigt werden, wie eine flexible ABC-Analyse (Materialgruppenübergreifend oder je Materialgruppe) auf Basis von Artikelumsätzen (Einkaufsvolumen, EVO) realisiert werden kann. Dabei werden die Artikel mit den Kategorien A (80 %), B (15%) sowie C (5%) im Modell gekennzeichnet, so daß Anzahl Artikel und Umsätze (EVO) bei Bedarf aggregiert nach Materialgruppe dargestellt werden können.

„Aber das kann ich doch mit der Pivottabelle auch schon machen!“ werden Sie jetzt vielleicht sagen. Richtig ist, daß man mit der klassischen Pivottabelle den kumulierten Anteil in % ausweisen kann. Dazu muß ein Wertfeld lediglich über die Wertfeldeinstellungen, Reiter „Werte anzeigen als“ auf die Option „% von Ergebnis in“ umgestellt werden. Soweit so gut, nur was ist mit der Zuweisung der Klasse A, B, C? Wie kann man nach der Klassifizierung gruppieren? Und weiter, wie stellt man die Anzahl der Artikel nicht als einzelne Elemente sondern als Aggregat dar?

excel-abc-analyse-1 Read more

Von Rohdaten zu entscheidungsrelevanten Informationen mit Microsoft Self Service BI

Ganz still und leise, ja fast geräuschlos führte Microsoft in Office 2010 „by the backdoor“ eine Reihe von kostenlosen AddIns ein. Diese AddIns unterstützen die Anbindung von heterogenen Datenquellen, deren Kombination, Anreicherung, Modellierung und Visualisierung. Microsoft faßt diese AddIns unter dem Begriff Power BI zusammen: Excel Power Query, Excel Power Pivot, Excel Power View, Excel Power Map. Diese Power BI Tools können sich durchaus mit anderen am Markt verfügbaren BI Tools messen. Die Vorteile liegen auf der Hand, sie sind kostenlos und die Akzeptanz von Excel in Unternehmen kann als gegeben vorausgesetzt werden. Geschäftsrelevante Daten können mit Hilfe dieses tool sets effizient in entscheidungsrelevante Informationen „in Form“ gebracht werden: ETL (Einlesen, Transformieren, Laden), DI (Daten Integration), DQ (Datenqualität), Data Visualization, BI Themen, welche ausreichend abgedeckt werden. Ein kostenloses Tool Set, wie gemacht für den Fachanwender. Unter Self Service BI versteht man die Bereitstellung einer IT Umgebung für den Fachanwender, durch deren Hilfe er oder sie weitestgehend unabhängig von der IT Daten beschaffen, Analysen erstellen und Berichte erzeugen kann. Dieses agile Business Intelligence Konzept ermöglicht dem Fachanwender schnelles und effizientes Agieren auf sich ändernde Anforderungen steuerungsrelevante Kennzahlen betreffend. Ein probates Mittel ist Self Service BI bei regelmäßig wiederkehrenden Entscheidungen. Im Folgenden soll das Prinzip der Selbstbedienung anhand eines konkreten Beispiels aus dem Einkauf näher beleuchtet werden. Dabei werden die einzelnen Phasen (ETL, Modellierung, interaktive Auswertung) und Funktionen (DAX Funktionen) eines typischen Self Service Prozesses von Excel Power Pivot dargestellt. Das Datenmodell wurde mit Excel 2013 erstellt. Ab Office 2013 ist Power BI bereits im Auslieferungszustand vorhanden. Read more

Data Science Evolution

Wie wurde aus Business Intelligence eigentlich Big Data? Aus Sicht der Unternehmen herrscht große Verwirrung darüber, welcher Begriff nun eigentlich was bedeutet und was dieser für das Unternehmen bedeutet.

Es stellt sicadvanced-data-scienceh die Frage, ob Business Intelligence nun veraltet ist und von Big Data Analytics ersetzt wird oder ob Big Data Analytics die Weiterführung von Business Intelligence darstellt. Darüber gibt es unterschiedliche Meinungen, aber die Evolution, die sich über das letzte Jahrzehnt von einfachen Reports zu den aktuellen Möglichkeiten im Bereich von Big Data Analytics erstreckt, können wir uns recht deutlich vor Augen führen.

Raw Data

Rohdaten stellen das “Material” da, welches die Grundlage für jegliche Analysen bildet. Auch wenn Rohdaten erstmal nicht besonders erwähnenswert klingen, so existiert viel Wissenschaft und Business rund um Rohdaten, denn deren Speicherung kann durchaus sehr komplex sein. Abhängig von Art und Struktur der Daten kommen hier unterschiedliche relationale und nicht-relationale (NoSQL) Datenbanken zum Einsatz. Aktueller Trend ist ferner die InMemory-Datenhaltung, die unabhängig von der eigentlichen Datenbankstruktur möglich ist.

Das Angebot an kostenpflichtigen und kostenfreien Datenbanken ist bereits beinahe unüberschaubar groß. Beispielsweise können die relationalen Datenbanken MariaDB, Oracle DB oder PostgreeSQL genannt werden. Neo4J (graphenorientiert), MongoDB (dokumentenorientiert), Apache Cassandra und SAP HANA (beide spaltenorientiert) sowie Redis (Key-Value-Datenbank) sind hingegen Beispiele für sogenannte NoSQL-Datenbanken.

Clean Data

Bereinigte Daten sollte heutzutage eine Selbstverständlichkeit sein? Weit gefehlt! Aus Erfahrung kann ich sagen, dass eine wirklich saubere Datenbasis die Ausnahme darstellt. Die Regel sind Inkonsistenzen zwischen relationalen Daten, Formatfehler, leere Datenfelder (die nicht leer sein dürften) usw. Mit der Bereinigung der Daten haben zurzeit noch alle Unternehmen und Institute zu kämpfen, sofern sie sich diesen Kampf überhaupt stellen.

Standard-Reporting

Reporting in Excel gibt es nun schon mindestens zwei Jahrzehnte und wird auch heute noch (mehr) betrieben. Mit der Etablierung von ERP-Systemen, beispielsweise Microsoft Dynamics NAV oder SAP ERP, fand auch das automatisierte Reporting Einzug in die deutschen Unternehmen. Heute bieten alle ERP-Systeme (bzw. CRM-, SRM-, PLM-Systeme) zumindest grundlegende Reporting-Funktionen in Form von Tabellen, Balken- und Kuchendiagrammen. Diese Reports sind allerdings in der Regel wenig anpassbar durch die Anwender.

Business Intelligence

Kurz nach dem Einsetzen des Wachstums auf dem Markt der ERP-Systeme lebte auch das Business Intelligence mit den schönen grafischen Dashboards auf. BI bedient sich dabei überwiegend aus den Daten des ERP-Systems. Ferner werden noch weitere – vorwiegend unternehmensinterne – Daten hinzugezogen, z. B. aus Excel-Dateien. Der Erfolg von Business Intelligence kam insbesondere mit den Dashboards und einer einfachen Bedienbarkeit, denn BI wurde für ERP-Anwender gemacht.

Im Bereich BI hatte QlikTech mit der Software QlikView einen Volltreffer gelandet, denn diese hat den Weg in viele Unternehmen als BI-Lösung gefunden.

(Big) Data Analytics – Causality Analytics

Data Analytics geht einen Schritt weiter als BI, denn hier geht es nicht nur darum zu analysieren, welche Ereignisse eingetreten sind, sondern auch warum. Data Analytics ist sehr viel flexibler als BI und wird tendenziell eher programmiert als zusammengeklickt. Hier spielen Daten aus externen Datenquellen (z. B. dem Internet) oftmals eine wichtige Rolle und machen daraus Big Data. Zudem kommt vermehrt Statistik und Machine Learning zum Einsatz um Kausalitäten aus den vielfältigen Datenmengen

Gearbeitet wird beispielsweise mit den Programmiersprachen R und Python, aber auch mit IBM SPSS oder SAS Advanced Analytics.

Predictive Modeling

Prädiktive Analysemodelle gehen noch einen Schritt weiter, denn nach der Frage nach dem Warum stellt sich für viele Geschäftszwecke die Frage, wann es wieder geschehen wird. Predictive Analytics gilt als eine Königsdisziplin, arbeitet mit induktiver Statistik und scheint mit der Einbindung von Big Data beinahe unbegrenzte Möglichkeiten der Vorhersage z. B. von Umsätzen, Lagerbeständen und Maschinenabnutzung zu bieten.

Optimierung

Der letzte Schritt in der Evolution ist die Simulation von allen Stellschrauben mit dem Ziel zur Optimierung des Systems (z. B. das Geschäft, die Fabrik oder die Maschine). Was in der Industriebetriebswirtschaft schon lange als Operations Research bekannt ist, wird mit Big Data Analytics einen neuen Aufschwung erfahren, denn hier werden immer mehr relevante Stellschrauben identifiziert und berücksichtigt werden können.

Was ist Data Science?

Was bitte soll Data Science bedeuten? Diese Frage bekomme ich häufig von meinen Kunden (überwiegend kaufmännische Leiter größerer Wirtschaftsunternehmen) gestellt. Und überraschenderweise können auch viele IT-affine Professionals, die sich beispielsweise schon mit Business Intelligence auseinandergesetzt haben, noch nichts mit dieser Bezeichnung anfangen.

Data Science ist eine recht neue Bezeichnung und entstammt – wie nicht anders zu vermuten – aus dem angelsächsischen Sprachraum, genau wie auch Business Intelligence und Big Data Analytics. Dadatasciencebei ist meiner Meinung nach Data Science ein vergleichsweise sehr treffender Name (wesentlich besser als etwa der irreführende Begriff Big Data). Zwar besagt ein Blick auf Wikipedia zum Thema, dass Data Science als Begriff schon fast ein halbes Jahrhundert existiert, aber so richtig in Verwendung ist es eigentlich erst seit einem halben Jahrzehnt, bestenfalls.

Data Science als angewandte Wissenschaft

Das Science in Data Science deutet ganz klar auf Wissenschaft hin, auch wenn – meiner Meinung nach – der Begriff wissenschaftlich im Deutschen etwas strenger verwendet wird als Science im Englischen. Data Science hat seinen Ursprung tatsächlich in der Wissenschaft und ist z. B. in der Astronomie, Biologie, Medizin sowie den verschiedensten Sozialwissenschaften längst nicht mehr wegzudenken, hat jedoch auch den Weg in die Geschäftswelt gefunden. Die Data Science Methoden kommen aus der Informatik bzw. Mathematik und werden im Rahmen von universitären Forschungsprojekten weiterentwickelt. Die Methoden können mit etwas Hintergrundverständnis quasi von jedermann angewendet werden. Data Science ist vor allem eine angewandte Wissenschaft, in die jeder Anwender beliebig tief eintauchen kann.

Data Science und die Interdisziplinarität

Eine wichtige Disziplin im Data Science ist die Mathematik, davon insbesondere die Stochastik (Wahrscheinlichkeitstheorie und Statistik). Die Grundlagen der Datenanalyse zur Beschreibung von Sachverhalten erfolgt dabei mit den Methoden der deskriptiven Statistik. Bei der Generierung von neuen Erkenntnissen direkt aus Datenmengen heraus (Data Mining bzw. explorative Datenanalyse), wird von der explorativen Statistik ermöglicht. Die induktive Statistik geht noch einen Schritt weiter und ermöglicht Schätzverfahren bzw. Prognosen über zukünftige Ereignisse (Predictive Analytics). Neben den stochastischen Methoden spielen aber auch andere Bereiche der Mathematik eine Rolle, wie etwa die lineare Optimierung oder Systeme der künstlichen Intelligenz.

Mathematik ist jedoch längst nicht alles, was im Data Science eine Rolle spielt, denn mindestens ebenso wichtig ist Wissen über Datenverarbeitung (früher als EDV bekannt). Um Daten analysieren zu können, muss auf diese erstmal zugegriffen werden können, ggf. müssen diese auch überhaupt erstmal gesammelt werden. Zum Data Science gehören mindestens Grundkenntnisse über relationale Datenbanken und die Structured Query Language (SQL) auf jeden Fall dazu. Insbesondere im aktuellen Big Data Kontext, spielen aber vermehrt auch andersartige Datenbanken (sogenannte NoSQL-Datenbanken) eine wichtige Rolle, denn diese Datenbanken eignen sich zur Speicherung von besonders großen und/oder unstrukturierten Datenmengen.
Die besten Erkenntnisse bringen oftmals Datenanalysen über Daten aus unterschiedlichsten Datenquellen, welche über Extract-Transform-Load-Strecken (ETL) zusammen geführt werden. Die eigentlichen Analysen können mit verschiedensten Tools durchgeführt werden oder aber über dutzende Programmiersprachen. Wissen um Tools rund um ETL und Datenanalysen beschleunigen den Arbeitsalltag, stoßen jedoch schnell an gewisse Grenzen, bei denen man mit Programmiersprachen ansetzen muss. Im Data Science spielt Software Engineering grundsätzlich keine Rolle. Ein Data Scientist muss sich also für gewöhnlich keine Gedanken über eine Software-Architektur oder GUI-Entwürfe machen, auch spielt für Ihn Software-Sicherheit oder -Ergonomie keine entscheidende Rolle. Im Data Science kommen überwiegend Script-Sprachen (z. B. R, Perl oder Python) zum Einsatz. Sauberer Quellcode jedoch, ist auch im Data Science wichtig, da die Analyse und somit auch die Ergebnisse reproduzierbar bleiben müssen.

Neben der Mathematik und dem Wissen um IT, gibt es jedoch noch einen dritten Bereich, der im Data Science eine wirklich wichtige Rolle spielt: Die eigentliche Substanzwissenschaft. Es versteht sich von selbst, dass z. B. Datenanalyse für medizinische Zwecke nur effektiv nur von jemanden durchgeführt werden können, der über eine entsprechende medizinische Kompetenz verfügt. Genauso gut aber, ist Wissen über die Betriebswirtschaft und das aktuelle Geschäftsgeschehen von entscheidender Bedeutung, wenn es um Datenanalyse zum Zwecke der Geschäftsoptimierung (Business Analytics) geht.